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Abstract

In recent years, text-to-speech (TTS) synthesis has benefited
from advanced machine learning approaches. Most promi-
nently, since the introduction of the WaveNet architecture, neu-
ral vocoders have exhibited superior performance in terms of
the naturalness of synthesized speech signals in comparison
to traditional vocoders. In this paper, a fair comparison of re-
cent neural vocoders is presented in a signal reconstruction
scenario. That means we use such techniques to resynthesize
speech waveforms from mel-scaled spectrograms, a compact
and generally non-invertible representation of the underlying
audio signal. In that context, we conduct listening tests accord-
ing to the well established MUSHRA standard and compare the
attained results to similar studies. Weighing off the perceptual
quality to the computational requirements, our findings shall
serve as a guideline to both practitioners and researchers in
speech synthesis.

Index Terms: speech synthesis, neural vocoder, phase recon-
struction, MUSHRA, listening test

1. Introduction

The aim of text-to-speech (TTS) synthesis is to convert a
given text into a speech waveform. For many years, the
state-of-the art technique for synthesizing natural sounding
speech was to select and concatenate short speech segments
from a large speech corpus, a technique commonly referred
to as concatenative TTS or unit selection [1]. Alternatively,
parametric TTS systems [2] try to predict acoustic speech
features by employing machine learning techniques.

These features could be general time-frequency (TF) represen-
tations of speech or specialized vocoder control parameters.
In this context, a vocoder is a signal processing system
designed to synthesize the speech waveform from the feature
representation. Classic vocoder parameters are motivated by
an underlying speech production model and comprise suitable
encodings of the fundamental frequency, spectral envelope
and others. Usually, the feature sequences are defined on a
much coarser temporal scale than the target audio signal.
While parametric TTS approaches can synthesize intelligible
and prosodically correct speech features, the attainable sound
quality is often limited by the vocoder algorithm.

As in other fields of speech processing, TTS also has rapidly
advanced with the advent of deep learning techniques. In
their seminal paper [3], van den Oord et al. introduced the
WaveNet architecture, a neural vocoder that predicts the speech
waveform from past signal samples and can be controlled (con-
ditioned) by above-mentioned feature representations. The key
idea of such a neural vocoder is to implement an autoregressive
(AR) probabilistic model that allows to predict a probability
distribution of current waveform samples given previous

samples. Although AR models can generate speech signals of
high perceptual quality and naturalness, their generation speed
is slow because they have to generate waveform samples in
sequential manner. As a consequence, several other authors
proposed alternative architectures, which we will briefly
describe in Section 3.

Remarkably, there is relatively little work on using more
general signal reconstruction techniques in case the acoustic
features are TF representations, such as magnitude spec-
trograms or perceptually motivated representations (e.g.,
mel-scaled spectrograms). Often, the classic phase estimation
method proposed by Griffin and Lim in [4] is used without
further investigation. However, more elaborate methods have
been proposed in recent years that might be more suitable for
speech signal reconstruction tasks. We will discuss two such
methods, which are not based on deep learning but classical
signal processing in Section 4.

In Section 5, we present an experimental study that compares
six neural vocoder methods and two phase reconstruction meth-
ods with respect to the perceptual quality of the synthesized
speech signals. Recently, other researchers have published
similar evaluations in which they compare different vocoder
methods with respect to the attainable perceptual quality. For
example, the authors of [5] conducted listening tests with
classical signal-processing based vocoders. In [6], neural
vocoders (WaveNet) were included in the benchmark. As is
common in TTS research, mean opinion score (MOS) ratings
were reported in those studies. Moreover, both papers also
incorporated the prediciton of acoustic speech features into the
test. In this paper, our experimental approach differs in two
important aspects. First, we exclusively use speech features de-
rived directly from natural speech recordings (this is sometimes
referred to as copy synthesis). Second, we use the MUSHRA
standard for conducting the listening tests and evaluating the
results [7]. Similar attempts have been made by the authors
of [8], who compare WaveNet against well-known speech
codecs. Moreover, the authors of [9] evaluate the perceptual
quality of two neural vocoder approaches against each other. In
this contribution, we extend prior work by including six neural
vocoder variants as well as two phase reconstruction methods
into the test. This way, we try to provide a fair and neutral
comparison of state-of-the-art approaches with respect to their
synthesis quality as well as their computational requirements.

