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Researchers in the signal processing community often require sensor signals that result from a
spherically or cylindrically isotropic noise field for simulation purposes. Although it has been shown
that these signals can be generated using a number of uncorrelated noise sources that are uniformly
spaced on a sphere or cylinder, this method is seldom used in practice. In this paper algorithms that
generate sensor signals of an arbitrary one- and three-dimensional array that result from a
spherically or cylindrically isotropic noise field are developed. Furthermore, the influence of the
number of noise sources on the accuracy of the generated sensor signals is investigated. © 2007
Acoustical Society of America. �DOI: 10.1121/1.2799929�
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I. INTRODUCTION

A spherically isotropic noise field has been shown to be
a reasonable model for a number of practical noise fields that
can be found in, for example, an office or car. Cylindrically
isotropic noise fields are especially useful when, for ex-
ample, the ceiling and floor in an enclosure are covered with
a highly absorbing material.1 Spherical and cylindrical noise
fields are also known as three-dimensional �3D� and two-
dimensional �2D� diffuse noise fields, respectively. Research-
ers in the signal processing community often require sensor
signals that result from these noise fields for simulation pur-
poses, e.g., for �superdirective� beamforming,2,3 adaptive
noise cancellation,4,5 and source localization. From a physi-
cal point of view the noise signals can be generated using a
number of uncorrelated noise sources that are uniformly
spaced on a sphere4,6 or cylinder. This method is, however,
seldom used in practice. Some researchers, for example, con-
volve two uncorrelated noise signals with a room impulse
response �without direct path� to generate the sensor signals
that result from a spherically isotropic noise field. However,
using this method the spherical noise field is not accurately
simulated.

In this paper we develop algorithms that generate sensor
signals of an arbitrary one-dimensional �1D� and 3D array
that result from a spherical or cylindrical noise field. Further-
more, the influence of the number of noise sources on the
accuracy of the generated sensor signals is investigated.

In Sec. II we show that an isotropic noise field can be
generated using equally spaced noise sources on a sphere and
cylinder to generate 3D and 2D diffuse noise fields, respec-
tively. The algorithms that can be used to efficiently generate
the sensor signals are developed in Sec. III. In Sec. IV we
compare the spatial coherence that results from the generated
sensor signals with the theoretical spatial coherence. In Sec.
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V we demonstrate the use of the generated sensor signals by
analyzing the directivity index of a filter and sum beam-
former. Conclusions are presented in Sec. VI.

II. BACKGROUND THEORY

The noise fields of interest in this paper are composed of
a superposition of uncorrelated plane waves arriving at
omni-directional sensors from various directions. The spatial
coherence can be calculated by integrating the effect of a
single plane wave. Therefore, we begin by considering the
effect of a single plane wave. The sensor signals that result
from a plane wave arriving from angle � �see Fig. 1� are
related by

x2�t� = x1�t −
�

c
� , �1�

where c denotes the sound velocity in ms−1 and
�=d cos��� the path difference of the plane wave, where d
denotes the distance between the sensors. The isotropic as-
sumption implies that the power spectrum densities of the
signals are independent of the location, i.e.,

Sx1
��� = Sx2

��� . �2�

Hence, the cross-power spectrum density is given by

Sx1x2
��� = Sx1

���e−j�/cd cos���. �3�

The spatial coherence can now be calculated by taking the
integral over all plane waves that originate from a surface
area A, i.e.,

�x1x2
��� =

�
A

Sx1x2
���dA

� �Sx1
���Sx2

���dA

, �4�
A
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where dA denotes an infinitesimal area on a surface. Using
Eqs. �2� and �3� we obtain

�x1x2
��� =

1

A
�

A
e−j�/cd cos �dA , �5�

where A denotes the total surface area.

