Music Structure Analysis

General goal: Divide an audio recording into temporal segments corresponding to musical parts and group these segments into musically meaningful categories.

Examples:
- Stanzas of a folk song
- Intro, verse, chorus, bridge, outro sections of a pop song
- Exposition, development, recapitulation, coda of a sonata
- Musical form ABACADA … of a rondo

Challenge: There are many different principles for creating relationships that form the basis for the musical structure.

- **Homogeneity:** Consistency in tempo, instrumentation, key, ...
- **Novelty:** Sudden changes, surprising elements …
- **Repetition:** Repeating themes, motives, rhythmic patterns,…
- **Variation:** Modification and transformation
Overview

- Introduction
- Self-Similarity Matrices
- Audio Thumbnailing
- Novelty-based Segmentation
- Converting Path to Block Structures

Thanks:
- Clausen, Ewert, Kurth, Grohganz, ...
- Dannenberg, Goto
- Grosche, Jiang
- Paulus, Klapuri
- Peeters, Kaiser, ...
- Serra, Gómez, ...
- Smith, Fujinaga, ...
- Wand, Sunkel, Jansen
- ...

Feature Representation

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Chroma (Harmony)

MFCC (Timbre)

Tempo
Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Blocks: Homogeneity
Paths: Repetition
Corners: Novelty
Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Chroma (Harmony)

Idealized SSM

G major G minor G minor

SSM Enhancement

Block Enhancement
- Feature smoothing
- Coarsening

Path Enhancement
SSM Enhancement

Path Enhancement
- Diagonal smoothing

SSM Enhancement

Path Enhancement
- Diagonal smoothing
- Multiple filtering

SSM Enhancement

Path Enhancement
- Diagonal smoothing
- Multiple filtering
- Forward-backward

SSM Enhancement

Path Enhancement
- Diagonal smoothing
- Multiple filtering
- Forward-backward
- Thresholding (binary)

SSM Enhancement

Path Enhancement
- Diagonal smoothing
- Multiple filtering
- Forward-backward
- Thresholding (relative)
- Scaling & penalty
SSM Enhancement

Example: Zager & Evans “In The Year 2525”

Missing relations because of transposed sections

Idea: Cyclic shift of one of the chroma sequences

One semitone up

Two semitones up

SSM Enhancement

Example: Zager & Evans “In The Year 2525”

Idea: Overlay & add up Transposition-invariant SSM
SSM Enhancement

Example: Zager & Evans "In The Year 2525"
Note: Order of enhancement steps important!

Adding up

Smoothing & adding up

Similarity Matrix Toolbox

Meinard Müller, Nanzhu Jiang, Harald Grohganz
SM Toolbox: MATLAB Implementations for Computing and Enhancing Similarity Matrices

http://www.audiolabs-erlangen.de/resources/MIR/SMtoolbox/

Overview

- Introduction
- Self-Similarity Matrices
- Audio Thumbnailing
- Novelty-based Segmentation
- Converting Path to Block Structures

Thanks:
- Jiang, Grosche
- Peeters
- Cooper, Foote
- Goto
- Levy, Sandler
- Mauch
- Sapp

Audio Thumbnailing

General goal: Determine the most representative section ("Thumbnail") of a given music recording.

Example: Zager & Evans "In The Year 2525"

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Thumbnail is often assumed to be the most repetitive segment

Audio Thumbnailing

Two steps
1. Path extraction
 - Paths of poor quality (fragmented, gaps)
 - Block-like structures
 - Curved paths

2. Grouping
 - Noisy relations (missing, distorted, overlapping)
 - Transitivity computation difficult

Both steps are problematic!

Main idea: Do both, path extraction and grouping, jointly

- One optimization scheme for both steps
- Stabilizing effect
- Efficient

Main idea: Do both path extraction and grouping jointly

- For each audio segment we define a fitness value
- This fitness value expresses "how well" the segment explains the entire audio recording
- The segment with the highest fitness value is considered to be the thumbnail
- As main technical concept we introduce the notion of a path family
Fitness Measure

Enhanced SSM

Fitness Measure

Path over segment
- Consider a fixed segment
- Path over segment
- Induced segment
- Score is high

Fitness Measure

Path over segment
- Consider a fixed segment
- Path over segment
- Induced segment
- Score is not so high
- A second path over segment
- Induced segment
- Score is not so high

Fitness Measure

Path over segment
- Consider a fixed segment
- Path over segment
- Induced segment
- Score is high
- A second path over segment
- Induced segment
- Score is not so high
- A third path over segment
- Induced segment
- Score is very low

Fitness Measure

Path family
- Consider a fixed segment
- A path family over a segment
- The induced segments do not overlap.
Consider a fixed segment
A path family over a segment is a family of paths such that the induced segments do not overlap.

