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ABSTRACT
Concert band and wind music are deeply embedded in society and play a significant
role in the cultural landscapeofmany countries, includingGermanyandAustria, partic-
ularly within the amateurmusic scene. However, this type ofmusic, as well as research
on wind and brass instruments in general, remains largely overlooked in the field of
music information retrieval (MIR). In this paper, we address this underexplored area
by introducing ChoraleBricks, a framework featuring multitrack recordings of ten dif-
ferent chorales, each comprising four musical parts: soprano, alto, tenor, and bass.
At its core, ChoraleBricks provides isolated recordings of individual parts performed by
a diverse selection of wind instruments, including flute, oboe, clarinet, trumpet, sax-
ophone, baritone horn, trombone, and tuba. These isolated recordings act as build-
ing blocks or “bricks” that can be modularly superimposed to create full mixes with
varying instrumentation. In addition, ChoraleBricks provides sheetmusic, time-aligned
symbolic music representations, conducting videos, and reference annotations such
as fundamental frequencies and note events. The framework is further enhanced by
Python software tools that support parsing, mixing, annotation, and modular com-
bination of the recorded audio material. With all multimedia and software com-
ponents available as open-source, ChoraleBricks provides a versatile framework for
generating and augmenting datasets for polyphonic wind music. It supports system-
atic experimentation and facilitates evaluation across various research topics, includ-
ing multi-pitch estimation, note transcription, audio alignment, and music education
applications.
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1 INTRODUCTION

Music information retrieval (MIR) has seen significant
advancements in recent years, with a focus on a wide
array of musical genres, instruments, and analysis tech-
niques, such as in singing voice separation in popular
music or automatic music transcription (AMT) for piano
recordings; see, e.g., Peeters and Richard (2021) and
Richard et al. (2023). However, wind instruments, despite
their prominent role in various musical traditions, remain
underrepresented in many MIR studies. For instance,
wind instruments are an integral part of themodern sym-
phonic orchestra alongside strings and percussion and
take on an even more prominent role in ensembles such
as big bands. In popular music, many songs feature a
wind section composed of instruments such as trum-
pets, saxophones, and trombones,with some songs, such
as Sir Duke by Stevie Wonder,¹ being characterized by
their wind arrangements. Most often, the neglect of these
instruments is not due to any deliberate oversight but
rather the scarcity of data. However, this lack of data lim-
its the generalizability and applicability of MIR methods,
particularly for tasks such as source separation, align-
ment, or instrument recognition. To address this gap, we
introduce the ChoraleBricks dataset.

ChoraleBricks is a collection of multitrack recordings
specifically designed to feature wind instruments in a
controlled and flexible way. The dataset consists of ten
chorales, each composed of four distinct musical parts,
namely soprano (S), alto (A), tenor (T), and bass (B).
These parts differ in pitch range and in their musical
roles. For instance, the soprano usually presents themain
melody, whereas the bass is responsible for the lowest
register, usually providing the root or third of the chord.
For each part, we have multiple recordings with differ-
ent instruments. A key feature of the recordings is that
each partwas recorded individually, ensuring no crosstalk
fromother instruments. This feature provides researchers
with the flexibility to combine different instruments in
a modular fashion, allowing for systematic experimen-
tation and evaluation across a range of research ques-
tions. In total, 13 different instruments were recorded,
resulting in 193 tracks and 2 hours and 10 minutes of
isolated multitrack audio recordings. Figure 1 depicts the
concept of the ChoraleBricks collection, showing three
different instrument combinations (mixes) for the same
chorale. In Figure 1a, soprano and alto parts are played
by trumpets, tenor by trombone, and bass by a tuba.
In Figure 1b, the mix consists of clarinets for soprano
and alto, bassoon for tenor, and french horn for the
bass. In Figure 1c, we are combining parts from the first
two mixes to yield a third mix—as simple as stacking
bricks.

The ChoraleBricks chorales stem from German church
music, a tradition integrating wind ensembles since the
16th century. The Protestant Posaunenchor—amateur

Figure 1 Schematic visualization of the ChoraleBricks concept
for generating different mixes from the same chorale. (a) Mix
consisting solely of brass instruments. (b) Mix primarily
featuring woodwinds. (c) Mix combining two brass and two
woodwind instruments.

brass ensembles featuring instruments such as trum-
pet, trombone, and tuba—evolved into its modern form
in the early 20th century under influences such as the
Moravian Church and Johannes Kuhlo (Niemann, 2006).
These ensembles, reading in concert pitch (i.e., non-
transposed C notation), adapt seamlessly to organ and
choir repertoire and can therefore readily accompany
community singing during church services. Today, the
tradition remains lively, with a wealth of original compo-
sitions and arrangements spanning sacred and secular
works across all styles, genres, and eras being published
annually in individual scores and scorebook series.

The ChoraleBricks dataset is a carefully designed and
versatile resource, offering value not only to theMIR com-
munity but also to amateur musicians and music edu-
cation programs. It includes isolated audio tracks, sheet
music in both MEI and MusicXML format, conducting
videos, and additional annotations. These annotations
provide editorial metadata for the tracks (e.g., player IDs
and microphone types), precise alignments linking audio
to sheet music, and manually corrected fundamental
frequency (F0) trajectories with derived note events. Fol-
lowing open science practices described by McFee et al.
(2019), we provide data,² reference implementations in
Python,³ and extensive documentation4 under suitable
Open Access licenses.

