
Rigid sphere room impulse response simulation: Algorithm
and applications

D. P. Jarretta)

Communications and Signal Processing Group, Department of Electrical & Electronic Engineering, Imperial
College London, Exhibition Road, London SW7 2AZ, United Kingdom

E. A. P. Habets
International Audio Laboratories Erlangen, Am Wolfsmantel 33, D-91058 Erlangen, Germany

M. R. P. Thomasb) and P. A. Naylor
Communications and Signal Processing Group, Department of Electrical & Electronic Engineering, Imperial
College London, Exhibition Road, London SW7 2AZ, United Kingdom

(Received 12 December 2011; revised 13 June 2012; accepted 10 July 2012)

Simulated room impulse responses have been proven to be both useful and indispensable for
comprehensive testing of acoustic signal processing algorithms while controlling parameters such
as the reverberation time, room dimensions, and source–array distance. In this work, a method is
proposed for simulating the room impulse responses between a sound source and the microphones
positioned on a spherical array. The method takes into account specular reflections of the source by
employing the well-known image method, and scattering from the rigid sphere by employing
spherical harmonic decomposition. Pseudocode for the proposed method is provided, taking into
account various optimizations to reduce the computational complexity. The magnitude and phase
errors that result from the finite order spherical harmonic decomposition are analyzed and general
guidelines for the order selection are provided. Three examples are presented: an analysis of a
diffuse reverberant sound field, a study of binaural cues in the presence of reverberation, and an
illustration of the algorithm’s use as a mouth simulator. VC 2012 Acoustical Society of America.
[http://dx.doi.org/10.1121/1.4740497]

PACS number(s): 43.55.Ka, 43.60.Fg [NX] Pages: 1462–1472

I. INTRODUCTION

In general, the evaluation of acoustic signal processing
algorithms, such as source localization and speech enhance-
ment algorithms, makes use of simulated room transfer func-
tions (RTFs). By using simulated RTFs it is possible to
comprehensively evaluate an algorithm under many acoustic
conditions (e.g., reverberation time, room dimensions, and
source–array distance). Allen and Berkley’s image method1

is a widely used approach to simulate RTFs between an
omnidirectional sound source and one or more microphones
in a reverberant environment. In the last few decades, several
extensions have been proposed.2,3

In recent years the use of spherical microphone arrays
has become prevalent, due to their ability to analyze sound
fields in three dimensions.4,5 These arrays are commonly one
of two types: the open array, where microphones are sus-
pended in free space on an “open” sphere, and the rigid
array, where microphones are mounted on a rigid baffle. The
rigid sphere is often preferred as it improves the numerical
stability of many processing algorithms6 and its scattering
effects are rigorously calculable.5

Currently, many works relating to spherical array proc-
essing consider only free-field responses, however, when a
rigid array is used, the rigid baffle causes scattering of the
sound waves incident upon the array that the image method
does not consider. This scattering has an effect on the room
transfer functions, especially at high frequencies and/or for
microphones situated on the occluded side of the array. Fur-
thermore, the reverberation due to room boundaries, such as
walls, ceiling, and floor, must also be considered, particu-
larly in small rooms.

Although measured transfer functions include both these
effects, they are both time-consuming and expensive to ac-
quire. A method for simulating RTFs in a reverberant room,
while accounting for scattering, is therefore essential, allow-
ing for fast, comprehensive, and repeatable testing. We pro-
pose such a method that combines a model of the scattering
in the spherical harmonic domain with a version of the
image method that accounts for reverberation in a computa-
tionally efficient way.

The simulated RTFs include the direct path, reflec-
tions due to room reverberation, scattering of the direct
path and scattering of the reverberant reflections. Reflec-
tions of the scattered sound and multiple interactions
between the room boundaries and the sphere are excluded
as they do not contribute significantly to the sound field,
provided the distances between the room boundaries and
the sphere are several times the sphere’s radius,7 which
is easily achieved in the case of a small scatterer.8
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Furthermore, we assume an empty rectangular shoebox
room (with the exception of the rigid sphere) and specular
reflections, as was assumed in the conventional image
method.1 Finally, the scattering model used assumes a per-
fectly rigid baffle, without absorption.

In this paper, we first briefly summarize Allen and Ber-
kley’s image method and then present our proposed method in
the spherical harmonic domain. We then discuss some imple-
mentation aspects, namely, the truncation of an infinite sum in
the room transfer function expression and the reduction of the
method’s computational complexity, and then provide a pseu-
docode description of the method. An open-source software
implementation is available online.9 Finally, we show some
example uses of the method and, where possible, compare the
simulated results obtained with theoretical models.

An early version of part of this work was initially pre-
sented in Ref. 10. The novel contributions of this current pa-
per include an additional analysis of the scattering model used
to model the rigid sphere, reference to experimental work that
validates this model, a more comprehensive presentation of
the proposed method and how it differs from the conventional
image method, a discussion of computational complexity,
pseudocode for the proposed method, and a number of exam-
ples and applications based on the proposed method.

