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ABSTRACT

This paper concerns musical style modification on sym-

bolic level. It introduces a new, flexible method for chang-

ing a given piece of music so that its style is modified to

another one that previously has been learned from a cor-

pus of musical pieces. Mainly this is an optimization task

with the music’s note events being optimized for different

objectives relating to that corpus. The method has been

developed for the use case of pushing existing monophonic

pieces of music closer to the style of the outstanding elec-

tric bass guitar player Jaco Pastorius.

1. INTRODUCTION

Musical style is a quite vague term that is at risk not to be
captured computationally or even analytically. The musi-
cologist Guido Adler states in his early, grand monograph
about musical style:

So [regarding the definition of style] one has to con-
tent oneself with periphrases. Style is the center of
artistic approaching and conceiving, it proves itself,
as Goethe says, as a source of knowledge about
deep truth of life, rather than mere sensory obser-

vation and replication. [1, p. 5] 1

This passage suggests not to approach musical style com-
putationally. Nearly 80 years after that Leonard B. Meyer
expresses a rather opposite view:

Once a musical style has become part of the habit
responses of composers, performers, and practiced
listeners it may be regarded as a complex system of
probabilities. That musical styles are internalized
probability systems is demonstrated by the rules of
musical grammar and syntax found in textbooks on
harmony, counterpoint, and theory in general. [...]
For example, we are told that in the tonal harmonic
system of Western music the tonic chord is most
often followed by the dominant, frequently by the
subdominant, sometimes by the submediant, and so
forth. [2, p. 414]

There are a couple of things to notice here: First, Meyer

supports the view that style isn’t in the music per se, but

only when regarded in relation with other systems. Second,

1 Translation by the author. Original version:
So muß man sich mit Umschreibungen begnügen. Der
Stil ist das Zentrum künstlerischer Behandlung und Er-
fassung, er erweist sich, wie Goethe sagt, als eine Erken-
ntnisquelle von viel tieferer Lebenswahrheit, als die
bloße sinnliche Beobachtung und Nachbildung.
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style is seen probabilistic, supporting the attempt of this

paper to tackle style computationally. Third, in the text-

books he mentions, probabilities are used in a very broad

sense. Words like frequently or sometimes aren’t enough

for the models of this paper. So one cannot rely on text-

books and has to work through real data.

Working through data is the guidance of this new ap-

proach for musical style modification, i.e. changing a given

piece of music so that its style is modified to another one

that previously has been learned from a data corpus, while

the original piece of music should shine through the new

one (section 2). This style modification is seen as an opti-

mization problem, where the music is to be optimized re-

garding different objectives (section 4). The method has

been developed for monophonic melodic bass lines, along

with chord annotations—especially for the style of the out-

standing electric bass guitar player Jaco Pastorius (see sec-

tion 5 for some results). Due to the nature of the use case,

the method is oriented towards monophonic symbolic mu-

sic, but most parts of the procedure could easily be ex-

tended to polyphonic music as well. In this case the chord

annotations may be even computed in a preceding auto-

mated step, so that annotating would not be necessary.

Musicinput
doing small
changes. . .

Musicnew

Multiple
objectives

Scoringinput Scoringnew

Music with
better scoring
will replace. . .

Figure 1: Rough overview of the modification procedure

2. STYLE MODIFICATION PROCEDURE

A simple monophonic, symbolic music representation can

be seen as a series of I note events N , where each note

event ni is a tuple of pitch pi as MIDI note number and

duration di in quarter lengths (ql).

N = (n1, n2, . . . nI) where ni = (pi, di) (1)

In the case of rest, a predefined rest symbol takes the place

of note number. Along with the note events a chord an-

notation is needed, also being represented as a series of J

chord events C, where each chord event cj is a tuple of

chord symbol sj and duration dj , again in ql.

C = (c1, c2, . . . cJ) where cj = (sj , dj) (2)
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Such an existing N with a corresponding C should be mod-

ified in such a way that it comes closer to a specific style.