The remainder of the paper is structured as follows.
Section 2 situates the presented work within the con-
text of existing literature. Section 3 details the creation
process of the ChoraleBricks collection, including work
selection, track recording, and data curation. Section 4
provides quantitative statistics on the collection’s multi-
track audio material and discusses the potential of track
permutations to expand the dataset’s size. Section 5
details the released software and accompanying web-
sites. Finally, Section 6 summarizes the paper and out-
lines ideas and a research road map for utilizing this new
dataset.
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2 RELATED WORK

2.1 WIND MUSIC RESEARCH
The historical development of brass andwoodwindmusic
in Europe beganwith ancientmilitary signals and evolved
through the Renaissance into organized bands for civic
and ceremonial functions (Hofer, 1992). In the 18th and
19th centuries, professional military bands and the pop-
ular brass band movement emerged. This genre has
evolved from its origins to develop its own distinct tra-
dition, reflecting Europe’s rich musical heritage. In par-
ticular, brass and woodwind music is an integral part
of contemporary German culture, with military, church-
related, and purely civilian concert bands and ensem-
bles performing frequently. With a focus on the history
and relevance of American wind music, the develop-
ment from military music to modern wind music in the
20th century is described by Battisti (2018). A signifi-
cant milestone in this development was the formation of
the Eastman Wind Ensemble (EWE) by Frederick Fennell
in 1952. The EWE emphasized flexible instrumentation,
allowing for a wide repertoire ranging from classical tran-
scriptions to contemporary works. In Chapter 24, Battisti
(2018) states: “All new technological devices and instru-
ments should be used to promote wind bands/ensem-
bles and their music. Every iPhone and iPad is a concert
hall.”

From a scientific perspective, wind music is studied by
small yet active research communities around the world,
focusingmainly onmusicological aspects. Two examples
of such communities are the Internationale Gesellschaft
zur Erforschung und Förderung der Blasmusik (IGEB)5

and the World Association for Symphonic Bands and
Ensembles (WASBE).6 At universities, research on con-
cert band and wind music is primarily conducted at
musicological institutes or within performance stud-
ies. A notable research institute is the Pannonische
Forschungsstelle/Internationales Zentrum für Blasmusik-
forschung,7 which focuses on wind music research and
houses one of themost prolific libraries dedicated towind
music in the world. Additionally, it serves as the head-
quarters of the aforementioned IGEB.

2.2 MULTITRACK DATASETS
In the past, somemultitrack datasets have been released
for research purposes, e.g., MUSDB18 (Rafii et al., 2017),
MedleyDB (Bittner et al., 2014), or MoisesDB (Pereira et
al., 2023). However, most of these datasets concentrate
on popular and rock music, where brass instruments and
woodwinds usually play a minor role. An exception is the
Cadenza Woodwind dataset, which was released dur-
ing Cadenza’s Second Open Machine Learning Challenge
(CAD2) for the task of rebalancing classical music ensem-
bles (Roa Dabike et al., 2024).8 In this case, the audio
recordings in the dataset stem from a synthetic data
generation pipeline, an emerging trend which could be

observed in other datasets as well, such as in Ensem-
bleSet (Sarkar et al., 2022) or the CocoChorales dataset
(Wu et al., 2022). Further symbolic encodings for chorales
can be found in the Chorale Corpus (Gerhardt and Kirsch,
2024).9 Although high amounts of data can be gener-
ated, the versatility in timbre, articulation, and modula-
tion of some instruments (e.g., trumpets) is not yet com-
parable to real recordings.

In the following, we discuss the most influential
works for this paper and the ways in which the Chorale-
Bricks dataset is continuing the existing line of research.
On a conceptual level, our work on ChoraleBricks has
been inspired by three influential datasets. First, Duan
and Pardo (2011) created the dataset Bach10 by record-
ing ten Bach chorales using violin, clarinet, saxophone,
and bassoon. Each part was recorded sequentially, start-
ing with the violin, while successive players listened
to the previously recorded parts to align their tempo
and dynamics. Second, the Operation Beethoven dataset
by Kaiser et al. (2023), involved an orchestra record-
ing a reference performance of the first movement of
Beethoven’s 4th Symphony (approximately 10 minutes).
Each instrumental section then recorded their parts indi-
vidually using the reference track as a guide, although the
recordings were not strictly isolated. Finally, University
of Rochester Multi-Modal Music Performance (URMP) by
Li et al. (2019) features 44 pieces with various instru-
ments, totaling 1.2 hours of isolated multitrack record-
ings. The methodology included a prerecorded video
of a conductor accompanied by a pianist. Subsequent
musicians were provided with this video and the piano
audio as a guide track to ensure alignment during their
recordings.

These datasets significantly influenced ChoraleBricks’
design and methodology. While our dataset builds upon
Bach10’s approach, we integratemethodological insights
from URMP, such as alignment strategies, to enhance the
recording process. The key contribution of ChoraleBricks
lies in its diversity of instruments, enabling dynamic cre-
ation of new mixes with varying complexity, thus broad-
ening its utility for downstream tasks.

3 DATASET CREATION PROCESS

The dataset creation process, illustrated in Figure 2, con-
sists of four main steps: selecting the works, record-
ing conducting videos, sequentially recording individual
tracks, and curating the data with accompanying anno-
tations. In the following sections, we provide a detailed
explanation of each step and share insights gained dur-
ing the process.

3.1 WORK SELECTION
The first step involves selecting the works to include in
the dataset. In ChoraleBricks, each work is a four-part
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Figure 2 Overview of the creation process of the ChoraleBricks collection outlining the four main steps: work selection, conducting
videos, recording of the individual tracks, and the data curation.

chorale consisting of soprano (S), alto (A), tenor (T), and
bass (B) parts, with the soprano voice presenting the
melody. During the work selection process, we focused
on three key aspects: First, the chosen works should
be representative of the chorale literature, particularly
within the German tradition. Second, the arrangements
should exhibit a homogeneous style and a comparable
level of complexity—short and accessible enough for
amateur musicians to perform. Finally, and crucially, the
arrangements must be eligible for publication under an
Open Access license.