A. Spherically isotropic noise field

In case the sources are uniformly distributed on the sur-
face of the sphere the integral in Eq. �5� can be evaluated
over the surface area A of the sphere. Note that the plane
wave assumption holds if the radius of the sphere r is much
larger than the sensor distance d. Without loss of generality it
is assumed that the sensors are positioned on the x axis. The
infinitesimal area on the sphere dA=r2 sin���d� d�, and the
surface of the sphere A=4�r2. In terms of the spherical co-
ordinates �� �0,�� and �� �0,2�� �see Fig. 2� we then ob-
tain

�x1x2
��� =

1

4�r2	
0

2� 	
0

�

e−j�/cd cos �r2 sin���d�d�

=
1

4�
	

0

2� 	
0

�

e−j�/cd cos � sin���d�d� . �6�

FIG. 1. Plane wave front impinging on an array of two sensors with an
angle �.
FIG. 2. Part of a sphere with radius r, azimuth �, and elevation �.
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Now, using the substitution g=� /cd cos���, we have

�x1x2
��� =

1

2�d/c
	

−�d/c

�d/c

e−jgdg =
sin��d/c�

�d/c
, �7�

which is the well-known theoretical spatial coherence func-
tion for spherically isotropic noise and omni-directional
sensors.7

B. Cylindrically isotropic noise field

In a cylindrically isotropic noise field the sources are
uniformly distributed on the surface of a cylinder. It should
be noted that all rings along the z axis of the cylinder have an
equal contribution to the generated sensor signals. To derive
the spatial coherence function in a cylindrical noise field the
integral in Eq. �5� can be evaluated by integrating in one
dimension, the cylindrical angle �� �0,2�� �see Fig. 3�.
Note that dA=rd� and A=2�r. We then obtain8

�x1x2
��� =

1

2�
	

0

2�

e−j�/cd cos �d� = J0��d/c� , �8�

where J0�·� is the zero-order Bessel function of the first kind.

III. IMPLEMENTATION

In this section efficient algorithms are developed to gen-
erate the sensor signals of an arbitrary 3D and 1D array that
result from a spherically and cylindrically isotropic noise
field.

In the implementation we approximate the integral in
Eq. �5� by a summation, i.e.,

�̂x1x2
��� =

1

N


n=0

N−1

e−j�/cd cos �n. �9�

Note that the number of uncorrelated noise sources N should
be sufficiently large to obtain a good approximation of the
integral. We elaborate on the number of noise sources in

FIG. 3. Cylinder with radius r and cylindrical angle �.
Sec. IV.
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The time delay �� /c� between the sensor signals de-
pends on the location of the noise source. To efficiently
implement this �fractional� delay the signals are generated in
the Fourier domain. In this domain the delay can be modeled
using a simple phase shift.

In the sequel it is assumed that the radius of the sphere
or cylinder is much larger than the span of the sensor array
such that all waves can be assumed to be plane waves.

A. Spherically isotropic noise field

The basic requirement is that the noise sources are uni-
formly distributed on the surface of the sphere, i.e., the prob-
ability that a noise source exists in each infinitesimal area
should be equal. In that sense it should be understood that a
uniform distribution of the noise sources with the spherical
coordinates �� �0,�� and �� �0,2�� does not result in the
desired uniform distribution on the surface of the sphere. The
probability that a noise source exists in each infinitesimal
area on the sphere with spherical coordinates �� ,�� is given
by

Pr�� � �̃ � � + d�,� � �̃ � � + d��

=
dA

A
=

1

4�
sin���d�d� . �10�

The probability density function �pdf� of the surface area A
can thus be expressed in terms of � and � as

pA��,�� =
1

4�
sin��� . �11�

This pdf can be factorized into two independent densities for
� and �, such that

p���� =
1

2
sin��� and p���� =

1

2�
. �12�

Using the inverse transform sampling method9 we can gen-
erate � and � with the desired distributions using their cu-
mulative densities, which are given by

P���� =
1

2
�1 − cos���� and P���� =

�

2�
, �13�

respectively. Let v1= P���� and v2= P���� be independent
uniform random variables on �0, 1� and �0, 1�. Then, if we
solve � and � we obtain