2. Task Definition

In this section, we formalize our task of speech signal recon-
struction. This goes alongside the overview in Figure 1. We con-
sider the real-valued, discrete time-domain signal x : Z — R to
contain a natural speech recording as shown in Figure 1. For

10.21437/SSW.2019-2


http://www.isca-speech.org/archive/SSW_2019/abstracts/SSW10_O_1-2.html

Original STFT magnitude
speech signal spectrogram

mel-scaled
spectrogram

N Neural
Vocoder

yeER

STFT magnitude
approximation

Reconstructed
speech signal

Phase
Reconstr.

Figure 1: Overview of the signal processing flow employed in this paper for speech signal reconstruction.

reasons explained later, = could optionally undergo a non-
linear pre-processing such as p-law compression and quanti-
zation. From x, we derive its mel-scaled spectrogram, a non-
invertible, compressed TF representation that is widely used in
audio and speech processing.
To this end, we transform x to the Short-Time Fourier Trans-
form (STFT) domain. Let A (k, m) be the non-negative STFT
magnitude at the k*" frequency bin and the m*™ time frame,
with ¥ € [0: K—1] and m € [0: M —1]. The num-
ber of frequency bins K € N and frames M & N de-
termines the dimension of the magnitude spectrogram matrix
A e RI;OX M Thereby, K depends on the STFT block size as
K =1+ N/2, with N € N. The number of frames M is de-
termined by the number of signal samples in conjunction with
the STFT hopsize H € N.
At this point, we would like to stress that we already introduce a
first stage of information compression by disregarding the phase
spectrogram, effectively throwing away all the information that
is necessary for quasi-perfect signal reconstruction via the in-
verse STFT [4]. However, as will be detailed in Section 4, there
are possibilities to recover from this situation via phase recon-
struction methods.
From the magnitude spectrogram matrix A, it is straightforward
to compute the mel-scaled [10] spectrogram matrix X € Rfé M
as

X:=M-A e

with M € RZXX being a suitable transformation matrix that
contains B € N rows with the typical, triangular shaped mel-
filter weights. Obviously, mapping the spectral content in A to
the mel-scaled version in X is a non-invertible process in which
we compress information for the second time due to weighted
summation of several frequency bins into one mel-filter band.
This is especially pronounced for the high frequency content.
The great achievement of neural vocoder methods (see Sec-
tion 3) is that they can consume such a strongly compressed
(both in time and frequency) signal representation as condition-
ing information and still reconstruct a plausible speech wave-
form y.

If we do not use neural vocoders, we can still try to revert the
loss of data by approximating the inverse mapping from mel-
scale to linear frequency spacing as

A~M X, )

with MY € RX*Z being the pseudo-inverse of M. Doing
so typically introduces negative values in the approximated
magnitude STFT matrix. As a simple remedy to this problem
we apply half-wave rectification to each TF bin (similar to
a ReLU nonlinearity). As shown in the lower right signal
flow of Figure 1, the resulting spectrogram normally looks
smoothed in the upper frequency region but can potentially still

be used for phase reconstruction followed by an inverse STFT
to reconstruct the time-domain speech waveform y.

In the preceding paragraphs we have described the different sig-
nal representations involved in our speech signal reconstruction
task. The following sections will provide a brief overview of the
different methods we employ for our experiments, both from
the neural vocoder perspective and the phase reconstruction
perspective.