A common resource in chorale music literature is
the chorale accompaniment book, which typically pro-
vides four-part chorales corresponding to the entries in
a related hymn book. One such accompaniment book is
the Neues Thüringer Choralbuch (English: New Thuringian
Chorale Book), originally compiled by Rudolf and Erhard
Mauersberger (Mauersberger and Mauersberger, 1955).10

Although initially designed for organists, some of the
chorale arrangements included in the book are derived
from choir literature. The movements adhere to a strict
arrangement with four monophonic parts. The counter-
point is predominantly homophonic, meaning all parts
follow the rhythm of the melody, which (referred to as
cantus firmus in Latin) is always in the soprano. The pitch
ranges are comfortably singable by an SATB choir and
playable by brass ensembles such as a Posaunenchor or
woodwind groups. While the Neues Thüringer Choralbuch
was initially created to accompany two now-outdated

hymn books (Deutsches Evangelisches Gesangbuch and
Evangelisches Kirchengesangbuch), its chorale arrange-
ments remain relevant. The melodies frequently appear
in modern hymn books, and the four-part chorales con-
tinue to represent today’s practices, offering flexible
instrumentation options for a variety of ensembles.

Given the stylistic homogeneity of the arrangements
in this particular chorale book (Baroque style with pre-
dominantly homophonic counterpoint), along with their
relatively low technical skill requirements and flexibility
for various instrumentations, we chose this book as the
foundation for our dataset. For ChoraleBricks, we selected
ten works from this book as a representative subset, as
shown in Table 1. The selected works date back to the
16th, 17th, and 18th centuries and include compositions
by renowned composers such as Bach, Telemann, and
Vulpius, among others.

Figure 3 presents a score rendition of a typical chorale
from the dataset (“Auf, auf, mein Herz, mit Freuden” by
Johann Crüger (CR1)). In the score, the first and second
voices (soprano and alto) are notated in the treble clef
on the first and second staff lines, while the third and
fourth voices (tenor and bass) are notated in the bass
clef.

In ChoraleBricks, the musical scores are provided in
multiple formats. First, we use the MusicXML format. As
shown in Figure 3, each voice is placed on a separate
staff line, and all repetitions are expanded by duplicat-
ing the respective measures. These MusicXML encodings
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form the foundation for symbolic music representations
utilized in the audio-to-score alignment processes dis-
cussed later in the paper.

Additionally, the scores are encoded in the MEI sym-
bolic music format (version 5.0), established as the inter-
national standard for digital scholarly music editions

Number ID Name Year

1 AN1 Anonymous: “Aus meines
Herzens Grunde”

1598

2 BA1 Bach, J. S.: “Ich steh’ an
Deiner Krippe hier”

1736

3 CR1 Crüger, J.: “Auf, auf, mein
Herz, mit Freuden”

1647

4 DR1 Drese, A.: “Jesu, geh voran” 1698

5 GE1 Gesius, B.: “Befiehl Du Deine
Wege”

1603

6 GE2 Gesius, B.: “Du Friedensfürst,
Herr Jesu Christ”

1601

7 JA1 Jan, M.: “Du großer
Schmerzensmann”

1668

8 TE1 Telemann, G. P.: “Der lieben
Sonne Licht und Pracht”

1730

9 VU1 Vulpuis, M.: “Die helle Sonn
leucht’ jetzt herfür”

1609

10 VU2 Vulpuis, M.: “Christus, der ist
mein Leben”

1609

Table 1 An overview of the musical works included in the
ChoraleBricks collection.

Notes: The composers of the melodies are specified, while the
four-part harmonizations were composed by Rudolf Mauers-
berger (Mauersberger and Mauersberger, 1955).

(Hankinson et al., 2011; Rol, 2023). MEI’s capabilities
for annotating critical editions, analytical data, and vari-
ances across different versions of the Neues Thüringer
Choralbuch make it ideal for this project and potential
future expansions.

The graphical scores, such as the one shown in
Figure 3, were rendered using MuseScore v4.0+ (Muse
Group, 2022). In the original sheet music, the soprano
and alto parts were combined as two voices in a sin-
gle staff line in the treble clef, while the tenor and bass
parts were combined in the bass clef. Although most
musicians are accustomed to reading from the full score
during recording sessions, the additional MusicXML
encoding, derived from MEI, provides a flexible and stan-
dardized format for computational tasks.

3.2 RECORDING OF THE CONDUCTING VIDEO
A key insight from the URMP dataset preparation was
that conducting videos effectively ensured synchroniza-
tion across sequentially recorded tracks (Li et al., 2019).
Building on this approach, we created conducting videos
for all ten chorales. The videos feature a clear and acces-
sible conducting style (performed by the first author) and
tempi consistent with common performance practices.
Each video begins with an inviting gesture and a smile
toward the musician, typically followed by one mea-
sure with preparatory beats to establish the tempo. The
chorales conclude with a fermata to signal the ending.

Figure 4a illustrates the technical setup for the video
recordings. Various backgrounds, including white walls
and sheets, were tested before settling on a gray paper
backdrop commonly used in photography. Lighting was
provided by a single light source positioned behind a

Figure 3 “Auf, auf, mein Herz, mit Freuden” (CR1), melody by Johann Crüger, harmonization by Rudolf Mauersberger, rendered with
MuseScore.
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Figure 4 Impressions of the recording setup used to create the conducting videos and multitrack audio material. (a) Illustration of the
setup used for the conducting videos. (b) A screenshot from one of the conducting videos. (c) A photo from a recording session in
Erlangen featuring a baritone saxophone player. (d) A rear view of the same session, showcasing the setup with sheet music displayed
on a laptop and the conducting video on a tablet. Faces in images are shown with consent.

diffuser on the right side, complemented by a reflec-
tor on the left to soften shadows. The recordings were
made using a standard smartphone (Apple iPhone 13)
mounted on a tripod approximately 2 meters in front of
the conductor. Figure 4b presents a screenshot from one
of the conducting videos as an example. It is worth not-
ing that the lighting and background setup evolved dur-
ing the video recordings, resulting in minor inconsisten-
cies in appearance across the videos.