� = arccos�1 − 2�1� �14�

and

� = 2��2, �15�
which will have the desired pdfs given in Eq. �12�.
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1. 3D array

The M sensor positions, relative to the first sensor posi-
tion, are stacked into a matrix P such that

P = �0 x2 . . . xM

0 y2 . . . yM

0 z2 . . . zM
� . �16�

Each contributing noise signal is generated directly in
the frequency domain. The path difference ��m ,� ,�� de-
notes the difference between the path lengths from the inci-
dent plane wave with direction �� ,�� to the mth sensor and
the first sensor. Its value is calculated by projecting the po-
sition vector of the mth sensor P�: ,m� on the normal v of the
plane wave, i.e., ��m ,� ,��=vTP�: ,m� / v2. Since v2=1
we have

��m,�,�� = vTP�: ,m� . �17�

The M sensor signals of length L, denoted by Z, that
result from N=N�N� uniformly distributed noise sources can
be efficiently generated using Algorithm 1.

2. 1D array

For an arbitrary 1D array, i.e., with equally or non-
equally spaced sensors, the algorithm can be simplified by
exploiting the symmetry of the array. Without loss of gener-
ality it is assumed that the sensors of the array are positioned
on the x axis. The sensor positions on the x axis relative to
the first sensor are

px = �0 x2 . . . xM� . �18�

Since the sensors are located on the x axis the path dif-
ference � only depends on the azimuth �̃, i.e., all noise
sources that lie on a ring with spherical coordinates �= �̃
and �� �0,2�� result in the same path difference �. The
path difference � is given by d cos���, where d is the dis-
tance of the sensor with respect to the origin. For the mth
sensor d is equal to px�m�.

The M sensor signals of length L that result from N
uniformly distributed noise sources can be generated using
Algorithm 2.

B. Cylindrically isotropic noise field

In the previous section we dealt with spherically isotro-
pic noise fields. However, it has been proposed that some
room acoustic fields may be more closely modeled as a cy-
lindrically isotropic noise field. Therefore, we develop an
algorithm to generate the sensor signals that result from a
cylindrical noise field.

Note that in this section the variable � denotes the cy-

lindrical angle �� �0,2��.
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Algorithm 1: Creating sensor signals for an arbitrary 3D
array that result from a spherical noise field.

Data: P, M, L, N�, N�, fs

Result: Z
L�=2�log2�L��;

�=�fs�0:
1

L�
:1�;

�=2��0:
1

N�

:
N�−1

N�
�;

�=arccos�1−2�0:
1

N�−1
:1��;

for k=1: N� do
for l=1: N� do

X�=randn�1,L�+1�+ i randn�1,L�+1�;
X�1, : �=X�1, : �+X�;

v= �cos���l��sin���k��

sin���l��sin���k��

cos���k�� �;
for m=2: M do

�=vTP�: ,m�;
X�m , : �=X�m , : �+X� exp�−j�� /c�;

end
end

end
X= �X�: ,1 :L�+1� , conj�X�: ,L� :−1:2���;
Z=ifft�X ,2L� ,2�;
Zmax=max�max�abs�Z�: ,1 :L����;
Z=Z�: ,1 :L� /Zmax;

1. 3D array

The M sensor positions, relative to the first sensor posi-
tion, are stacked into a matrix P as defined in Eq. �23�.

Algorithm 2: Creating sensor signals for an arbitrary 1D
array that result from a spherical noise field.