3. Neural Vocoder Methods

A common feature of the different neural vocoder methods
used in this study is that they can be conditioned with acoustic
features (e.g., mel-scaled spectrograms) described earlier. As
the feature matrix runs on a much lower temporal resolution
than the target waveform, it is necessary to first upsample the
conditioning information. It has been proposed to either repli-
cate the vectors across time or to learn an upsampling kernel
in the sense of transposed convolutional layers. Moreover,
the representation of the target waveform may differ across
systems, since some algorithms rely on u-law compression and
quantization, while others operate on the raw waveform.

3.1. WaveNet

The autoregressive WaveNet (henceforth abbreviated as
WNET) [3] learns to predict realistic speech waveforms based
on past waveform samples. The architecture is based on stacks
of causal, dilated convolutional layers to achieve a wide
receptive field. In the original publication, it was proposed to
train WaveNet to predict one-hot encoded pu-law quantized
waveforms. In follow-up work [13], it was proposed to use a
mixture of logistic distributions from which to draw the current
output sample.

3.2. nv-WaveNet

The nv-WaveNet (NVWN) is a reference implementation
of a CUDA-enabled autoregressive WaveNet inference en-
gine [14]. In particular, it implements the WaveNet variant
described in [15], which learns to predict 8 bit p-law quantized
waveforms. The big advantage over the vanilla WaveNet is the
ability to generate signals faster than real-time. Depending on
the choice of hyper parameters, this advantage might come at
the cost of inferior audio quality.



Year  References Abbr.

Open-source implementation

Real-time  Signal representation  Pre-trained

(implementation by original authors in bold font) factor
2015 Beauregard et al. [11] SPSI https://anclab.org/software/phaserecon 1.08 mel-Spectrogram -
2016  Prusaetal. [12] PGHI https://github.com/ltfat/phaseret 81.25 mel-Spectrogram -
2016  vanden Oord et al. [3, 13] WNET https://github.com/r9y9/wavenet_vocoder  0.0032 mel-Spectrogram Yes
2018 Pharris [14], Arik et al. [15] NVWN https://github.com/NVIDIA/nv-wavenet 1.064 mel-Spectrogram No
2018 Jin et al. [16] FFTN https://github.com/azraelkuan/FFTNet 0.0238 mel-Spectrogram No
2018 Kalchbrenner et al. [17] WRNN https://github.com/fatchord/WaveRNN 0.072 mel-Spectrogram No
2018 Prenger et al. [18] WGLO https://github.com/NVIDIA/waveglow 6.46 mel-Spectrogram Yes
2019  Valin & Skoglund [9] LPCN https://github.com/mozilla/LPCNet 8.19 Bark-Cepstrum & fo No

Table 1: Overview of the speech signal reconstruction methods that we compare in our listening test. The real-time factor indicates
how much faster than real-time each method could synthesize. It is based on the average synthesis time of the first 10 test items in the
LJ Speech corpus [19] for each algorithm on a single Nvidia GTX 1080 Ti GPU. Note that both SPSI and PGHI do not make use of
GPU computations. Furthermore, SPSI was used for phase initialization before running 60 additional GL iterations which counted

into the synthesis time.

3.3. FFTNet

The FFTNet architecture (FFTN) is also inspired by WaveNet
but uses a shuffling of the audio data as in an FFT butterfly
graph [16]. It is reported by the authors to yield faster genera-
tion time than WaveNet and can achieve comparable quality, if
a noise-reduction post-processing is applied. Other tricks such
as changing the temperature of the distribution sampling in a
signal-dependent way has also been reported to be beneficial.

3.4. WaveRNN

The architecture of WaveRNN (WRNN) consists of a single
layer recurrent neural network with a dual softmax layer [17].
A generation scheme based on subscaling folds a long sequence
into a batch of shorter sequences and thus can generate multiple
samples at once. Furthermore, sparsification of the weight
matrices has been proposed as a means for increased efficiency.

3.5. LPCNet

The LPCNet [9] (LPCN) is a WaveRNN variant that combines
linear prediction with recurrent neural networks to synthe-
size audio with almost three times lower complexity than
WaveRNN for comparable network sizes. The conditioning
parameters are obtained using 20 features (Bark-cepstrum
and pitch) from input of the synthesis, which pass through a
series of convolutional and fully-connected layers. The target
waveform is also 8 bit p-law quantized, but an additional linear
pre-emphasis filter leads to better masking of high-frequency
quantization noise.