II. ALLEN AND BERKLEY’S IMAGE METHOD

The source-image or image method1 is one of the most
commonly used room acoustics simulation methods in the
acoustic signal processing community. The principle of the
method is to model a RTF as the sum of a direct path compo-
nent and a number of discrete reflections, each of these com-
ponents being represented in the RTF by a free-space
Green’s function. In this section, we review the free-space
Green’s function and the image method.

A. Green’s function

For a source at a position rs and a receiver at a position
r, the free-space Green’s function, a solution to the inhomo-
geneous Helmholtz equation applying the Sommerfeld radia-
tion condition, is given by11

Gðrjrs; kÞ ¼
eþikkr%rsk

4pkr% rsk
; (1)

where k & k denotes the ‘-2 norm and the wavenumber k is
related to frequency f (Hz) and the speed of sound c (m/s)
via the relationship k¼ 2pf/c.

In the time-domain, the Green’s function is given by

gðrjrs; tÞ ¼
d t% kr%rsk

c

! "

4pkr% rsk
; (2)

where d is the Dirac delta function and t is time. This corre-
sponds to a pure impulse at time t ¼ kr%rsk

c , i.e., the propaga-
tion time from rs to r.

B. Image method

Consider a rectangular room with length Lx, width Ly,
and height Lz. The reflection coefficients of the four walls,
floor, and ceiling are bx1

, bx2
, by1

, by2
, bz1

and bz2
, where the

v1 coefficients (v ! {x, y, z}) correspond to the boundaries at
v¼ 0 and the v2 coefficients correspond to the boundaries at
v¼Lv.

If the sound source is located at rs¼ (xs, ys, zs) and the re-
ceiver is located at r¼ (x, y, z), the images obtained using the
walls at x¼ 0, y¼ 0, and z¼ 0 can be expressed as a vector Rp,

Rp ¼ ½xs % xþ 2pxx; ys % yþ 2pyy; zs % zþ 2pzz(; (3)

where each of the elements in p¼ (px, py, pz) can take values
0 or 1, thus resulting in eight combinations that form a set P.
To consider all reflections we also define a vector Rm, which
we add to Rp,

Rm ¼ ½2mxLx; 2myLy; 2mzLz(; (4)

where each of the elements in m¼ (mx, my, mz) can take
values between%Nm and Nm, and Nm is used to limit com-
putational complexity and circular convolution errors, thus
resulting in a set M of (2Nmþ 1)3 combinations. The
image positions in the x and y dimensions are illustrated in
Fig. 1.

FIG. 1. (Color online) A slice through the image space showing the positions of the images in the x and y dimensions, with a source S and receiver R.
The full image space has three dimensions (x, y, and z). An example of a reflected path (first order reflection about the x-axis) is also shown.
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The distance between an image and the receiver is
given by ||RpþRm||. Using Eq. (1), the RTF H is then given by

Hðrjrs; kÞ ¼
X

p2P

X

m2M
bjmxþpxj

x1
bjmxj

x2
bjmyþpyj

y1
bjmyj

y2
bjmzþpzj

z1
bjmzj

z2

) eþikðkRpþRmkÞ

4pkRpþRmk
: (5)

Using Eq. (2), we obtain the room impulse response (RIR)

hðrjrs; tÞ ¼
X

p2P

X

m2M
bjmxþpxj

x1
bjmxj

x2
bjmyþpyj

y1
bjmyj

y2
bjmzþpzj

z1
bjmzj

z2

)
d t% ðkRpþRmkÞ

c

! "

4pkRpþRmk
: (6)

III. PROPOSED METHOD IN THE SPHERICAL
HARMONIC DOMAIN

There exists a compact analytical expression for the
scattering due to the rigid sphere in the spherical harmonic
domain, therefore we first express the free-space Green’s
function in this domain, and then use this to form an expres-
sion for the RTF including scattering.

The proposed rigid sphere scattering model12 has a long his-
tory in the literature; it was first developed by Clebsch and Ray-
leigh in 1871–1872.13 It is presented in a number of acoustics
texts,14–16 and is used in many theoretical analyses for spherical
microphone arrays.17,18 In addition to being widely used in
theory, this model has also been experimentally validated by
Duda and Martens19 using a microphone inserted in a hole drilled
through a 10.9 cm radius bowling ball placed in an anechoic
chamber. This is a reasonable approximation to a spherical
microphone array; indeed a bowling ball was also used by Li and
Duraiswami to construct a hemispherical microphone array.20

A. Green’s function

We define position vectors in spherical coordinates rela-
tive to the center of our array. Letting r be the array radius
and X an elevation-azimuth pair, the microphone position
vector is defined as ~r¢ðr;XÞ (where ~& indicates a vector in
spherical coordinates). Similarly, the source position vector
is given by ~rs¢ðrs;XsÞ. It is hereafter assumed that where
the addition, ‘-2 norm or scalar product operations are
applied to spherical polar vectors, they have previously been
converted to Cartesian coordinates.