Although not entirely consistent, we decided to
include the conducting videos in the dataset for two
key reasons. First, they document the recording process
and may offer a research avenue, such as analyzing the
relationship between conducting tempo and performed
tempo. Second, the videos could prove highly valuable for
expanding the dataset in the future, enabling othermusi-
cians and researchers to contribute, potentially through
web-based experiments.

3.3 RECORDING OF THE INDIVIDUAL TRACKS
The third step, depicted in Figure 2, is central to
the dataset creation process: recording the individual
tracks. As noted earlier, the primary objective of the
ChoraleBricks dataset is to provide completely isolated
recordings of each voice. To achieve this, musicians
were recorded sequentially—a method that, while effec-
tive for ensuring data modularity, deviates significantly
from traditional musical practices and the way this
repertoire is typically performed. Recognizing this lim-
itation, we carefully navigated the trade-off between
developing an analytically robust and highly modular
dataset and maintaining the natural musicality of the
performances.

As for ChoraleBricks, we prioritized the flexibility
afforded by a controlled recording process and setup.
Figures 4c and 4d illustrate the arrangement used dur-
ing the recording sessions. The conducting video was
played back via a digital audio workstation (Apple Logic
Pro, v11.1.1) and displayed on an iPad as a secondary

screen, ensuring synchronization between the video and
audio during the recording process.

For tuning, we aimed for A4 = 442 Hz, a standard fre-
quency commonly used in modern wind ensembles and
concert bands. Recordings were captured with a high-
quality condenser cardioid microphone (Schoeps MK 4),
positioned approximately 2 meters from the musician.
This setup aimed to capture the sound as perceived by an
audience or conductor rather than the dry sound typically
produced by close-up or clip microphones. The micro-
phone’s angle was adjusted on the basis of the instru-
ment, following recommendations from experience and
relevant literature (Albrecht, 2017).

The sessions were conducted in three different envi-
ronments: a rehearsal room (in Bödexen), a recording stu-
dio (in Erlangen), and an office (in Höxter). All locations
featured acoustically controlled conditions, free from the
excessive reverberation often found in churches or simi-
lar spaces.

In most chorales, the soprano and tenor voices were
typically recorded first, often performed by the trumpet
or flügelhorn. In some cases, however, the bass voice
was recorded first. This was the case when a baritone
horn player recorded the initial tracks of a chorale. Due
to its pitch range, it is possible to record all four voices
with the baritone horn (e.g., in VU2). Both strategies pro-
vided a reference for subsequent musicians, who could
listen to the previously recorded tracks while follow-
ing the conductor’s movements during their own per-
formance. This approach aligns with observations from
the Bach10 dataset, where the initial player effectively
“sets the scene” (Duan and Pardo, 2011). Similar to the
methodology used in URMP (Li et al., 2019), the inclu-
sion of a conducting video in our setup served as a
valuable visual cue, ensuring consistent timing across all
recordings.

Musicians reported that, as the number of prerecorded
tracks increased, it became easier to play along with the
audio. Once enough tracks were available, they could
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request specific mixes or receive tailored ones on the
basis of their preferences. A common preference was for
mixes featuring similar instruments. For example, saxo-
phone players found it easier to match intonation with
other reed instruments, while brass players favoredmixes
dominated by brass instruments. Although not systemat-
ically documented, these preferences align with intuitive
musician behavior: Familiar instruments provide more
comfortable references for both recording sessions and
live performances.

3.4 DATA CURATION
In the fourth step, as illustrated in Figure 2, the data
were curated and enriched with additional annotations,
including score-based audio annotations. This section
details the post-processing steps, annotation procedures,
and alignment processes, ensuring high-quality data
preparation and comprehensive metadata to support
diverse applications in MIR (see also Section 5).

3.4.1 Post-processing
For the audio recordings, variations in recording param-
eters, such as room acoustics, instruments, and
microphone distances, introduced slight differences in
perceived loudness. To address this bias, we adhered to
the European Broadcasting Union (EBU) R 128 broad-
cast standard, normalizing all audio recordings to −23
loudness units full scale (LUFS) (EBU, 2023). A limiter set
to −1 dB ensured that no tracks clipped after normal-
ization. All recordings were exported as WAV files with
a sampling frequency of 44.1 kHz. The normalization
process was performed using the digital audio work-
station Reaper (v7.30),11 and the details of this step are
documented on the accompanying website. We offer
additionalmetadata such as the recording date, location,
microphone used, performer identifier, and additional
comments (e.g., “all notes played an octave higher than
notated”) for each track.

For the conducting videos, we provide the files in
1080p full high-definition (HD) resolution at 30 frames
per second, encoded using the H.264 format with the
tool HandBrake (v1.9.0).12 Each video is accompanied by
the offset to the corresponding audio recording, enabling
users to synchronize their individual mixes with the con-
ducting video using tools such as ffmpeg.

3.4.2 Annotations
For annotations, we provide manually corrected fun-
damental frequency (F0) trajectories and aligned note
events (similar to a piano-roll representation) for each
track.

F0 Annotations
The F0 trajectories were annotated using Sonic Visualiser
(v5.0.1) and the pYIN VAMP plugin (v3) (Cannam et al.,

Figure 5 Last three measures of AN1. (a) Screenshot from Sonic
Visualiser displaying the waveform with F0 trajectories (red)
and the note track (gray). (b) Corresponding sheet music of the
soprano voice, with red arrows indicating the alignment
between the two modalities.