3.6. WaveGlow

One approach to accelerate the generation speed is to change
an AR model into an inverse-AR one. For example, inverse-
autoregressive-flow (IAF) can be used to transform a noise
sequence into a speech waveform without the sequential
generation process. However, in order to learn the parameters
of such an IAF model, the waveform must be sequentially
transformed into a whitened, noise-like signal. WaveGlow [18]
(WGLOW) is a combination of flow-based neural networks
and autoregressive models. It is inspired from the flow-based
approach of Glow [20] and the simplicity of the autoregressive
WaveNet [3] architecture. The flow-based generative model

provides tractability of exact log-likelihood and efficiently
parallelizes both training and inference.

4. Phase Reconstruction Methods

In their well-known paper [4], Griffin and Lim proposed the
so-called LSEE-MSTFTM (often called GL) algorithm for
iterative, blind signal reconstruction from magnitude spectro-
grams. According to [21], LSEE-MSTFTM belongs to a class
of algorithms called Projection onto Convex Sets (POCS), also
known as Alternating Projections. Sturmel and Daudet [22]
provided an in-depth review of iterative phase reconstruction
methods and pointed out that convergence problems often
result from the random initialization of the phase spectro-
gram. Since the iterative phase estimates can only converge to
local optima, several publications were concerned with finding
a good initial estimate for the phase information [23, 24]. The
authors of [25] showed that constraining the intermediate
signal reconstructions by means of a step-like target enve-
lope could lead to improved reconstruction for transient signals.

4.1. Single Pass Spectrogram Inversion

The phase-locked vocoder is a signal analysis and synthesis
approach that is already several decades old [26]. Two key
ingredients of this method are the estimation of instantaneous
frequencies of sinusoidals and phase locking around those
components [27]. The authors of [11] picked up the idea of the
phase-locked vocoder for obtaining initial phase spectrogram
estimates. Their corresponding Single Pass Spectrogram
Inversion (SPSI) algorithm is relatively straightforward to
implement. Although the underlying signal model is too
simplistic for speech signals, it can still serve as a very efficient
baseline method in conjunction with GL iterations. For this
paper, we used 60 GL iterations as this number has been
reported by other authors as well [18].

4.2. Phase Gradient Heap Integration

The Phase Gradient Heap Integration (PGHI) method was
proposed in [12]. As a key difference to SPSI, it uses estimates
of the instantaneous frequency as well as instantaneous time
(i.e., the full phase gradient) for phase reconstruction. Fur-
thermore, PGHI exploits the principle that the phase gradient



can be approximated by the log-magnitude gradient under
certain conditions. A clever gradient integration scheme based
on self-sorting lists is used to implement this algorithm in a
very efficient way. Although PGHI lends itself to be used as
phase initialization for refinement with GL iterations, we use
its output directly for signal reconstruction as the improvement
is usually only minor.

5. Quality Evaluation

As has been reported in [8], perceptually-motivated quality
metrics such as PESQ and POLQA are problematic to ad-
equately evaluate neural vocoders. Thus, we conducted a
subjective listening test following the MUSHRA methodol-
ogy for this paper. In that test, five utterances by the same
female speaker were rated by 20 participants. A MUSHRA
compliant web audio API based open source software called
webMUSHRA [28] was used to carry out the listening tests. In
the following we provide more details about the experimental
settings and results.

5.1. Corpus and Features

In this work, we used the well-known LJ Speech corpus [19].
This public domain dataset comprises almost 24 h of speech
recordings by a single female speaker. In total, there are
13, 100 utterances with an average length of 6.6 s. The content
of these recordings includes passages from seven non-fiction
books. Although the recordings exhibit a certain degree of
room reverberation, it is still used by many TTS researchers.