The free-space Green’s function (1) can be expressed in
the spherical harmonic domain using the following spherical
harmonic decomposition (SHD):16

Gð~rj~rs; kÞ ¼
eþikk~r%~rsk

4pk~r % ~rsk

¼ ik
X1

l¼0

Xl

m¼%l

jlðkrÞhð1Þl ðkrsÞY*lmðXsÞYlmðXÞ

¼ ik
X1

l¼0

jlðkrÞhð1Þl ðkrsÞ
Xl

m¼%l

Y*lmðXsÞYlmðXÞ

(7)

where Ylm is the spherical harmonic function of order l and
degree m, jl is the spherical Bessel function of order
l and hð1Þl is the spherical Hankel function of the first kind
and of order l. This decomposition is also known as a spheri-
cal Fourier series expansion or spherical harmonics expan-
sion of the Green’s function.

According to the spherical harmonic addition theorem,16

Xl

m¼%l

Y*lmðXsÞYlmðXÞ ¼
2lþ 1

4p
Plðcos H~r;~rs

Þ; (8)

where Pl is the Legendre polynomial of degree l and H~r;~rs
is

the angle between ~r and ~rs. Using this theorem, which in
many cases reduces the complexity of the implementation,
we can simplify the Green’s function in Eq. (7) to

Gð~rj~rs; kÞ ¼
ik

4p

X1

l¼0

jlðkrÞhð1Þl ðkrsÞð2lþ 1ÞPlðcos H~r;~rsÞ:

(9)

The angle H~r;~rs
is obtained as the dot product of the two nor-

malized vectors r̂s¼~rs=rs and r̂ ¼ ~r=r :

cos H~r;~rs
¼ r̂ & r̂s: (10)

B. Neumann Green’s function

The free-space Green’s function describes the propaga-
tion of sound in free space only. However, when a rigid
sphere is present, a boundary condition must hold: the radial
velocity must vanish on the surface of the sphere. The func-
tion GNð~rj~rs; kÞ satisfying this boundary condition is called
the Neumann Green’s function, and describes the sound prop-
agation between a point ~rs and a point ~r on the rigid sphere,16

GNð~rj~rs;kÞ ¼ Gð~rj~rs;kÞ %
ik

4p

X1

l¼0

j0lðkrÞhð1Þ0l ðkrÞhð1Þl ðkrÞ

)hð1Þl ðkrsÞð2lþ 1ÞPlðcosH~r;~rs
Þ

¼ ik

4p

X1

l¼0

blðkrÞhð1Þl ðkrsÞð2lþ 1ÞPlðcosH~r;~rs
Þ

(11)

where (&)0 denotes the first derivative and the term

blðkrÞ ¼ jlðkrÞ % j0lðkrÞ
hð1Þ0l ðkrÞ

hð1Þl ðkrÞ (12)

is often called the mode strength. For the open sphere,
bl(kr)¼ jl(kr) yields the free-space Green’s function. The
Wronskian relation16

jlðxÞhð1Þ0l ðxÞ % j0lðxÞh
ð1Þ
l ðxÞ ¼

i

x2
(13)

allows us to simplify Eq. (12) to

blðkrÞ ¼ i

hð1Þ0l ðkrÞðkrÞ2
: (14)
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j0lðkrÞ
hð1Þ0l ðkrÞ

hð1Þl ðkrÞ

#hð1Þl ðkrsÞð2lþ 1ÞPlðcosH~r;~rs
Þ

¼

* Please note that line 1 of equation (11) has been modified above to correct a printing/typesetting error in the version of the paper published by JASA.

*



C. Scattering model behavior

The behavior of the scattering model is illustrated in
Fig. 2, which plots the magnitude of the response between a
source and a receiver on a rigid sphere of radius 5 cm for a
source–array distance of 1 m, as a function of frequency and
direction of arrival (DOA). The response was normalized
using the free-field/open sphere response, therefore, the plot
shows only the effect due to scattering. Due to rotational
symmetry, we only looked at the one-dimensional DOA,
instead of looking at both azimuth and elevation, and limited
the DOA to the 0+–180+ range.

When the source is located on the same side of the
sphere as the receiver (i.e., the direction of arrival is 0+), the
rigid sphere response is greater than the open sphere
response due to constructive scattering, tending toward a

6 dB magnitude gain compared to the open sphere at infinite
frequency. The response on the back side of the rigid sphere
is generally lower than in the open sphere case and lower
than on the front side, as one would intuitively expect due to
it being occluded. However at the very back of the sphere
(i.e., the DOA is 180+) we observe a narrow bright spot: the
waves propagating around the sphere all arrive in phase at
the 180+ point and as a result sum constructively.

A polar plot of the magnitude response (Fig. 3) illus-
trates both the near-doubling of the response on the front
side of the sphere, and the bright spot on the back side of the
sphere, which narrows as frequency increases. It should be
noted that although the above-mentioned results are for a
fixed sphere radius, as the scattering model is a function of
kr, the effects of a change in radius are the same as a change
in frequency; indeed the relevant factor is the radius of the
sphere relative to the wavelength. These substantial differen-
ces between the open and rigid sphere responses confirm the
need for a simulation method which accounts for scattering.

D. Proposed method

We now present our proposed method, incorporating the
SHD presented in Sec. III A and the scattering model intro-
duced in Sec. III B.

