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Noise fields encountered in real-life scenarios can often be approximated as spherical or cylindrical
noise fields. The characteristics of the noise field can be described by a spatial coherence function.
For simulation purposes, researchers in the signal processing community often require sensor
signals that exhibit a specific spatial coherence function. In addition, they often require a specific
type of noise such as temporally correlated noise, babble speech that comprises a mixture of
mutually independent speech fragments, or factory noise. Existing algorithms are unable to generate
sensor signals such as babble speech and factory noise observed in an arbitrary noise field. In this
paper an efficient algorithm is developed that generates multisensor signals under a predefined
spatial coherence constraint. The benefit of the developed algorithm is twofold. Firstly, there are no
restrictions on the spatial coherence function. Secondly, to generate M sensor signals the algorithm
requires only M mutually independent noise signals. The performance evaluation shows that the
developed algorithm is able to generate a more accurate spatial coherence between the generated
sensor signals compared to the so-called image method that is frequently used in the signal
processing community. © 2008 Acoustical Society of America. �DOI: 10.1121/1.2987429�

PACS number�s�: 43.50.Ed, 43.60.Cg �EJS� Pages: 2911–2917
I. INTRODUCTION

A spherical noise field has been shown to be a reason-
able model for a number of practical noise fields that can be
found in, for example, an office or a car.1 Cylindrical noise
fields are especially useful when, for example, the ceiling
and floor in an enclosure are covered with a highly absorbing
material.1 Spherical and cylindrical noise fields are also
known as three-dimensional �3D� and two-dimensional �2D�
diffuse noise fields, respectively. Researchers in the signal
processing community often require sensor signals that result
from these noise fields for simulation purposes, e.g., for �su-
perdirective� beamforming,2–5 adaptive noise cancellation,6,7

and source localization. In some cases it might even be de-
sired to generate sensor signals that exhibit a specific spatial
coherence function, e.g., based on a specific measurement or
condition.

It is often assumed that the noise field is �i� spatially
homogeneous, i.e., the physical properties of the sound do
not depend on the absolute position of the sensor, �ii� isotro-
pic, i.e., the physical properties of the sound are the same in
any direction of measurement, and �iii� time invariant.1,8 The
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sensor signals acquired in 2D and 3D diffuse noise fields can
be generated using a number of independent noise sources
that are uniformly spaced on a cylinder or sphere,
respectively.6,8,9 Recently, we have developed an efficient al-
gorithm to generate sensor signals acquired in noise fields
that satisfy the above assumptions.10

In many cases noise comprises a mixture of independent
speech fragments, also known as babble speech, or factory
noise. Babble speech can be used to model the background
noise encountered in a multitalker environment such as a
restaurant or cafeteria. In such a case the short-term power
spectral densities �PSDs� of the sensor signals vary in space
and time. This relaxes some of the prior assumptions. The
algorithm in Ref. 10 can be used to generate stationary and
nonstationary signals. However, the algorithm requires a
large number of independent noise signals. Furthermore, the
spatial coherence depends on the positions of the noise
sources. Therefore, it is difficult to obtain an arbitrary spatial
coherence. In this paper, we develop an efficient algorithm
that generates nonstationary sensor signals under a pre-
defined spatial coherence constraint. The benefit of the de-
veloped algorithm is twofold. Firstly, there are no restrictions
on the spatial coherence function, allowing the use of an
arbitrary or measured spatial coherence function. For ex-
ample, generated sensor signals with slightly different spatial
coherence functions can be used to analyze the robustness
and the sensitivity of acoustic signal processing algorithms.

Secondly, to generate M sensor signals the developed algo-
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rithm only requires M mutually independent noise signals,
which is a number that is significantly smaller than the num-
ber of noise signals that is used by other algorithms.9,10 The
developed algorithm generates the sensor signals in two
steps. Firstly, we generate a set of mutually independent
noise signals. The cardinality of this set is equal to the num-
ber of sensors. Secondly, the noise signals are filtered and
mixed such that the obtained sensor signals exhibit a pre-
defined spatial coherence. The filtering and mixing can be
performed in the frequency domain or in the time-frequency
domain such that these operations reduce to an instantaneous
mixing.

The remainder of this paper is organized as follows: In
Sec. II, we formulate the problem of generating sensor sig-
nals under a predefined spatial coherence. The sensor signals
are expressed as instantaneous mixing of mutually indepen-
dent noise signals. In Sec. III, we generate the mutually in-
dependent noise signals and in Sec. IV we compute the in-
stantaneous mixing matrix. In Sec. V we summarize the
algorithm and discuss its computational complexity. In Sec.
VI, we evaluate the performance in different noise fields by
comparing the spatial coherence of the generated sensor sig-
nals with the theoretical spatial coherence.

