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Abstract

In this report provides comments on Algorithm 1 as described in E. A. P. Habets
and S. Gannot, Generating sensor signals in isotropic noise fields, J. Acoust. Soc.
Am., vol. 122, no. 6, pp. 3464-3470, Dec. 2007. Specifically, it has recently come
to our attention that the source positions generated and used by Algorithm 1 are not
uniformly distributed on a unit sphere. Nevertheless, it has been shown in the original
manuscript that for the tested array configuration and sufficient number of sources the
desired spatial coherence can be obtained. In order to provide a more accurate and
possibly more efficient solution, two alternative methods to compute the position of
the sources are investigated in this report.

1 Uniformly distributed points over S?

As mentioned in [1] it is paramount that the positions of the mutually independent
noise sources are uniformly distributed over S* = {p € R?® : ||p|l2 = 1}. Algorithm 1
in [1] uses N = Ng Ny points where the values for 6 are equally spaced between 0 and
(Ng — 1)/Ng and the values for ¢ are equally spaced over sin(¢) with values between
0 and 7. The resulting points (¢,0) are not uniformly distributed on a unit sphere
and hence might not always yield the desired spatial coherence corresponding to an
isotropically spherical noise field. Nevertheless, it has been shown in [1] that accurate
results can be achieved when Ng > 96 and Ng > 32.

The distribution of points on a unit sphere is a subject area which has many appli-
cations and which gives rise to a number of problems, many of which are unsolved or
are hard in the sense of computational complexity. Various stochastic methods have
been developed to generate random points on the sphere that are uniformly distributed.
When such a stochastic method is used a sufficiently large number of points is required
to achieve accurate and consistent results. Alternatively, a geometric method can be
used to compute the location of N sources using a specific algorithm.

To uniformly distribute N points on a unit sphere is a challenging problem by
itself. While uniformly distribution a number of points such as, 4, 6, 8, 12 and 20 over
S? is rather straightforward, the distribution of an arbitrary number is a challenging
problem. In the following two subsection we subsequently describe a stochastic method
and a geometric method to uniformly distribute N points on a unit sphere.



Algorithm 1: Creating sensor signals for an arbitrary 3D array that result from a
spherical noise field. The source positions are computed using a stochastic method.

Data: P, M, L, N, f,
Result: z

L' = oMoz (L)1,
w=rfy0: 1/ 1);
u=—1+2rand(N,1);
6 = 2rrand(N, 1);

for k=1:N do

X’ =randn(1,L'/2+4 1) 4+ ¢ randn(1, L'/2 + 1);
X(1,:) = X(1,:) + X';
1 —u2(k) cos(6(k))

v = 1 —u2(k) sin(6(k)) |;
for m=2:M do

A =vTP(:;,m);

X(m,:) = X(m,:) + X' exp(—jAw/c);
end

end

X = [VI Re{X(:, )}, VI 2X(:,2: )2,
VI Re{X(:,L' /2 + 1), /T'/2 conj(X(:, L' /2 : —1 : 2))];

z = ifft(X/v/N, L', 2);
z=1z(:,1: L)

1.1 Stochastic method

One way to generate random points that are uniformly distributed over S? is as follows.
Let u = cos(¢) denote an independent and identically distributed (i.i.d.) sample taken
from a uniform distribution u € [—1,1] and 6 an i.i.d. sample taken from the uniform
distribution 6 € [0, 27). Now the z, y and z coordinate of the point is given by

x=+v1—u? cos(h),
y=+1—u? sin(9),
zZ=1u.

When sufficient points are generated they will be uniformly distributed over S?. Em-
ploying the above method results in Algorithm 1.

1.2 Geometric method

Alternatively, we can generate N uniformly distributed points using a geometric method.
A thorough but understandable survey appears in [2]. Here we employ the spiral
point method which has been proposed by Rakhmanov et al. [3] and is motivated by
hexagonal tilings and numerical experimentation. Using spherical coordinates (¢, 0),
0<op <7 0<0 <27, we set

¢(k) = arccos (h(k)), for 1<k <N, (1)
with h(k) = =14+ 2(k — 1)/(N — 1). We then define 6(k) = 0 for £k € {1, N} and

compute the remaining values 6(k) using

3.6

(k)= mod (9(k: —1)+ I

,27r>, for 1<k < N. (2)
h(k)?)



Algorithm 2: Creating sensor signals for an arbitrary 3D array that result from a
spherical noise field. The source positions are computed using the spiral method [3].

Data: P, M, L, N, fs
Result: z

I = QrIng(Lﬂ;
w=mfs[0:1/L :1];
for k=1:N do

h=-142(k-1)/(N -1);
o(k) = arccos(h);
if k=1 or k= N then
| 0(k) =0;
else
3.6
0(k) mod (9(/€ 1)+ NI 27r>,
end

end

for k=1:N do

X’ =randn(1,L'/2+4 1) 4+ ¢ randn(1, L' /2 + 1);
X(1,:) =X(1,:) + X';

cos(8(k)) sin(@ (k)
v= | sin(0(k))sin(6(k)) |;
cos((k))
for m =2: M do
A =vTP(:;,;m);
X(m,:) = X(m,:) + X' exp(—jAw/c);
end
end

X = [ﬁRe{X(;, DY, VIT2X(:,2: L')2),
VI Re{X(:, L' /2 + 1), /T’ /2 conj(X(:, L' /2 : —1 : 2))];

z = ifft(X/v/N, L', 2);
z=1z(:,1:L);

Employing this method results in Algorithm 2. Compared to Algorithm 1 in [1] only
the values of 6 have been changed.

2 Evaluation

Similar to the experiment conducted in [1] we compute the mean square error (MSE)
between the measured and theoretical spatial coherence function. For both methods
we conduct a Monte Carlo simulation with 25 trials. In Fig. 1 (solid line) the mean
and standard deviation of the MSE for different values of N are shown. As expected,
both the mean and the standard deviation (denoted by the error bars) are decreasing
monotonically when N increases. Similar to the findings in [1] we see that the MSE
reaches an asymptotic value of approximately -30 dB. In Fig. 1 (dashed line) the results
are shown for the geometric method. Both in term of the mean and standard deviation
of the MSE the geometric method outperformances the stochastic method. While
Algorithm 1 in [1] requires N > 160 - 32 = 5120 points to achieve an average MSE of
—30 dB, the spiral method achieves around the same MSE value for N > 256. Hence,
by ensuring that the points are near-uniformly distributed we require less noise sources
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Figure 1: Mean square error in dB between the measured and theoretical spatial coherence
for N = 2", withn =8,9,...,14.

and hence reduce the computational complexity of the generator.

3 Conclusion

In this report we employed two alternative methods to generate N uniformly distributed
points on a unit sphere and studied the influence of these methods on the accuracy of
our generator. For the considered array configuration (as described in [1]), Algorithm 2
achieves an average MSE smaller than —30 dB when using N > 256 and is therefore
preferred over the method used in [1]. Finally, the MALAB function sinf-8D.m [4] is
now based on Algorithm 2.
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