C is fixed and won’t be changed. This task is viewed as

a local search, performing a multi-objective optimization

for finding a local-optimal N [3]. The main idea is to start

from a piece of music and try out neighbors. If a neigh-

bor is better than the original one, according to the objec-

tives described in section 4, the neighbor is saved and the

process is iteratively continued with this new one. In a

multi-objective optimization it is not straightforward what

is considered better. For ensuring that no objective be-

comes worse, Pareto optimality is utilized: A state is only

considered better, if all objectives stay the same or increase

in value. A neighbor is reached by randomly doing one of

the following changes:

• Changing the pitch pi of a single note event. The

maximum change interval is a major third upwards

or downwards.

• Changing the duration of two notes di1 and di2 so

that the overall duration of the note succession in

this voice stays the same.

• A note ni is divided into multiple ones, having (1/2, 1/2),
(2/3, 1/3) or (1/3, 1/3, 1/3) of the original duration di.

• Two successive notes ni and ni+1 are joined into a

single one with duration di + di+1.

Ideally one wants to have a manageable amount of neigh-

bors so that every one can be tried to find out which one

is best. Unfortunately the amount is not manageable in

this case: For a given state with N note events, there are

16N2
− 4N − 1 possible neighbors (if one assumes that

each possibility of splitting/joining notes is always valid).

Because one cannot try out all possibilities, one randomly

tries out neighbors and applies a technique from the tool-

box of metaheuristics: Tabu search, which means stor-

ing the already tried out possibilities for not visiting them

again. But even by this only a small fraction of possibilities

will be tried out and one will be trapped in a local optimum.

In most cases many efforts are employed to overcome local

optima for finding the global one or at least solutions bet-

ter than the first local optimum. But here there is a relaxing

property: There is no need for finding the global optimum

anyway. Changing a given piece of music for pushing it

into a specific style should not mean to completely throw

away the original piece and replace it by the stylistic best

piece ever possible. It is reasonable doing small modifica-

tions until no modification improves the values of all ob-

jectives. By that it can be assured that the modified piece

retains characteristics of the original one.

3. DATA CORPUS

Before formulating objectives, a data corpus of examples

of music in the target style as well as counterexamples has

to be established. The choice of counterexamples is cru-

cial: Ideally a musical corpus would be needed that covers

all music ever possible that doesn’t belong to the target

style in a statistically significant way. In practice this isn’t

possible. As an compromise, on the one hand it should be

a style quite different from the target style, on the other

hand it should be not too far off, so that the target style is

sharpened by differentiating it from the counterexamples.

In our use case pieces of Jaco Pastorius (8 pieces of 2227.5

ql duration in total) form the target corpus whereas pieces

of Victor Wooten (8 pieces of 3642.75 ql duration in total)

form the counterexamples. So both corpora contain elec-

tric bass guitar music in the genre of jazz rock, whereas

both bassists clearly show a different style. The complete

list of pieces used is to be found in [4].

In the following section the objectives used in the Pastorius-

project are introduced. But a key feature of this method is

its flexibility: If some of its objectives don’t seem appro-

priate or other objectives seem to bee needed for a specific

target style, it is easy to leave some out and/or develop new

ones.

4. OBJECTIVES

4.1 Feature Classification

Before tackling the modification task, a classification task

is to be solved. For that purpose one has to design individ-

ual feature extractors, tailored to the specifics of the target

style. If, like in our case, it is to be assumed that style is not

only recognizable when the full piece has been played, but

also on a local level, one can apply windowing of a fixed

musical duration.

The feature extractors compute for each window a row

vector xi, forming the feature matrix X . A target value yi
can be assigned to each feature vector, numerically repre-

senting the target style with 0 and the style of the coun-

terexamples with 1. So for the corpus the target values are

obvious, forming the column vector Y . Therefore a func-

tion f : X → Y is needed. This can be learned from

the data corpus, where cross validation assures a certain

generalizability. For learning this function we made good

experiences with Gradient Tree Boosting, because of its

good performance as well as the interpretability of the uti-

lized decision trees. For details regarding Decision Trees

and Gradient Tree Boosting see [5]. The Gradient Tree

boosting classifier cannot only classify a given window of

music, it also can report a probability of a the window be-

longing to the target style. This probability forms the first

objective that is to be optimized.

This objective is the most flexible one because the fea-

ture design can be customized for the characteristics that

the modified music should have. Adopting this method for

new styles goes hand in hand with a considerable work in

designing appropriate feature extractors.