Due to the different formulation of the spherical har-
monic domain Neumann Green’s function compared to the
spatial domain Green’s function, as well as the directionality
of the array’s response, two changes must be made to the
image position vectors Rp and Rm in our proposed method.
First, to compute the SHD in the Neumann Green’s function,
we require the distance between each image and the center
of the array [rs in Eq. (11)]; this is accomplished by comput-
ing the image position vectors using the position of the cen-
ter of the array rather than the position of the receiver.
Second, to compute the SHD we require the angle of each
image with respect to the center of the array [H~r;~rs

in Eq.
(11)]. In Allen and Berkley’s image method, the direction of
the vector RpþRm is not always the same: in some cases it
points from the receiver to the image and in others it points
from the image to the receiver. This is not an issue for the
image method as only the norm of this vector is used. As we
also require the angle of the images in our proposed method,
we modify the definition of Rp, such that the vector RpþRm

always points from the center of the array to the image.
We now incorporate these two changes into the defini-

tion of the image vectors Rp and Rm. If the sound source is
located at rs¼ (xs, ys, zs) and the center of the sphere is
located at ra¼ (xa, ya, za), the images obtained using the
walls at x¼ 0, y¼ 0, and z¼ 0 are expressed as a vector Rp,

Rp ¼ ½xs % 2pxxs % xa; ys % 2pyys % ya; zs % 2pzzs % za(:
(15)

For brevity we define Rp;m¢RpþRm allowing us to express
the distance between an image and the center of the sphere
as ||Rp,m|| and the angle of the image taken with respect to
the center of the sphere as /Rp,m. The image positions in
the x dimension are illustrated in Fig. 4.

FIG. 2. (Color online) Magnitude of the response between a source and a
receiver placed on a rigid sphere of radius 5 cm at a distance of 1 m, as a
function of frequency and direction of arrival (DOA). The response was nor-
malized with respect to the free-field response.

FIG. 3. (Color online) Polar plot of the magnitude of the response between a
source and a receiver placed on a rigid sphere of radius 5 cm, at a distance
of 1 m, for various frequencies.
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If we denote the image positions in spherical coordi-
nates as ~Rp;m, the RTF Hð~rj~rs; kÞ is the weighted sum of the
individual responses GNð~rj~Rp;m; kÞ for each of the images21

Hð~rj~rs; kÞ ¼
X

p2P

X

m2M
bjmx%pxj

x1
bjmxj

x2
bjmy%pyj

y1
bjmyj

y2

)bjmz%pzj
z1

bjmzj
z2

GNð~rj~Rp;m; kÞ: (16)

As we are working in the wavenumber domain, we can allow
for frequency-dependent boundary reflection coefficients in
Eq. (16), if desired. The reflection coefficients would then be
written as bx1

ðkÞ, bx2
ðkÞ and so on. Chen and Maher22 pro-

vide some measured reflection coefficients for a wall, win-
dow, floor and ceiling.

IV. IMPLEMENTATION

A. Truncation error

To compute the expression for the RTF in Eq. (16), the
sum over an infinite number of orders l in the Neumann
Green’s function GN must be approximated by a sum ĜN

over a finite order L. Choosing L too small will result in a
large approximation error, whereas choosing L too large will
result in too high a computational complexity. We now
investigate the approximation error in order to provide some
guidelines for the choice of the order L. The results for an
open sphere are provided for reference, and were computed
by using a truncated SHD of the Green’s function Ĝ instead
of a Neumann Green’s function.

For an open sphere, the error can be determined exactly
because the Green’s function is a decomposition of the
closed-form expression in Eq. (1). For a rigid sphere, how-
ever, no closed-form expression exists as the scattering term
can be expressed only in the spherical harmonic domain. We
therefore estimated the error by comparing the truncated
Neumann Green’s function ĜN to a high-order Neumann
Green’s function. Based on simulations performed with an
open sphere, where a true reference is available, we can
safely assume that the error involved in using a high-order
Neumann Green’s function as a reference as opposed to the
untruncated Neumann Green’s function is small. In practice,
we cannot choose very large values of L because of numeri-
cal difficulties involved in multiplying high order spherical
Bessel and Hankel functions. For typical sphere radii and
source–array distances, this allows us to reach L values of up
to about 100 using our MATLAB implementation.9

We evaluated the truncated (Neumann) Green’s func-
tion at K¼ 1024 discrete values of k (denoted by ~k), forming
a set K corresponding to frequencies in the range 100 Hz–
8 kHz,23 and then calculated the normalized root-mean-
square magnitude error !m and the root-mean-square phase
error !p, i.e.,

!mð~rj~rs;LÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

K

X

~k2K

!
jGNð~rj~rs; ~kÞj% jĜNð~rj~rs; ~k;LÞj

"2

jGNð~rj~rs; ~kÞj2

vuuut ;

(17)

!pð~rj~rs;LÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K

X

~k2K

!
/GNð~rj~rs; ~kÞ%/ĜNð~rj~rs; ~k;LÞ

"2
s

:

(18)

We averaged the magnitude and phase errors over 32 quasi-
equidistant receivers and 50 random source positions at a
fixed distance from the center of the array.