2010;Mauch andDixon, 2014), except for the tuba,where
a different procedure was required owing to its very low
pitches (details provided below). Figure 5a illustrates an
example of the resulting annotations for a flute track. On
the last note, regular amplitudemodulations in thewave-
form and frequency modulation in the extracted F0 tra-
jectory (red curve) can be observed, producing a char-
acteristic vibrato typical of many flute recordings. The F0

trajectory was derived using the “pYIN: Smoothed Pitch
Track” function with standard settings.

Additionally, a note track (Figure 5a, gray boxes), sim-
ilar to a piano-roll representation, was extracted using
the “pYIN: Notes” function with the same settings and
adjustments as for the F0 trajectories. Built-in sonifica-
tion was used to verify both the F0 trajectory and the
note tracks. Manual corrections were necessary for the
note tracks, particularly when consecutive notes were
not accurately identified or when note onsets were audi-
bly delayed.13 In cases of F0 trajectory errors (primar-
ily octave errors), a melodic range spectrogram was
employed to manually correct the trajectory on the basis
of the spectrogram data. For the tuba recordings, where
low-note extraction quality was unsatisfactory, a differ-
ent method was used. Note events were first extracted
using Sonic Visualiser. Then, a salience-based F0 estima-
torwas adapted to incorporate constraint regions defined
by the note events (Müller and Zalkow, 2021).14 Finally,
both the F0 trajectories and note tracks were exported as
CSV files for each track.

The high quality of these manually corrected and ver-
ified annotations makes them well suited for tasks such
as assessing pitch estimation methods in terms of pitch
accuracy. The sonification process proved instrumental
in detecting and rectifying voicing errors. Additionally,
the pYIN implementation operated at a resolution of 20
cents, followed by parabolic interpolation, surpassing the
50-cent resolution commonly employed by evaluation
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toolkits such as mir_eval (Raffel et al. 2014). However,
two potential confounding factors should be considered
when using them as a reference for evaluation. First, ini-
tial annotations were generated using the probalistic YIN
(pYIN) algorithm, which may introduce a bias toward this
approach. Second, determining note onsets and dura-
tions is inherently ambiguous, and the annotations were
adjusted by ear when necessary. This process could intro-
duce uncertainty in note boundaries, potentially affect-
ing evaluation metrics focused on the voicing capabilities
of pitch estimators.

Aligned Score Annotations
In audio-to-score alignment, the task is to link recorded
performances in physical time (given in seconds) to sheet
music in musical time (given in measures), as described
by Müller (2015). This process is often labor-intensive
when performed manually. ChoraleBricks simplifies it by
leveraging F0-annotated note events and monophonic
note sequences derived from the sheet music. This
enables a direct mapping between the F0 annotations
and note events extracted from MusicXML files using the
music21 library (Cuthbert and Ariza, 2010).

Figure 5 illustrates the annotation process: The note
events from the F0 annotations (Figure 5a, gray boxes)
served as the basis for the performed notes in the audio
recordings. Frequency values were converted into MIDI
note numbers. On the sheet music side (Figure 5b),
the corresponding note events were extracted from the
“unrolled”MusicXML encoding (Figure 3) using the Python
library music21. Once the number of note events was
confirmed to match between the audio and sheet music,
both sequences were linked (Figure 5, red arrows). Finally,
pitch alignment between the audio and score was veri-
fied through sonifications using libsoni (Özer et al., 2024).

The aligned scores were exported to a CSV file,
with each line representing a note event specified by
its physical time in the audio and its measure posi-
tion, encoded as a real number with a fixed preci-
sion of three digits. The integer component indicates
the measure, while the fractional component repre-
sents the relative position within the measure. For
instance, the note events from Figure 5b correspond to
(start:end): (0.833:1.000), (1.000:1.333), (1.333:1.500),
(1.500:1.833), (1.833:2.000), and (2.000:2.833).

This approach, however, does not retain connections
to the original MusicXML note objects. To address this,
we provide a second export using the Music Performance
Markup (MPM) format (Berndt, 2022), an extension to
symbolic music formats such as MEI and MusicXML with
additional performance properties. Combined with the
MPM Toolbox15 that provides built-in functionalities for
alignment to audio recordings, these exports enable
the creation of synthesized renditions with fine-grained
control over performance parameters such as timing,
dynamics, and articulation.

Each track in the ChoraleBricks collection includes
a corresponding alignment file containing sheet music
information and its link to the audio. The precise map-
ping between F0-annotated note events and the corre-
sponding MusicXML-derived note sequences guarantees
consistency across the dataset. The annotations were
subjected to thorough manual verification, including
sonification for detecting alignment errors. Verification of
the alignments is subject to future investigations; how-
ever, we assume that alignment deviations stay below 50
milliseconds. While the alignments share the same lim-
itations regarding note onset and duration ambiguities
as the F0 annotations do, their integration with Chorale-
Bricks’ modular mixing capabilities makes the dataset
well suited for a variety of systematic experiments.

4 DATASET STATISTICS

We now provide an overview of the ChoraleBricks col-
lection, detailing its statistical characteristics and over-
all structure. As outlined in Table 1, the collection fea-
tures ten pieces by eight different composers. The ear-
liest piece, AN1, dates back to 1598, while the most
recent, BA1, was composed in 1736. These works were
performed by 11musicians using 13 distinct instruments.
The performers, aged between 25 and 54 years (average
age: 39.91 years), each had at least ten years of expe-
rience with their instrument and ensemble playing, for
example, in orchestras. Although none of the performers
were professional instrumentalists, they are considered
skilled and dedicated amateur musicians.