Beside 324 feature dimensions coming from already im-

plemented feature extractors of music21 [6], multiple fea-

ture extractors have been customly designed for the mu-

sic of the Pastorius project, outputting 86 dimensions. As

an example a feature extractor should be shortly described

that aims to model one of the striking features of the bass

guitar play of Jaco Pastorius, according Pastorius-expert

Sean Malone:

Measure 47 [of Donna Lee, author’s note] contains
the first occurrence of what would become a Pas-
torius trademark: eighth-note triplets in four-note
groups, outlining descending seventh-chord arpeg-
gios. The effect is polyrhythmic – the feeling of
two separate pulses within the bar that don’t share
an equal division. [...] As we will see, Jaco utilizes
this same technique (including groupings of five) in
many of his solos. [7, p. 6]
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For calculating this feature fJaco, firstly the lengths of

the sequences of notes with common direction are deter-

mined. Common direction means either successively as-

cending or descending in pitch. The length occurring most

often is called the most common sequence length fLen. So

this feature is calculated by taking the fractional part of the

quotient of the most common sequence length and the de-

nominator of most common quarter length duration fDur.

fJaco =
fLen
b

mod1 , where
a

b
= fDur,

gcd(a, b) = 1
(2) 2

See figure 2 for an example, where fLen = 4 and fDur =
1/3, so fJaco = 4/3mod1 = 1/3.
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Figure 2: Bar 47–48 of Pastorius’ Donna Lee. Brackets in-
dicate sequences of notes with common direction. 3

The complete list and description of the features extrac-

tors used is to be found in [4].

4.2 Markov Classification

While the classification described in the previous section

captures general characteristics of the music, depending on

the feature extractors, Markov chains [8] are an old friend

for music generation that works well on a local level. The

first-order Markov model assumes a fixed set of possible

note events S = {s1, s2, . . . , sK} and assigns a probability

akl for each note event sk being preceded by a note event

sl.

akl ≡ P (ni = sk|ni−1 = sl) with akl ≥ 0 and

K∑

l=1

akl = 1
(3)

Along with the K×K transition matrix akl the initial prob-

abilities πk for note events without predecessor are needed.

πk ≡ P (n1 = sk) with πk ≥ 0 and

K∑

k=1

πk = 1 (4)

The assumption of the dependency of a fixed number of O
predecessors is called the order of the Markov chain. First

order chains, like in equations 3–5, clearly are an unrealis-

tic model, but for music, even when limO→∞ an Oth-order

Markov chain wouldn’t hold true, because the probability

of a note can even be influenced by its successors. 4 Nev-

ertheless a sufficiently large order O usually captures good

local characteristics.

For optimizing a given note sequence N of length I , the

mean probability is used as objective.

P̄ (N |akl, πk) =
P (n1) ·

∏I

i=2
P (ni|ni−1)

I
(5)

2 gcd means greatest common divisor. This line is just for the purpose
to indicate hat a/b is irreducible in lowest terms.

3 This and the following Pastorius music examples in this paper are
newly typeset with [7] as reference.

4 Think of the climax of a musical phrase that is headed for already
some time before.

Some further adjustments have been made to improve the

results:

• Separate chains have been trained for durations and

pitches for getting less sparse probability matrices.

• Since we assume chord annotations, separate chains

can be trained for each chord symbol type.

• Linear interpolation smoothing 5 as well as additive

smoothing 6 has been applied. Both smoothing tech-

niques counteract the zero-frequency problem, i.e.

the problem of yet unseen data. The first one means

to take the average of several order Markov chains

(0 ≤ O ≤ 4 in our project) and the latter one to add

a tiny constant term to all probabilities.

See figure 3 for a graphical depiction of this objective

function based on real data of Jaco Pastorius. The opti-

mization can be imagined as an hill climbing on this sur-

face plot.
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Figure 3: Surface of an objective function of two successive
pitches regarding the average smoothed Markov probabil-
ity (orders 0 and 1) for the Pastorius-project

4.3 Ratio of example/counter-example Markov

probability

The preceding objective only takes the Markov model of

the target style into account. So it also rewards changes

that make a given note succession more close to general

musical characteristics. To foster the specific characteris-

tics of the target style, the value of this objective is the ratio

of the average smoothed Markov probability of the target

style and average smoothed Markov probability of coun-

terexamples. 7

Figure 4 shows a graphical depiction of this objective

function. Compare with figure 3 to clarify the big differ-

ence between this and the previous objective.