The resulting average errors are given in Fig. 5, for both
the open and rigid sphere cases. Three different sphere radii
were used: r¼ 4.2 cm (the radius of the Eigenmike24),
r¼ 10 cm and r¼ 15 cm. A source–array distance of 1 m was
used; results for 1–5 m are omitted as they are essentially
identical. It can be seen that beyond a certain threshold,
increases in L give only a very small reduction in error. A

FIG. 5. (Color online) Magnitude and phase errors involved in the trunca-
tion of the SHD in the Green’s function (open sphere) and the Neumann
Green’s function (rigid sphere).

FIG. 4. (Color online) A slice through the image space showing the positions of the images in the x dimension, with a source S and array A. The full image
space has three dimensions (x, y, and z). An example of a reflected path is shown for the image with px¼ 1 and mx¼ 0.
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rule of thumb for choosing L is L > d1:1kmaxre, where kmax

is the largest wavenumber of interest.

B. Computational complexity

As the RTFs are made up of a sum over all orders l that
includes spherical Hankel functions hl and Legendre polyno-
mials Pl, we can make use of recursion relations over l to
reduce the computational complexity of these functions. For
the spherical Hankel function, we make use of the following
relation:25

hmðxÞ ¼
2m% 1

x
hm%1ðxÞ % hm%2ðxÞ; m , 2; (19)

where

h0ðxÞ ¼
eix

ix
; h1ðxÞ ¼

eix

ix2
% eix

x
: (20)

For the Legendre polynomials we use a similar recursion
relation25

PmðxÞ ¼
2m% 1

m
xPm%1ðxÞ %

m% 1

m
Pm%2ðxÞ; m , 2;

(21)

where P0(x)¼ 1 and P1(x)¼ x.
While replacing the exponential in Eq. (1) with a SHD

does lead to an increase in computational complexity when
computing the RTF for a single receiver (which is unavoid-
able in the rigid sphere case), this can have an advantage
when simulating many receiver positions. For the conven-
tional image method, we must compute the image positions
and resulting response separately for each individual re-
ceiver. However, in the proposed method the image posi-
tions are all computed with respect to the center of our array,
and therefore only once for all of the microphones in the
array.

An alternative to Eq. (16) is obtained by changing
the order of the summations in the RTF and computing the
sum over all images only once, instead of once per receiver,
i.e.,

Hð~rj~rs; kÞ ¼ ik
X1

l¼0

Xl

m¼%l

YlmðXÞ
X

p2P

X

m2M
bjmx%pxj

x1

)bjmxj
x2

bjmy%pyj
y1

bjmyj
y2

bjmz%pzj
z1

bjmzj
z2

)blðkrÞhð1Þl ðkkRp;mkÞY*lmð/Rp;mÞ: (22)

The expression in Eq. (22) requires O((NþM)(Lþ 1)2)
operations per discrete frequency, where L is the maximum
SHD order, N is the number of images and M is the number
of microphones, whereas the approach in Eq. (16) requires
O(N M(Lþ 1)) operations per discrete frequency. As the
number of images N is typically very large, (NþM) (Lþ 1)2

- N (Lþ 1)2. Assuming the operations in the two approaches
are of similar complexity, it is therefore more efficient to use
the expression in Eq. (16) for M< Lþ 1 and the expression
in Eq. (22) for M>Lþ 1. Consequently the least computa-

tionally complex approach depends on the number of micro-
phones M and array radius r. In the remainder of this paper
we use the expression in Eq. (16); this is particularly appro-
priate in the applications in Sec. V B where M¼ 2 and in
Sec. V C where M¼ 1.

C. Algorithm summary

A summary of the proposed method is presented in the
form of pseudocode in Fig. 6. The variable nsample denotes
the number of samples in the RIR and No the maximum
reflection order.

The number of computations has been reduced by proc-
essing only half of the frequency spectrum because we know
the RIR is real and the corresponding RTF is conjugate

FIG. 6. Pseudocode for the proposed method.
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symmetric. The pseudocode necessary to compute the Han-
kel functions and Legendre polynomials is omitted here, as
their computation is straightforward using recursion relations
(19) and (21).

SMIRGEN, a MATLAB/Cþþ implementation of the method in
the form of a MEX-function is also available online.9

V. EXAMPLES & APPLICATIONS

In this section we give a number of examples that make
use of the proposed method. Wherever possible we com-
pared the simulated results to theoretical results obtained
using approximate models. These examples are given to
illustrate and partially validate the proposed method.

A. Diffuse sound field energy

In statistical room acoustics (SRA), reverberant sound
fields are modeled as diffuse sound fields, allowing for a
statistical analysis of reverberation instead of computing
each of the individual reflections. In this section, we com-
pare a theoretical prediction of sound energy on the surface
of a rigid sphere, based on a diffuse model of reverbera-
tion, to simulated results obtained using the proposed
method.

A diffuse sound field is composed of mutually inde-
pendent plane waves incident from all directions with equal
probability and amplitude.26 Using the scattering model pre-
viously introduced, we can determine the cross-correlation
between the sound pressure at positions ~r and ~r0 on the sur-
face of a sphere, due to a diffuse sound field (see the
Appendix for derivation)27

Cð~r; ~r0; kÞ ¼
X1

l¼0

jblðkrÞj2ð2lþ 1ÞPlðcos H~r;~r 0Þ; (23)

where H~r;~r 0 is the angle between ~r and ~r0. In the open sphere
case, it is shown in the Appendix that this simplifies to the
well-known spatial domain expression26,28,29 sincðkk~r % ~r0kÞ,
where sinc denotes the unnormalized sinc function.