Table 2 summarizes the musical properties of the
ChoraleBricks collection and indicates the available parts
for each chorale and instrument. Most arrangements are
in sharp keys (6), with fewer in flat keys (2) or in con-
cert key (2). The pieces feature a variety of time signa-
tures, all based on a quarter-note metric, such as 3/4 or
6/4. Some pieces, such as CR1, exhibit frequent time sig-
nature changes, likely reflecting adaptations to modern
notation. The collection includes pieces ranging from 9 to
19 measures in length, with durations between 16 and
59 seconds. Assuming one representative mix per piece,
the collection amounts to a total duration of 6 minutes
and 42 seconds.

ChoraleBricks includes a total of 193 tracks, distributed
among the voice parts as follows: 62 soprano tracks, 57
alto tracks, 28 tenor tracks, and 46 bass tracks. The pieces
with the highest number of tracks are CR1 and GE1 (21),
while VU1 has the fewest (17). On average, each piece
features 19.3 tracks. Regarding instruments, the baritone
horn recorded the most tracks (24), while the trombone
contributed the fewest (8). On average, each instrument
is represented by 14.9 tracks. Notably, 11 out of the
13 instruments, including the flute and trumpet, have at
least one track recorded for every piece. The combined
duration of all unique tracks is 2 hours and 10 minutes.
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Properties Available Parts per Instrument

ID Key TS #Meas. Dur. fl ob eh cl bcl as bs tp fh bar fho tb tba ∑ #Ens.

AN1 B♭ 4/4 14 00:57 S S A SA B SA TB SA SA STB B 18 280

BA1 D 4/4 17 00:45 S S A SA B SA TB SA SA TB AT B B 20 540

CR1 C Div. 13 00:48 S S A SA TB SA TB SA SA TB T TB B 21 750

DR1 G 3/4 12 00:32 S S A SA B SA TB SA SA TB AT B B 20 540

GE1 C 4/4 19 00:45 S S A SA B SA TB SA SA TB AT TB B 21 720

GE2 B♭ Div. 15 00:34 S S A SA TB SA B SA SA ATB AT B 20 504

JA1 G Div. 11 00:40 S S A SA B SA TB SA SA TB B B 18 300

TE1 G 4/4 19 00:59 S S A SA B SA B SA SA TB AT B 18 288

VU1 D 6/4 9 00:16 S S A SA B SA TB SA SA TB B 17 240

VU2 D 4/4 9 00:26 S S A SA B SA TB SA SA SATB B B 20 420

∑ 138 06:42 10 10 10 20 12 20 18 20 20 24 11 8 10 193 4582

Table 2 Overview table of ChoraleBricks indicating the available parts for each chorale (ID) and instrument.

The column#Meas. specifies themeasure count from the unrolled sheetmusic, including incompletemeasures such as upbeatmeasures.
The column #Ens. specifies the number of possible distinct four-voice ensemble mixes for a given chorale. Woodwinds: fl = flute, ob =
oboe, eh = English horn, cl = clarinet, bcl = bass clarinet, as = alto saxophone, bs = baritone saxophone. Brass: tp = trumpet, fh = flugelhorn,
bar = baritone horn, fho = French horn, tb = trombone, tuba = tuba. Div. = diverse; Dur. = duration; Ens. = ensemble; Meas. = measure;
TS = time signature.

The modularity of the ChoraleBricks collection is a
key strength, enabling various configurations of tracks
to form valid four-voice ensembles. The last column of
Table 2 (#Ens.) indicates the number of possible four-
voice ensembles for each chorale. For instance, one
ensemble might include flute (S), clarinet (A), baritone
saxophone (T), and bass clarinet (B), while another could
feature trumpet (S), flügelhorn (A), baritone horn (T), and
tuba (B). The number of possible combinations ranges
from 240 (VU1) to 750 (CR1), with an average of 458.2
valid four-voice ensembles per piece. Overall, this results
in a total duration of 52 hours and 18 minutes of distinct
audio that can be rendered across the various ensem-
ble configurations. However, it is important to note that
replacing a single instrument within an ensemble will
result in a version with significant similarity to the original
rendition. Consequently, the primary purpose of Chorale-
Bricks may not be to serve as a stand-alone dataset for
training machine learning models but rather as a supple-
mentary dataset to enhance data diversity or as an out-
of-domain testbed.

Figure 6 illustrates the pitch distributions across all
tracks for the soprano (S), alto (A), tenor (T), and bass (B)
voices. The density curves demonstrate notable overlap
in pitch ranges among the voices. The lowest pitch is MIDI
pitch 28 (G฀3), performed by the tuba in the bass voice,
while the highest is MIDI pitch 86 (D฀6), played by the flute
in the soprano voice. The standard concert pitch, A4, com-
monly used for tuning, corresponds to MIDI pitch 69. The

average pitches for the four voices are 69.75 (S), 62.88
(A), 57.56 (T), and 47.04 (B). The soprano and bass voices
span broader pitch ranges compared with the alto and
tenor voices, reflecting the intentional decision to record
flute tracks an octave higher and tuba tracks an octave
lower than written. This approach enhances the dataset
by extending the instruments’ pitch ranges.

5 ACCOMPANYING SOFTWARE

Along with the data, we present another major contri-
bution of this work: a Python-based software toolbox. Its
core functionality is to act as an object–relationalmapper
for the dataset, meaning that all data entities are linked
and represented as classes. Figure 7a illustrates themain
components in a class diagram. In the chosen class struc-
ture, the SongDB class contains all Songs, each Song
consists of multiple Tracks, and each Track provides
access to the corresponding audio files and annotations,
such as F0 trajectories and note events. Metadata, such
as player_id or microphone, are integrated through
class properties.