Data: px, M, L, N, fs

Result: Z
L�=2�log2�L��;

�=�fs�0:
1

L�
:1�;

�=arccos�1−2�0:
1

N−1
:1��;

for k=1: N do
X�=randn�1,L�+1�+ i randn�1,L�+1�;
X�1, : �=X�1, : �+X�;
for m=2: M do

�=px�m�cos���k��;
X�m , : �=X�m , : �+X� exp�−j�� /c�;

end
end
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X= �X�: ,1 :L�+1� , conj�X�: ,L� :−1:2���;
Z=ifft�X ,2L� ,2�;
Zmax=max�max�abs�Z�: ,1 :L����;
Z=Z�: ,1 :L� /Zmax;

The path difference ��m ,�� denotes the difference be-
tween the path lengths from the incident plane wave with
direction � to the mth sensor and the first sensor. Its value is
calculated by projecting the position vector of the mth sensor
on the x-y plane, and subsequently projecting the resulting
position vector on the normal v of the plane wave, i.e.,
��m ,��=vTP�: ,m� / v2. Since v2=1 we have

��m,�� = vTP�: ,m� . �19�

It should be noted that according to the model the height of
the sensor does not influence the path difference.

The M sensor signals of length L that result from N
uniformly distributed noise sources can be generated using
Algorithm 3.

Algorithm 3: Creating sensor signals for an arbitrary 1D
and 3D array that result from a cylindrical noise field.

Data: P, M, L, N, fs

Result: Z
L�=2�log2�L��;

�=�fs�0:
1

L�
:1�;

�=2��0:
1

N
:
N−1

N �;
for k=1: N do

X�=randn�1,L�+1�+ i randn�1,L�+1�;
X�1, : �=X�1, : �+X�;

v= �cos���k��

sin���k��

0
�;

for m=2: M do
�=vTP�: ,m�;
X�m , : �=X�m , : �+X� exp�−j�� /c�;

end
end
X= �X�: ,1 :L�+1� , conj�X�: ,L� :−1:2���;
Z=ifft�X ,2L� ,2�;
Zmax=max�max�abs�Z�: ,1 :L����;
Z=Z�: ,1 :L� /Zmax;

2. 1D array

For an arbitrary 1D array the algorithm in Algorithm 3
can be simplified. Without loss of generality it is assumed
that the sensors of the array are positioned on the x axis. All
sensor positions are relative to the first sensor. The positions

are stored in the vector px as defined in Eq. �18�.
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The M sensor signals of length L that result from N
uniformly distributed noise sources can be generated by re-
placing the matrix P by px and by using

� = px�m�cos���k�� �20�

in Algorithm 3. Furthermore, the line containing the calcula-
tion of v should be omitted.

IV. RESULTS

In this section we analyze the generated sensor signals.
First, the obtained spatial coherence between two sensors in
a spherical and cylindrical noise field is shown, and the num-
ber of noise sources N is investigated. Second, the number of
noise sources N� and N� that are required for generating the
sensor signals for a 3D array in a spherical noise field are
investigated.

A. Using two sensors

First, the algorithm was used to generate the sensor sig-
nals in a spherically and cylindrically isotropic noise field
using N=64 sources. We generated two sensor signals of
L=218 samples and inter sensor distance d= �10,20� cm. The
coherence between the two sensor signals was estimated us-
ing Welch’s averaged periodogram method.10 We used a fast
Fourier transform of length K=256, a Hanning window, and
75% overlap.

The simulation and theoretical results for the spherical
and cylindrical noise fields are shown in Figs. 4 and 5, re-
spectively. From the results shown in these figures we can
see that the spatial coherence of the generated sensor signals

FIG. 4. Spatial coherence between two sensors with distance �a� d=10 cm
and �b� d=20 cm, in a spherically isotropic noise field.
closely matches the theoretical value.
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In practice only a finite set of noise sources can be used.
Therefore, the theoretical value can only be approximated.
The error between the spatial coherence of two generated
sensor signals and theoretical spatial coherence is determined
by i� the spectrum estimation error, and ii� the fact that a
finite number of noise sources is used. The number of noise
sources that is required will now be investigated. The error
between the spatial coherence of two generated signals and
the theoretical spatial coherence is defined by the normalized
mean square error �MSE� between these two values, i.e.,

MSE�N� =



k=0

K/2

��̂x1x2
�k;N� − �x1x2

�k��2



k=0

K/2

��x1x2
�k��2

, �21�

where k denotes the discrete frequency index, and �̂x1x2
�k ;N�

denotes the estimated spatial coherence obtained using N
noise sources. The results for a spherical and cylindrical
noise field are shown in Figs. 6�a� and 6�b�, respectively. For
large N the MSE asymptotically reaches a level determined
by the power spectral density estimation method. In case the
number of noise sources is larger than approximately 64, the
theoretical spatial coherence is well approximated.