For the sound energy at a position ~r we substitute
H~r;~r 0 ¼ 0 and find Cð~r % ~r0; kÞ ¼

P1
l¼0 jblðkrÞj2ð2lþ 1Þ.

According to SRA theory, for frequencies above the
Schroeder frequency26 the energy of the reverberant sound
field Hr is then given by28

EfjHrð~r; kÞj2g ¼
1% a
pAa

Cð~r; ~r; kÞ

¼ 1% a
pAa

X1

l¼0

jblðkrÞj2ð2lþ 1Þ; (24)

where E{&} denotes spatial expectation, a is the average wall
absorption coefficient and A is the total wall surface area.

The above-presented theoretical expression for the aver-
age reverberant energy can be compared to simulated results
obtained using our method. We computed the spatial expec-
tation using an average over 200 source–array positions,
using the approach in Radlović et al.:29 the array and source

were kept in a fixed configuration (at a distance of 2 m from
each other), which was then randomly rotated and translated.
Both sources and microphones were kept at least half a
wavelength from the boundaries of the room, helping to
ensure the diffuseness of the reverberant sound field.26 The
reverberant component Hr of the RTFs was computed by
subtracting the direct path Hd from the simulated RTFs.

The room dimensions were equal to 6.4) 5) 4 m, as in
Radlović et al.,29 in order to best approximate a diffuse
sound field. The reverberation time RT60 was set to 500 ms,
giving an average wall absorption coefficient of a¼ 0.2656.
We simulated RIRs with a length of 4096 samples at a sam-
pling frequency of 8 kHz. We considered frequencies from
300 Hz to 4 kHz, well above the Schroeder frequency of
2000

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5=ð4 & 5 & 6:4Þ

p
¼ 125 Hz, and the half-wavelength

minimum distance is therefore 57 cm for a speed of sound of
343 m/s. We averaged the results over the 200 source–array
positions and 32 quasi-equidistant receiver positions.

In Fig. 7, we plot the theoretical and simulated energy
of Hr as a function of frequency, for two array radii (4.2 and
15 cm). We note that, except at low frequencies, there is a
good match between the theoretical diffuse field energy
expression we derived and the results obtained using our
method. At lower frequencies, the theoretical equation over-
estimates the energy; we hypothesize that this is due to the
reverberant sound field still not being fully diffuse.

B. Binaural interaural time and level differences

The topic of binaural sound and in particular head-
related transfer functions (HRTFs) or head-related impulse
responses (HRIRs) is of interest to researchers and engineers
working on surround sound reproduction, who for example
aim to reproduce spatial audio through a pair of stereo head-
phones. In addition, the psychoacoustic community is inter-
ested in the ability of the human brain to localize sound
sources using only two ears.

Two binaural cues that contribute to sound source local-
ization in humans are the interaural time difference (ITD)
and the interaural level (or intensity) difference (ILD).30 The

FIG. 7. (Color online) Theoretical and simulated reverberant sound field
energy on the surface of a rigid sphere, as a function of frequency for two
array radii. The simulated results are averaged over 200 source–array posi-
tions, all at least half a wavelength from the room boundaries.
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ITD measures the difference in arrival time of a sound at the
two ears, and the ILD measures the level difference between
the two ears. In this example, we study the long-term cues
assuming the source signal is spectrally white. Therefore, we
can compute the cues directly using the simulated RTFs.

We used the proposed method to simulate a simple
HRTF by considering microphones placed at locations on a
rigid sphere corresponding to ear positions on the human
head. Although real HRTFs vary from individual to individ-
ual, depending on the head, torso, and pinnae, the main char-
acteristics of the HRTF are also exhibited by a simple rigid
sphere RTF.19 The representation of HRTFs using spherical
harmonics was studied in Refs. 31 and 32.

Whereas HRTFs do not include the effects of reverbera-
tion, and as a result typically sound artificial and provide
poor cues for the perception of sound source distance,33 the
proposed method also allows for the inclusion of reverbera-
tion in HRIRs. In this case, they are then referred to as bin-
aural room impulse responses (BRIRs). BRIRs are important
for the analysis of the effects of reverberation on auditory
perception, for example its impact on localization accuracy.
As rotational symmetry no longer necessarily holds once the
room reflections are taken into account, the measurement of
BRIRs must be done for every source–head position and ori-
entation and is therefore very time-consuming. Simulating
BRIRs allows us to more easily study the effects of early and
late reflections on the binaural cues.

