Data-Driven Solo Voice Enhancement for Jazz Music Retrieval

Stefan Balke1, Christian Dittmar1, Jakob Abeßer2, Meinard Müller1

1International Audio Laboratories Erlangen
2Fraunhofer Institute for Digital Media Technology IDMT
Problem Setting

Retrieval Scenario
Given a monophonic transcription of a jazz solo as query, find the corresponding document in a collection of polyphonic music recordings.

Solo Voice Enhancement
1. Model-based Approach [Salamon13]
2. Data-Driven Approach [Rigaud16, Bittner15]

Our Data-Driven Approach
Use a DNN to learn the mapping from a “polyphonic” TF representation to a “monophonic” TF representation.
Overview

1. Background on the Data
2. DNN Architecture & Training
3. Evaluation within Retrieval Scenario
Weimar Jazz Database (WJD)

- 299 transcribed jazz solos of monophonic instruments.
- Transcriptions specify a musical pitch for physical time instances.
- 570 min. of audio recordings.

Thanks to the Jazzomat Research team: M. Pfleiderer, K. Frieler, J. Abeßer, W.-G. Zaddach

© AudioLabs, 2017

Data-Driven Solo Voice Enhancement for Jazz Music Retrieval

Balke et al.
DNN Training

- **Input**: Log-freq. STFT frame (120 semitones, 10 Hz feature rate)
 - TF-representation of jazz solo recording
- **Output**: Pitch activations (120 semitones, 10 Hz feature rate)
- **Target**: TF-representation with solo instrument’s pitch activations
DNN Architecture

\[X := \text{Input}, \ Y := \text{Output}, \ T := \text{Target}, \ L := \text{Loss} \]

\[L = \text{MSE}(X, Y) \]

Dimensions: 120 120 120 120 120 120 120 120

- Basic feed-forward DNN with 5 hidden layers.
- Training is applied layer-wise [Bengio06], extended in [Uhlich15].
Layer-Wise Training

- Initialize weights (W_1) and bias (b_1) with Linear Least Squares (LLS)
- Train 600 epochs …
- Interpret output of trained network as input to the next layer

Keep weights

- Append next layer
- Initialize W_2 and b_2 with LLS
- Train 600 epochs …
Training Details

- **Total Duration**: 570 min.
- **Active Solo Frames**: 62%
- **Split**: 10-fold cross-validation
 - Training Set: 63%, Validation Set: 27%
 - Test Set: 10%
- **Loss**: Mean-Squared Error
- **Optimizer**: Stochastic Gradient Descent
 - Mini-batch size = 100 frames (10 s)
 - Learning Rate = 10^{-6}, Momentum = 0.9
 - 600 epochs per layer (3000 epochs in total)
Training Loss
Number of Hidden Layers: 1

![Graph showing training and validation loss over 600 iterations.](image)
Training Loss
Number of Hidden Layers: 2
Training Loss

Number of Hidden Layers: 3

- Training Loss
- Validation Loss

Number of Iterations:
- 600
- 1200
- 1800
Training Loss
Number of Hidden Layers: 4

![Graph showing Training Loss and Validation Loss over epochs with a maximum of 2400 epochs. The graph indicates a downward trend in loss values with increasing epochs.]
Training Loss

Number of Hidden Layers: 5
Qualitative Evaluation

Input

Target

Output
Experiment: Jazz Music Retrieval

- 30 queries with a duration of 25 s for each fold
- 1 relevant document in the database per query
- Additional queries by shortening to [20, 15, 10, 8, 6, 5, 4, 3] s
- Evaluation measure is the mean reciprocal rank (MRR)
Experiment: Jazz Music Retrieval

Results

- **Baseline**: Chroma-based matching [Mueller15]
- **Melodia**: Quantized F0-trajectory [Salamon13]
- **DNN**

![Graph showing MRR vs Query Length (s)]
Conclusions

- Data-driven approaches seem to be beneficial for solo voice enhancement.
- Data-driven and model-based approaches show similar performance in a retrieval scenario.

Future Work

- Investigate scenarios where predominance assumption is violated, e.g., walking bass transcription.
- Train instrument-specific models, e.g., implicit instrument recognition.
- Utilize DNN’s output for other tasks (e.g., F0-tracking).

Audio examples, trained models, and data:
https://www.audiolabs-erlangen.de/resources/MIR/2017-ICASSP-SoloVoiceEnhancement
stefan.balke@audiolabs-erlangen.de
feat. Masataka Goto, Mark Plumbley, and Udo Zölzer as keynote speakers.

More Details: http://www.aes.org/conferences/2017/semantic/
References