5 See [9] for a general depiction and [10] for one referring to Markov
model music generation.

6 See [11] for a comparison of different smoothing techniques. There
on p. 311 it is argued that additive smoothing generally performs poorly,
but note in the case of this project it is used in combination with in-
terpolation smoothing (related to what is there called Jelinek-Mercer-
Smoothing).

7 A possibility for improving this objective is applying Bayes’ theo-
rem. This objective could than be reformulated (with target being the
target style and counter being the style of the counterexamples):

P (target|N) =
P (N |target)P (target)

P (N)
and

P (N) = P (N |target)P (target) + P (N |counter)P (counter)
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Figure 4: Surface of an objective function of two succes-
sive pitches regarding the ratio of the example/counter-
example-ratio for the average smoothed Markov probabil-
ities (order 0 and 1) with Jaco Pastorius being the target
style and Victor Wooten being the counter-example.

4.4 Time correlations for chord-repetitions

The main idea of this objective is to capture some large

scale structural similarities within the pieces of the target

style. A shallow idea of large scale structure should also

be given by the feature classification (subsection 4.1) when

the relative position of the window is given as feature. But

in practice large scale structure is something one misses

most in the generated music. So this is an additional ap-

proach to include that. Our approach is based on two as-

sumptions about repetitions in music: The first assumption

is, that structure evolves by the absence or presence of rep-

etition, e.g. the varied reoccurrence of material already

played some time ago. The second assumption is that such

kind of repetition most probably occurs when the relative

changes in harmony also repeat. For each such a repeti-

tion both corresponding subparts of the note sequence N
is converted into a piano roll representation (cf. figure 5c

and d) where, after subtracting the mean and normalizing,

a circular cross correlation (cf. figure 5e) is performed, so

this objective correlates with motivic similarity. When re-

ferring to both parts as N (1) and N (2) with length I , the

circular cross correlation is given by:

RN(1)N(2)(l) =
1

I

I∑

i=1

N
(1)
i

N
(2)
(i+l) mod I

(6)

And that’s how it is applied in the optimization: All cross-

correlations between parts with related chord-progressions

in the target style corpus are pre-computed. During the op-

timization the cross-correlations of those related sections

are computed, too. Then the inner product between each

correlation of the piece of music to be optimized and the

ones of the target style corpus are computed and the max-

imum one is returned as value of this objective. Since the

dot product of correlations of different lengths cannot be

computed, all correlations of the same progression length

are brought to the same length by linear interpolation. By

that means one ensures that the correlation within the chord

progressions in the music to be optimized becomes more

similar to ones of the examples in the target style.
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(f) Aligning of the two examples with b being circularly shifted
to the maximum value of e.

Figure 5: Illustration of this objective for two examples with
the same intervals between the roots of the chord progres-
sion (when enharmonic change is ignored). The cross-
correlation shows that a circular shifting of 12 ql the two
examples have the maximal motivic similarity.

5. RESULTS

In contrast to the classification, where the performance can

be evaluated relatively impartially, such an objective eval-

uation is not possible for the modification. One can only

try it out and evaluate the result subjectively. So the as-

sessment heavily depends on the judges, their musical and

cultural background, taste. As an example, a simple tra-

ditional melody has been chosen: New Britain, often sung

along with the Christian hymn Amazing Grace. See figure

6 for the original version. During the modification pro-

cess, 3398 different changes have been tried out whereby

only 14 ones have been accepted by Pareto optimality. See

figure 7 for the final version.
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Figure 6: New Britain resp. Amazing Grace, original ver-
sion.
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Figure 7: New Britain resp. Amazing Grace, modified ver-
sion.