We begin by looking at ITDs in an anechoic environ-
ment, in order to illustrate the effect of the head in isolation.
We compare simulated results to approximate theoretical
results provided by a ray-tracing formula attributed to
Woodworth and Schlosberg that looks at the distance trav-
eled from the source to an observation point on the sphere,
either in free-space if the observation point is on the near
side of the sphere, or via a point of tangency if the observa-
tion point is on the far side.19

The simulated results were obtained by generating
HRIRs at a sampling frequency of 32 kHz, with a sphere ra-

dius of 8.75 cm and microphones placed at (0+, 100+) (corre-
sponding to the left ear) and (0+, 260+) (corresponding to the
right ear). The HRIRs were then band-pass filtered between
2.8 and 3.2 kHz.34 The DOA was varied by rotating the
source around the sphere at a fixed distance of 1 m and ele-
vation of 0+. The simulated ITD was computed by determin-
ing the time delay that maximized the interaural cross-
correlation between the two simulated and band-pass filtered
HRIRs. The cross-correlation was interpolated using a
second-order polynomial in order to obtain sub-sample
delays.

In Fig. 8 we plot the ITD as a function of direction of ar-
rival, where 0+ corresponds to the median plane on the front
side of the sphere and 180+ corresponds to the median plane
on the back side of the sphere. As expected, as the DOA
increases from 0+ to 80+ and the source gets closer to the ip-
silateral ear, the ITD increases monotonically until it reaches
its maximum at 80+, at which point the source is furthest
from the contralateral ear. The ITD then decreases from 80+

to 180+ as the source nears the median plane and gets closer
to the contralateral ear. The response from 180+ to 360+ is
not shown due to the symmetry about 180+. As we expect,
our simulated results are reasonably close to the theoretical
ray-tracing results,19 with a difference of less than 70 ls.

Using the proposed method, we analyzed the ILDs in a
reverberant environment under three scenarios: the sphere
was either placed in the center of the room with a DOA of 0+

(where the source is equidistant from the two ears), or at a
distance of .0.5 m from one of the walls with DOAs of 0+

and 100+ (where the source is aligned with the left ear). In
all three cases the source was placed at a distance of 1 m
from the center of the sphere. We chose a room size of
9) 5) 3 m with a reverberation time RT60 of 500 ms, and
simulated BRIRs with a length of 4096 samples at a sam-
pling frequency of 8 kHz.

In Figs. 9–11 we plot the ILDs for the three above-
mentioned cases, as well as the ILDs we would obtain in an
anechoic environment, which are entirely due to scattering.

FIG. 8. (Color online) Comparison of ITDs as a function of source DOA, in
simulation and using the theoretical ray model approximation. The simu-
lated ITDs are based on HRIRs computed using our proposed algorithm in
an anechoic environment.

FIG. 9. (Color online) Comparison of ILDs in echoic and anechoic environ-
ments, with the sphere placed in the center of the room and a DOA of 0+.
The ILDs are based on HRTFs (anechoic) and BRIRs (echoic) computed
using the proposed method.
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The ILDs were computed by taking the difference in magni-
tude between the left ear response and the right ear response.
A negative ILD therefore indicates that the magnitude of the
ipsilateral ear response is lower than that of the contralateral
ear response. The smoothed echoic ILDs were obtained
using a Savitzky–Golay smoothing filter.

The main effect of reverberation we can observe is the
introduction of random frequency-to-frequency variations;
these are particularly obvious when most of the reverberant
energy is diffuse, i.e., when the sphere is placed in the center
of the room (Fig. 9). Room reflections also increase the over-
all reverberant energy, particularly in the contralateral ear,
which receives less direct path energy, thus reducing the
ILDs. This is especially noticeable when the contralateral
ear is placed near a wall: the contralateral ear receives more
energy than in the anechoic case and the ILD is therefore
closer to zero (Fig. 11).

Placement of the sphere near a wall additionally introdu-
ces systematic distortions in the ILDs associated with the
prominent early reflection from this wall. The resonant fre-
quencies of the room (or eigenfrequencies)26 are dominated
by those associated with this near wall; this is visible in
Fig. 11 and most noticeably in Fig. 10.

All these effects have also been observed experimen-
tally with a manikin by Shinn-Cunningham et al.33 The pro-
posed algorithm is therefore a good way of predicting the
effects of head movement and environmental changes (such
as reverberation time) on HRTFs or BRIRs, without the need
for more cumbersome experiments with head and torso
simulators for example.

C. Mouth simulator

The principle of reciprocity can often be advantageously
used in room acoustics measurements. The principle states
that RTFs are symmetric in the coordinates of the sound
source and the observation point: “If we put the sound source
at r, we observe at point r0 the same sound pressure as we
did before at r, when the sound source was at r0.”26 We can
apply this principle to RTF simulations, and use our method

to generate the RTF between one or more sources on a
sphere and a single omnidirectional microphone placed
away from the sphere.

A specific application of this is a mouth simulator: we
model the head as a rigid sphere (as in Sec. V B) of radius rh,
and the mouth as an omnidirectional point source placed
on this rigid sphere. This is straightforwardly implemented
in the proposed method by replacing the source position
with the microphone position ~rmic, the microphone position
with the mouth position ~rmouth ¼ ðrh;XmouthÞ, and the array
position with the head position, i.e.,

Hð~rmicj~rmouth; kÞ ¼ Hð~r ¼ ~rmouthj~rs ¼ ~rmic; kÞ:

As a result we can simulate the RTF between a mouth on a
head, and a single microphone in free space. Repeated use of
the algorithm allows for multiple receivers.