The toolbox includes functionality for ensemble mix-
ing, allowing users to randomly combine available tracks
to form ensembles covering all four voices. As illustrated
in Figure 7b, users can also apply optional gain adjust-
ments to each voice for customization. For advanced
features, such as panning or additional audio effects,
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Figure 6 Pitch distributions visualized as smoothed density curves for each voice part (SATB). Background bars indicate the actual
number of observations in the recorded tracks. Additionally, the pitch range and average pitch are specified for each part.

Figure 7 Overview of the Python package accompanying ChoraleBricks: (a) Class diagram illustrating the central toolbox components.
(b) Visualization of random ensemble mixing using gain factors GS, GA, GT, and GB.

the code serves as a foundation for custom implemen-
tations. The toolbox is equipped with comprehensive
documentation and example scripts for common tasks,
such as iterating through tracks for F0 evaluation or repro-
ducing dataset statistics described in Section 4.

To ensure reliability, the code includes systematic
unit tests and integrity checks for the dataset itself.
These tests range from basic validations, such as verify-
ing file existence and correct CSV headers, to advanced
checks, such asmatching audio file durations and detect-
ing duplicates in F0 trajectories (an issue encountered
when exporting F0 tracks from Sonic Visualiser). During
the dataset creation process, these testswere instrumen-
tal in substantially reducing errors, such as accidental
exports of incorrect annotation panes in Sonic Visualiser
or incorrectly named files.

In addition to the Python toolbox, the dataset
can be accessed and explored through an accompa-
nying website. This platform provides an overview of
the available songs, including representative mixes for
each piece. Users can also create custom mixes for
individual songs directly on the site. Figure 8 illus-
trates the web player interface for the song “Auf, auf,
mein Herz, mit Freuden” (CR1). Below the main play-
back controls such as play and stop, the player pro-
vides a list of all available tracks for the song. Each track
is categorized by its voice and labeled with the corre-
sponding instrument name. Using the checkbox on the
left side, users can select tracks and create their own
mixes. In Figure 8, the selected tracks are “1. Alto Sax-
ophone,” “2. Alto Saxophone,” “3. Baritone horn,” and
“4. Tuba.”
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Figure 8 Screenshot of the web interface for creating individual
mixes. The multitrack player is using trackswitch.js (Werner et
al., 2017).

6 CONCLUSIONS AND POTENTIAL
APPLICATIONS

In this article, we introduced ChoraleBricks, a ver-
satile dataset that addresses a significant gap in
MIR research by focusing on the underrepresented
category of wind music and its associated instru-
ments. We emphasized the cultural significance of wind
music, which is deeply embedded in community and tra-
dition, particularly within amateur and ensemble set-
tings. By offering isolatedmultitrack recordings, symbolic
sheet music representations, manually curated F0 anno-
tations, and audio-to-score alignments, ChoraleBricks
serves as a novel and valuable resource for research and
analysis.

The dataset also includes conducting videos, enabling
extensions and further studies, such as performance syn-
chronization and conducting analysis. Supported by a
Python toolbox and an intuitive web interface, Chorale-
Bricks provides streamlined access and facilitates sys-
tematic experimentation. The raw data are hosted on
Zenodo, and the accompanying code is available on
GitHub, ensuring wide availability and accessibility for the
research community.

We conclude this article by emphasizing the broad
potential of ChoraleBricks for MIR research and beyond.
Its modular design and diverse resources make it a valu-
able tool for advancing fundamental MIR tasks, fostering
innovation in music education and generation, and sup-
porting studies in cultural heritage and traditions.

6.1 F0 ESTIMATION AND TRANSCRIPTION
F0 estimation and automatic music transcription (AMT)
are foundational areas in MIR, with state-of-the-
art methods often relying on neural-network-based
approaches (Kim et al., 2018). However, applications
such as real-time intonation monitoring require low-
latency estimates, where traditional methods such as
YIN (de Cheveigné and Kawahara, 2002) or the sawtooth
waveform inspired pitch estimator (SWIPE) (Camacho
and Harris, 2008) remain viable owing to their simplic-
ity and efficiency. In such contexts, robustness and
efficiency are just as important as accuracy.

ChoraleBricks, with its clean, isolated recordings, pro-
vides a robust framework for testing F0 estimators under
diverse conditions, such as simulated crosstalk in ensem-
ble performances. Additionally, the dataset can mitigate
biases inherent in annotations (e.g., pYIN-based errors
or subjective onset/offset discrepancies) through syn-
thetic approaches using sinusoidal models (Salamon et
al., 2017), enablingmore objective evaluations across dif-
ferent F0 estimation methods.

In AMT, early research primarily targeted piano
recordings, driven by large datasets such as MIDI and
Audio Edited for Synchronous Tracks and Organization
(MAESTRO) (Hawthorne et al., 2019). Recent advance-
ments, including transformer-basedmodels (Mamanand
Bermano, 2022), have broadened transcription applica-
tions to other instruments. However, their performance
on diverse datasets such as URMP (Li et al., 2019)
remains limited. ChoraleBricks, with its varied instrumen-
tation and modular design, offers an essential resource
for evaluating and enhancing AMT models, addressing
transcription challenges across a broader spectrum of
instruments.

6.2 INTONATION ANALYSIS
In ensemble performances, achieving rhythmic precision
and balanced intonation is crucial for a cohesive sound.
While ensembles tune their instruments to a reference
pitch (e.g., A4 = 442 Hz) at the start of a session, fac-
tors such as temperature and humidity, particularly for
woodwind instruments, can lead to intonation shifts dur-
ing rehearsals or concerts. Players adjust their tuning
dynamically through subtle variations in their playing
techniques rather than altering the instrument itself.

Harmonic context also necessitates pitch adjust-
ments, as notes in a major triad (e.g., root, third, or
fifth) often require fine-tuning to align with harmonic
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expectations. Studies such as that of Howard (2007) have
shown intonation drifts in vocal ensembles, often due to
modulations, with singers tending to non-equal temper-
ament tunings. Similar analyses could be conducted for
wind ensembles using the ChoraleBricks dataset.