B. Using three sensors

In this section the number of noise sources that is re-
quired for generating the sensor signals of a 3D array in a
spherical noise field is investigated. The number of noise
sources is specified by N�N�, where N� denotes the number
of noise sources on each ring and N� denotes the number of

FIG. 5. Spatial coherence between two sensors with distance �a� d=10 cm
and �b� d=20 cm, in a cylindrically isotropic noise field.
rings. The average error between all unique spatial coherence

E. Habets and S. Gannot: Generating sensor signals in noise fields



pairs of M generated sensor signals �obtained using Algo-
rithm 1� and the corresponding theoretical spatial coherence
values is obtained by

MSE�N�,N��

=
2�M − 2�!

M! 

i=1

M



j=i+1

M 

k=0

K/2

��̂xixj
�k;N�,N�� − �xixj

�k��2



k=0

K/2

��xixj
�k��2

. �22�

The position matrix of the three sensors that was used in this
experiment is

P = �0 0.2 0

0 0 0.2

0 0 0
� . �23�

The contour plot of the average MSE obtained for different
values N� and N� is shown in Fig. 7. From the results shown
in this figure it can be concluded that both N� and N�

should be sufficiently large to accurately generate the sig-
nals. In general N�	96 and N�	32 yield accurate results

FIG. 6. MSE between the spatial coherence of the generated sensor signals
and the theoretical value using N uncorrelated noise sources.
�MSE
−25 dB�.
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V. ACOUSTIC SIGNAL PROCESSING EXAMPLE

To demonstrate the applicability of the proposed simu-
lator we use the generated sensor signals to verify the theo-
retical gain of a filter and sum beamformer in a spherically
isotropic noise field.

The array gain of the filter and sum beamformer in a
spherically isotropic noise field is equal to the directivity
index �DI� of the array, which is given by11

DI�k� = 10 log10� �w�k�Hd�k��2

w�k�H�diffuse�k�w�k�
� �dB� , �24�

where the numerator represents the power of the signal at the
output of the beamformer, the denominator represents the
power of the noise at the output of the beamformer,
�diffuse�k� denotes the spatial noise covariance matrix, d�k�
denotes the �frequency dependent� array steering vector, and

FIG. 7. Contour plot of MSE�N� ,N�� using N�N� uncorrelated noise
sources.

FIG. 8. Theoretical and simulated directivity index �DI� of a filter and sum
beamformer and a uniform linear microphone array that consists of four

microphones and an inter-microphone spacing of 0.2 m.
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w�k� contains the frequency dependent weights of the beam-
former.

Let us assume that the array steering vector of length
M is d�k�= �1. . .1�T∀k, and that w�k�= �1. . .1�T∀k. It is
easy to verify that for low frequencies �k→0� DI is
equal to 10 log10�M2 /M2�=0 dB, and for high frequencies
�k→K /2� DI is equal to 10 log10�M2 /M�=10 log�M� dB.

For this experiment a uniform linear microphone array
was used. The number of microphones M equals 4, and the
inter-microphone distance was 0.2 m. In Fig. 8 the theoreti-
cal DI, and the DI that was calculated using the generated
sensor signals is shown. From the depicted results we can see
that the generated sensor signals are applicable for verifying
the theoretical performance of the beamformer.

VI. CONCLUSIONS

In this paper we have developed efficient algorithms to
generate the sensor signals of a 1D and 3D array that are
observed in a spherically or cylindrically isotropic noise
field. The MATLAB implementation of the developed algo-
rithms is available online.12 In should be noted that the de-
veloped algorithms can be extended to a more general case
in which directional sensors are used. This can be done by

1,5,7
weighting the level of each of the source signals.
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