Although more accurate modeling of the head and
mouth is possible using finite element or boundary element
methods, for example, our algorithm is valuable for applica-
tion to this problem due its comparative simplicity and the
fact that, if desired, it can also take into account room rever-
beration. While the diameter of the mouth plays an important
role in determining the filter characteristic of the vocal
tract,37 we assume for the purposes of the scattering model
that the mouth is a point source.

As an illustration of this application, Fig. 12 shows the
energy of the RTF between the mouth and a microphone as a
function of microphone position at frequencies of 100 Hz and
3 kHz in an anechoic environment. The mouth was positioned
on a sphere of radius 8.75 cm. Only two dimensions, x and y,
are shown for brevity as the z dimension is identical to x and
y. We observe that at 100 Hz there is no scattering and the
radiation pattern is omnidirectional so that the sphere has little
effect. At 3 kHz the effect of scattering starts to become more
significant, and the energy at the back of the sphere is reduc-
ed,whereas the energy at the front is increased. Finally the
bright spot discussed in Sec. III C is particularly apparent at
the very back of the sphere in Fig. 12(b).

FIG. 10. (Color online) Comparison of ILDs in echoic and anechoic envi-
ronments, with the sphere placed near a room wall and a DOA of 0+.

FIG. 11. (Color online) Comparison of ILDs in echoic and anechoic envi-
ronments, with the sphere placed near a room wall and a DOA of 100+.
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VI. CONCLUSION

Spherical microphone arrays on a rigid baffle are of
great interest currently. In order to analyze, work with, and
develop acoustic signal processing algorithms that make use
of a spherical microphone array, a simulator is desired that
can take into account the effects of the acoustic environment
of the array, as well as the scattering effects of the rigid
spherical baffle. Accordingly a method was presented for the
simulation of RIRs or RTFs for a rigid spherical microphone
array in a reverberant environment.

We presented a scattering model used to model the rigid
sphere, justifying its use with references to the literature, and
provided an overview of the model’s behavior. We showed
that the error with respect to the theoretical model can be
controlled at the expense of increased computational com-
plexity. Finally we provided a number of examples showing
additional applications of this method.

APPENDIX: SPATIAL CORRELATION IN A DIFFUSE
SOUND FIELD

The sound pressure at a position ~r ¼ ðr;XÞ due to a unit
amplitude plane wave incident from direction X0 is given by16

pð~r;X0;kÞ¼
X1

l¼0

Xl

m¼%l

4puðX0Þð%iÞlblðkrÞY*lmðX0ÞYlmðXÞ;

(A1)

where uðX0Þ is a random phase term and juðX0Þj¼ 1. Assum-
ing a diffuse sound field, the spatial cross-correlation between
the sound pressure at two positions ~r ¼ ðr;XÞ and ~r0 ¼ ðr;X0Þ
is given by

Cð~r; ~r0; kÞ ¼ 1

4p

ð

X02S2

pð~r;X0; kÞp*ð~r0;X0; kÞdX0

¼ 1

4p

ð

X02S2

X1

l¼0

Xl

m¼%l

4pð%iÞlblðkrÞY*lmðX0ÞYlmðXÞ

)
X1

l0¼0

Xl0

m0¼%l0
4pil

0
b*l0ðkrÞYl0m0ðX0ÞY*l0m0ðX

0ÞdX0:

Using the orthonormality property of the spherical harmon-
ics16

Ð
X2S2 YlmðXÞY*l0m0ðXÞdX ¼ dll0dmm0 and the addition theo-

rem in Eq. (8), we eliminate the cross terms followed by the
sum over m and obtain

Cð~r; ~r0; kÞ ¼ 1

4p

X1

l¼0

Xl

m¼%l

ð4pÞ2jblðkrÞj2YlmðXÞY*lmðX
0Þ;

¼ 1

4p

X1

l¼0

ð4pÞ2jblðkrÞj2 2lþ 1

4p
Plðcos H~r;~r 0Þ

¼
X1

l¼0

jblðkrÞj2ð2lþ 1ÞPlðcos H~r;~r 0Þ; (A2)

where H~r;~r 0 is the angle between ~r and ~r0.
In the open sphere case where bl(kr)¼ jl(kr), we can

express Eq. (A2) as

Cð~r;~r0;kÞ¼=

(

4pi
X1

l¼0

Xl

m¼%l

jblðkrÞj2YlmðXÞY*lmðX
0Þ

)

¼=
(

4pi
X1

l¼0

Xl

m¼%l

jlðkrÞhð1Þl ðkrÞYlmðXÞY*lmðX
0Þ
)

using <fhð1Þl ðkrÞg ¼ jlðkrÞ, where < and =, respectively,
denote the real and imaginary parts of a complex number.
Finally, using Eq. (7), we obtain the well-known spatial do-
main result for two omnidirectional receivers in a diffuse
sound field26,28,29

Cð~r; ~r0; kÞ ¼ = eþikk~r%~r 0k

kk~r % ~r0k

( )

¼ sinðkk~r % ~r0kÞ
kk~r % ~r0k

: (A3)

FIG. 12. (Color online) Sound energy radiation pattern (dB) at 100 Hz (a)
and 3 kHz (b). The mouth position is denoted by a black dot.
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