ChoraleBricks’ modular design enables the explo-
ration of various instrument combinations and harmonic
complexities, offering opportunities to define or learn
cost measures for intonation quality (Schwär et al.,
2021). Such measures could help identify well-intonated
ensembles and investigate phenomena, such as whether
larger ensembles achieve better intonation than smaller
ones—an observation often noted in amateur settings.

6.3 AUDIO ALIGNMENT
Audio–score alignment, along with related problems
such as score following and computer accompani-
ment, has been extensively studied (Dannenberg and
Raphael, 2006; Müller et al., 2019). While much of this
research focuses on piano music, orchestral and opera
music pose unique challenges owing to their complex-
ity. In particular, inconsistencies arising from musical
and performance-specific factors further complicate the
alignment of score elements, such as notes or measures,
with corresponding audio positions. These asynchronies
between orchestral and vocal elements are commonly
found in opera recordings (Weiß et al., 2016).

In this context, the ChoraleBricks dataset offers valu-
able opportunities for studying these challenges by pro-
viding alignments at the track level, allowing for evalua-
tions at the instrument level. This level of detail enables
researchers to explore alignment behaviors more thor-
oughly, such as identifying which instruments an align-
ment approach tends to prioritize, for example, trum-
pets in the soprano voice or tuba in the bass voice. Such
analyses yield important insights into the performance
and refinement of alignment methods, contributing to
advancements in audio-to-score alignment research.

6.4 MUSIC EDUCATION
Music education apps such as Yousician16 and flowkey17

have become popular tools for beginners, offering fea-
tures such as just-in-time feedbackwhile practicing. Most
apps focus on widely used instruments such as piano,
guitar, and bass. Some, such as Songs2See,18 also sup-
port wind instruments. For more advanced aspects, such
as intonation and sound quality, specialized tools such as
Korg Cortosia analyze tone properties, including pitch and
timbre stability (Bandiera et al., 2016).

The ChoraleBricks dataset could expand these edu-
cational approaches by facilitating interactive training
environments for ensemble playing, potentially through
a web interface. For example, students could practice
specific voices from chorales and receive feedback on
accuracy and timing. As proficiency increases, they could
transition to play-along scenarios with customizable

challenges, such as changing instruments, adding rever-
beration effects, or simulating tuning shifts. Addition-
ally, user-generated recordings could extend the dataset
with crowdsourced performances, creating a valuable
resource for evaluating F0 estimation and transcription
methods.

6.5 MUSIC SOURCE SEPARATION
Music source separation (MSS) seeks to isolate and
extract individual audio components (e.g., vocals, drums,
bass, guitar) from a mixed recording, allowing the cre-
ation of separate tracks for each source. Recent progress
in MSS has been driven by efforts such as the Sound
Demixing Challenge (Fabbro et al., 2024) and datasets
such as MUSDB18 (Rafii et al., 2017) and MoisesDB
(Pereira et al., 2023). While MSS systems excel with Rock
and Pop instruments, current research aims to achieve
universal source separation to address instrument-
specific limitations (Watcharasupat and Lerch, 2024).
With its diverse instrumentation and isolated tracks, the
ChoraleBricks dataset provides a valuable resource for
advancing and evaluating MSS techniques.

6.6 MUSIC GENERATION
Recent advancements in generative models, such
as denoising diffusion probabilistic models (DDPM)
(Hawthorne et al., 2022; Maman et al., 2024), leverage
large datasets to synthesize audio directly from symbolic
music representations. To reduce data requirements
while enhancing interpretability, model-based deep
learning combines traditional knowledge-driven meth-
ods with data-driven techniques within a differentiable
computing framework (Richard et al., 2024). An exam-
ple is the differentiable digital signal processing (DDSP)
framework (Engel et al., 2020), which integrates digital
signal processing (DSP) elements into deep learning
pipelines and has gained prominence in musical sound
synthesis.

ChoraleBricks contributes to advancing music gen-
eration, particularly for wind instruments, by offering
high-quality, modular recordings and precise per-track
note-wise annotations. These resources support the
development of generative models capable of synthe-
sizing realistic performances from symbolic music data.
For instance, ChoraleBricks may facilitate research using
DDPMs, DDSP, and hybrid frameworks, helping to address
confounding factors and enabling innovative ensemble
generationwith detailed control over timbre, articulation,
and dynamics.
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NOTES

1. Stevie Wonder. “Sir Duke.” Songs in the Key of Life, 1976.
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3. https://github.com/stefan-balke/choralebricks

4. https://audiolabs-erlangen.de/resources/MIR/2025-ChoraleBricks

5. https://www.igeb.net/

6. https://www.wasbe.online/

7. https://institut-oberschuetzen.kug.ac.at/

8. https://cadenzachallenge.org/

9. https://github.com/Chorale-Corpus

10. MEI encodings of the complete book are available at https://github.c
om/axelberndt/Neues-Thueringer-Choralbuch-digital.

11. https://www.reaper.fm/

12. https://handbrake.fr/

13. These errors occurred frequently, particularly when instruments were
played with soft onsets, such as the baritone saxophone. However, the
Sonic Visualiser interfaces facilitated efficient error correction.

14. Reference implementation and further description: https://audiolabs-
erlangen.de/resources/MIR/FMP/C8/C8S2-FundFreqTracking.html.

15. https://github.com/axelberndt/MPM-Toolbox, visited Nov. 2024.

16. https://yousician.com, visited Dec. 2024.

17. https://www.flowkey.com, visited Dec. 2024.

18. https://www.songquito.com, visited Dec. 2024.
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