The tieing of notes from bars 4 to 5 seems to interrupt

the arc of suspense, thus it seems to be rather unfavourable

from a musical viewpoint. The run from bar 9 seems in-

teresting and coherent. The two eighths in bar 9 as well as

the ones in bar 15 seem to surround the following principal

note, which lets the music appear quite natural. Especially

the first example can be considered a broadened double

appoggiatura. Some successions seem harsh, like the suc-

cession of the major to the minor third of the chord in bar

11 or the melodic succession of a semitone and a tritone in

bars 12–13, but such harsh elements are not unusual in the

music of Pastorius, see figure 8. Maybe they seem spuri-

ous, since one rather bears in mind the consonant original

version, which is still noticeable in the modified version to

a large extent. But from that point of view, the result is

a successful blending of the original version and the style

of Pastorius, even if it is doubtful if Pastorius would have

improvised over New Britain like this.
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Figure 8: Jaco Pastorius examples, that could be the model
for harsh results in the modification. a and b: Succes-
sion of the minor on the major third of the chord. c and
d: Melodic succession of a semitone and a tritone.

6. RELATED WORK

One of the most prominent researchers, engaging compu-

tationally with musical style, especially in symbolic style

synthesis, is David Cope [12–14]. In its basic form his

style replication program EMI (“Experiments in Musical

Intelligence”) has to be fed by over a thousand of user in-

put questions. Cope also attempts to overcome this by au-

tomatically analyzing a corpus of music. Roughly, this in-

volves finding what Cope calls signatures, frequently reoc-

curring sequences, assigning functional units to them and

recombining the corpus with special regards to those func-

tional signatures. This leads to impressive results for music

with rather homogeneous texture, but it may be less ap-

propriate for more eclectic and erratic styles, like the one

of Pastorius, because signatures are less dominant. Nev-

ertheless, it would be interesting to apply Copes inspiring

work to eclectic and erratic styles since Cope developed

his methodology sophisticatedly, far exceeding the rough

and basic ideas just touched here.
Cope describes basic categories into which music com-

posing programs fall:

The approaches [...] include rules-based algorithms,
data-driven-programming, genetic algorithms, neu-
ral networks, fuzzy logic, mathematical modeling,
and sonification. Although there are other ways to
program computers to compose music, these seven
basic processes represent the most commonly used
types. [12, p. 57]

If one would like to force the approach of this paper to fall

into these categories, rules-based programming 8 and data-

driven-programming would fit, but a considerable amount

of this work wouldn’t be described. Especially Cope’s

category of genetic algorithms (GAs) is too specific and

could be generalized to metaheuristics, which then would

also fit for the method described here. GAs enable ran-

dom jumps in the optimization neighborhood whereas the

method presented here only takes small steps for ensuring

that a local optimum is targeted—which is desired as de-

scribed in section 2. Markov chains have a great tradition

in music. They found application very early in both com-

puter aided music generation [15–17] and in musicologi-

cal studies [18, 19]. More recently, researchers from the

Sony Computer Science Laboratory rediscovered Markov

chains by combining them with constraint based program-

ming, yielding very interesting results [10, 20]. In general,

most music generation approaches, including Cope’s and

all Markovian methods, are united by the strategy of re-

combining elements of an existing musical corpus. Other

attempts that fall under this umbrella are suffix based meth-

ods [21, 22]. The method presented here, however, also

enables recombinatorial results, but is not restricted to that

because the other optimization objectives also foster the

generation of music that is similar to the corpus on a more

abstract level. [22, 23] share the concept of an underlying

harmonic progression with the approach presented here.

[24] is similar in the approach to apply metaheuristics for

musical style modification, but is not about learning the

objectives from a data corpus in the way described here.

Having mentioned some major branches of automatic mu-

sic generation, the author recommends a more complete

survey [25] for those interested in more branches of this

field.

7. CONCLUSIONS

In this paper a novel approach of musical style modifica-

tion has been presented. Basically this is a multi-objective

optimization, where the objectives try to reward similar-

ity to the target style in different respects. By that means

a given piece of music can be transformed with the aim

of pushing it closer to a specified target style. There are

plenty of possibilities to built upon this work: making it

real-time capable (currently it is not), paying more regard

to the metrical structure (a weakness in the Pastorius-project),

8 That fits since in Cope’s terminology Markovian processes fall into
this category
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validly evaluating the modification results by empirical ex-

periments. We also started to conceptualize about peda-

gogical applications: during the modification process, rea-

sons why things has been changed in certain manner, can

be tracked—something that could be expanded for auto-

matically explaining style. This shows that the potential of

this approach is far from exhausted.
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