For training of the different neural vocoder methods, we used
almost the entirety of the LJ Speech corpus. We only held
out the first ten items from the corpus for measuring the time
needed for synthesis (see Table 1). The original recordings
are encoded as 16 bit PCM audio, with a sampling rate of
22.05kHz. For our MUSHRA listening test, we resampled
all utterances to 16 kHz since this was the upper limit that
some of the algorithms under test allowed for. As described
in Section 2, the acoustic features we extracted are mel-scaled
spectrograms. The dimension of these feature vectors was
B := 80 mel-filter bands, extracted at a feature rate of 80 Hz
(12.5ms hopsize, H := 200), with an underlying STFT
frequency resolution of 20 Hz (50 ms blocksize, N := 800).

Only for training the LPCNet, we used a different set of
features. As specified in the paper [9] and the reference
implementation of the original authors, the conditioning
features consisted of 18 Bark-scale cepstral coefficient and
two features representing the period duration and the cor-
relation of fundamental frequency estimate per frame. The
feature rate in this case was 100 Hz (10 ms hopsize, H := 160).

5.2. Listening Test Method

We carried out the listening tests using the MUSHRA method-
ology (MUltiple Stimuli with Hidden Reference and Anchor)
following the ITU-R BS.1534-3 recommendation [7]. During
the MUSHRA test, participants are asked to rate the basic
audio quality for a set of processed signals with respect to the
reference signal. The grading scale is continuous from 0 to
100 with 5 categories: Bad (0-20), Poor (20-40), Fair (40-60),
Good (60-80) and Excellent (80-100). It is a double-blind
multi-stimulus test method with a hidden reference and an
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additional anchor signal. This standard anchor is a low-pass
filtered version of the original signal with a cut-off frequency of
3.5 kHz. According to the ITU-R BS.1534-3 recommendation,
there should be two phases in the test, a training phase and
a testing phase. The training phase allows the participant to
familiarize with all the different audio quality ranges as well
as to learn to use the test equipment. Only the grades given
during the test phase are taken into consideration for the final
evaluation.

5.3. Test setup

In our tests, we only used the first six items instead of all ten
test items to avoid fatiguing of listeners and to reduce the
total duration of the listening tests. The six items were further
divided into: one for listener training phase, five for testing
phase. The names of our test phase items with their respective
conditions are shown in Figure 2. For each item 11 conditions
had to be evaluated. These included the hidden reference
(REF) and the low-anchor (Anchor35) signal. Similar to [9],
we also included a 8 bit u-law quantized version of reference
signal as additional condition (8bit u-law REF). This is to
assess how much the resulting quantization noise matters to the
listeners, as it is likely to be present in the reconstruction of any
method that uses this kind of waveform representation (such as
LPCN and NVWN). The remaining 8 conditions consisted of a
mixture of phase reconstruction and neural vocoder methods as
laid out in Table 1. Neural vocoder methods like WNET, FFTN
and WGLO have been trained on the LJ Speech Corpus with
a samping rate of 22.05 kHz as compared to NVWN, WRNN
and LPCN at 16 kHz. We provide a table on our accompanying
webpage', enlisting the different training hyperparameters for
these methods. In order to have a fair comparison of real-time
factors for neural vocoder methods, we multiply the WNET,
FFTN and WGLO factors by 1.38 (22.05kHz/16kHz) to
overcome their disadvantage of having to synthesize more
samples per second.

As required in the MUSHRA test, the participants needed to
switch between the different signals near instantaneouly to
allow for a fine-grained comparison between the systems. The
synthesized signals obtained from various implementations for
our experiments often exhibited different number of samples.
Hence it was important to align the signals in order to allow
seamless switching between them in the MUSHRA test. This
temporal alignment was achieved by converting both the
synthesized and the reference signal to the magnitude STFT
domain with an extremely small hopsize of H := 1 sample
and subsequently shifting the synthesized signal along the
temporal axis of reference signal. Since phase differences
are ignored in this procedure, the position of the minimal
Euclidean distance could then be used to shift the synthesized
time-domain signal to the optimal alignment in time. In order
to achieve normalization of volume, all signals under test were
normalized with respect to the root mean square level of the
reference signal.