This is not a path family!

Consider a fixed segment
A path family over a segment is a family of paths such that the induced segments do not overlap.

This is a path family!

(Even though not a good one)

Consider a fixed segment
Consider over the segment the optimal path family, i.e., the path family having maximal overall score.
Call this value: Score(segment)

Furthermore consider the amount covered by the induced segments.
Call this value: Coverage(segment)

Note: This optimal path family can be computed using dynamic programming.
Fitness Measure

Consider a fixed segment
Self-explanation are trivial!
Subtract length of segment
Normalization

Fitness

P := Normalize(Score(segment) - length(segment)) ∈ [0,1]
R := Normalize(Coverage(segment) - length(segment)) ∈ [0,1]

F := 2 * P * R / (P + R)
Note: Self-explanations are ignored → fitness is zero

Thumbnail: segment having the highest fitness

Example: Brahms Hungarian Dance No. 5 (Ormandy)
Overview

- Introduction
- Self-Similarity Matrices
- Audio Thumbnailing
- Novelty-based Segmentation
- Converting Path to Block Structures

Thanks:
- Foote
- Serra, Grosche, Arcos
- Goto
- Tzanetakis, Cook

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Example: Zager & Evans “In The Year 2525”
Novelty-based Segmentation

General goals:
- Find instances where musical changes occur.
- Find transition between subsequent musical parts.

Idea (Foote):
Use checkerboard-like kernel function to detect corner points on main diagonal of SSM.
Novelty-based Segmentation

Idea (Foote):
Use checkerboard-like kernel function to detect corner points on main diagonal of SSM.

Novelty function using

Structure features
- Enhanced SSM
- Time-lag SSM
- Cyclic time-lag SSM
- Columns as features
Novelty-based Segmentation

Example: Chopin Mazurka Op. 24, No. 1

Overview

- Introduction
- Self-Similarity Matrices
- Audio Thumbnailing
- Novelty-based Segmentation
- Converting Path to Block Structures

Thanks:

- Grohganz, Clausen
- Kaiser
- Peeters
- Dubnov, Apel
- Serra, Grosche, Arcos

Converting Path to Block Structures

Motivation

- Perform joint analysis using repetitive as well as homogeneous aspects
- Make homogeneity-based methods applicable to repetition-based analysis
Converting Path to Block Structures

Motivation

- Homogeneity
- Repetition

Procedure

- Enhanced SSM
- Thresholding & image processing
- Eigenvalue decomposition
- Weighting
- Clustering & smoothing

Converting Path to Block Structures
Converting Path to Block Structures

Procedure
- Enhanced SSM
- Thresholding & image processing
- Eigenvalue decomposition
- Weighting
- Clustering & smoothing
- Columns as features

Final matrix shows paths as blocks

Conclusions

- Repetition, Homogeneity, Novelty
- Combined Approaches
- Hierarchical Approaches
- Evaluation
- Explaining Structure

PhD Projects (Final Stage)

- Nanzhu Jiang
 Universität Erlangen-Nürnberg
 Supervisor: Meinard Müller

- Harald Grohganz
 Universität Bonn
 Supervisors: Michael Clausen, Meinard Müller

- Jordan Smith
 Queen Mary University of London
 Supervisor: Elaine Chew

- Oriol Nieto
 New York University
 Supervisor: Juan P. Bello

Book Project

A First Course on Music Processing

Textbook (approx. 500 pages)

1. Music Representations
2. Fourier Analysis of Signals
3. Music Synchronization
4. Music Structure Analysis
5. Chord Recognition
6. Tempo and Beat Tracking
7. Content-based Audio Retrieval
8. Music Transcription

To appear (plan): End of 2015
References

- R. B. DANNENBERG AND M. GOTO, Music structure analysis from acoustic signals, in Handbook of Signal Processing in Acoustics, D. Hewick, S.

References

References

References