5.4. Selection of Participants

The tests were performed by 20 participants (15 male and 5
female), with an average age of 28.8 (standard deviation of

https://www.audiolabs—erlangen.de/resources/
NLUI/2019-SSW-NeuralVocoders/
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Figure 2: Overview of the experimental results from our MUSHRA listening test. The colored markers represent the mean ratings,

enclosed by the 95% confidence intervals.

4.7). The participants included 9 experienced listeners and 11
inexperienced listeners. The average time taken by the partic-
ipants to perform the listening test (including training phase)
was 25 min. The MUSHRA test recommends post-screening
of participants where a participant should be excluded if he
or she rates the hidden reference condition for greater than
15% of the test items, a score lower than 90. No partipant was
excluded in the post-screening process concerning our tests.

5.5. Results

The results of our MUSHRA test are presented in Figure 2. The
first five columns represent the individual ratings per test item,
the final column gives the averaged results. We always show
mean value and the 95% confidence intervals. As can be seen,
the ranking of different systems under test is quite consistent
accross utterances. As also reported in [8], WNET is rated
slightly below the reference and is on par with the 8 bit p-law
quantization. Remarkably, for some items WGLO achieves
comparable ratings as WNET at a much higher synthesis speed.
The slightly lower ratings for WRNN and the slower than
real-time synthesis speed are probably due to the open source
implementation which differed in various aspects from the
original paper [17].

Our results for LPCN are approximately 10 MUSHRA points
lower from what has been reported in [9], possibly due to the
exposure of our listeners to a wider range of conditions. Still,
LPCN is a worthwile approach since it allows for synthesis
eight times faster than real-time and uses only one quarter of
the conditioning information provided to the other methods.
We find that NVWN delivers almost the same quality as LPCN,
at the cost of slower synthesis speed.

On the lower end of the quality range, we have PGHI, SPSI and
FFTN. The methods based on phase reconstruction have a clear
disadvantage in that they do not have the capability to learn
signal specific features. Most of the artifacts they introduce
are caused by the pseudo-inverse mapping from mel-scaled to
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linearily-spaced spectrogram as described in Section 2. For the
FFTN, we assume that the open source implementation under
test performed so poorly because it was not by the original
authors and did not include the additional improvements
suggested in the paper [16].

To make these numbers more comprehensible, we provide
one item from our test set in all different conditions on our
accompanying webpage'. With the integrated player, it is
possible to switch seamlessly between the different conditions
and get a visualization of the corresponding mel-scaled spec-
trogram at the same time. To justify our above statement that
the phase reconstruction methods were mostly affected by the
pseudo-inverse mapping, we added a second player with audio
examples synthesized using PGHI and SPSI. For those items,
both methods were applied on the magnitude spectrogram A,
i.e., omitting the round trip to the mel-scale and back. As can
be heard, the quality is better, with only minor degradations.
However, we did not include those items in the listening test
since the feature representation would be drastically different
to the other methods, rendering the comparison unfair.

6. Conclusions

In this paper, we presented the results of a listening test exper-
iment with neural vocoder and phase reconstruction methods.
Our aim was to provide a neutral overview of the subjective
audio quality that can be obtained with different approaches.
Overall, only two methods (WNET, WGLO) achieved excellent
ratings, whereas three neural vocoder methods (WRNN, LPCN,
NVWN) achieved good MUSHRA ratings. Three among these
leading approaches have the potential to synthesize in real-time
or faster (LPCN, WGLO, NVWN).

The phase reconstruction methods (PGHI, SPSI) achieved poor
to fair MUSHRA ratings, mainly due to artifacts introduced by
the pseudo-inverse mapping from the mel-scale. However, they
are still worth considering when synthesis much faster than
real-time has to be achieved.
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