II. PROBLEM FORMULATION

Our objective is to generate M sensor signals with a
predefined spatial coherence. The M sensor positions, rela-
tive to the first sensor position, are stacked into a matrix P,
such that

P = �0 x2 ¯ xM

0 y2 ¯ yM

0 z2 ¯ zM
� . �1�

The Euclidian distance dpq between the pth and the qth sen-
sor is given by

dpq = �Pp − Pq�2, �2�

where Pp denotes the pth column of the matrix P.
Let us denote the PSD of the pth sensor signal by

�pp���, where � denotes the angular frequency. The cross-
PSD between the pth and the qth sensor is denoted by
�pq���.

The assumption that the noise field is homogeneous can
be formulated as

�pp��� = ����, ∀ p � �1, . . . ,M	 . �3�

The spatial coherence between the pth and the qth sen-
sor is defined as8

�pq��� =
�pq���


�pp����qq���
. �4�

In a spherically isotropic noise field the spatial coherence
8,11
function is given by
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�pq��� =
sin��dpq/c�

�dpq/c
, �5�

where dpq denotes the distance between the pth and qth sen-
sors, and c denotes the sound velocity in ms−1. Another well-
known noise field is a cylindrically isotropic noise field. The
spatial coherence function is then given by12

�pq��� = J0��dpq/c� , �6�

where J0�·� is a zero-order Bessel function of the first kind.
We propose to filter and mix M mutually independent

noise signals to generate M sensor signals that exhibit a pre-
defined spatial constraint. Since the spatial coherence is de-
fined in the frequency domain it is preferred to work in this
domain. The filtering and mixing can efficiently be per-
formed in the frequency domain and in the time-frequency
domain. Here, we work in the short-time Fourier transform
�STFT� domain. The frame index is denoted by � and the
discrete angular frequencies are denoted by �k, where �k
� �0, . . . ,K /2−1	� and K is the frame length of the STFT. It
should be noted that the spatial coherence can either be
�slowly� time varying or time invariant. While the developed
algorithm can be used to simulate a �slowly� time varying
spatial coherence, we assume that the predefined spatial co-
herence is time invariant.

Let us define a matrix �̃��k� for each �k that consists of
the predefined spatial coherence values

�̃��k� = �
�̃11��k� �̃12��k� ¯ �̃1M��k�
�̃21��k� �̃22��k� ¯ �̃2M��k�

] ] � ]

�̃M1��k� �̃M2��k� ¯ �̃MM��k�
� . �7�

Examples of �̃pq��k� are given by Eqs. �5� and �6�.
The prerequisites for the sensor signals can be summa-

rized as follows.

�1� The spatial coherence �pq��k� between the pth and the
qth sensor should be equal to a predefined spatial coher-
ence �̃pq��k�.

�2� The PSDs of the sensor signals should be equal.

Let us define a vector that consists of the STFT coeffi-
cients of the sensor signals X�� ,�k�
= �X1�� ,�k� , . . .XM�� ,�k��T and the noise signals N�� ,�k�
= �N1�� ,�k� , . . . ,NM�� ,�k��T. The STFT coefficients of the
sensor signals are obtained by instantaneous mixing of the
STFT coefficients of the noise signals, i.e.,

X��,�k� = CH��k�N��,�k� , �8�

where C��k� denotes the mixing matrix and �·�H is the Her-
mitian operation.

In Sec. III, we generate M mutually independent noise
signals Np�� ,�k� p� �1,2 , . . . ,M	. In Sec. IV, we show how
to compute the mixing matrix C��k� such that the spatial

coherence of the sensor signals equals Eq. �7�.
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III. GENERATE NOISE SIGNALS

In this section we provide two alternatives to generate
the M mutually independent noise signals. In the following
we assume that the column vectors of the mixing matrix
have equal norm. If the short-term PSDs of the noise signals
are equal then the short-term PSDs of the sensor signals are
equal. Hence, the PSDs of the sensor signals are consistent
with the PSDs observed in a homogeneous noise field.

A. Perfectly homogeneous

We generate M mutually independent noise signals with
short-term PSD ��� ,�k�. The short-term PSD of the noise
signal can be time varying or time invariant, and spectrally
white or colored.

We generate the STFT coefficients of the pth noise sig-
nal as

Np��,�k� = 
���,�k� exp�i�Dp��,�k�� , �9�

where Dp�� ,�k� for �� �1,2 , . . . 	 denotes a random signal
with uniform distribution �Dp�� ,�k��U�−1,1��. Now M
mutually independent noise signals can be generated using
mutually independent signals Dp�� ,�k� for p� �1,2 , . . . ,M	,
and the same ��� ,�k�.

The short-term PSD ��� ,�k� can represent the long-
term PSD of speech or factory noise, such that ��� ,�k�
=���k�. Alternatively, the short-term PSD ��� ,�k� can be
equal to the short-term PSD of a given babble speech or
factory noise signal. When babble speech or factory noise is
used it should be noted that the original phase spectrum is
destructed. Therefore, the resulting babble speech or factory
noise signals do not sound like the original signals anymore.
In the case when we use babble speech, the resulting noise
signals are also known as babble noise.

B. Approximately homogeneous

We generate M mutually independent signals that con-
sist of babble speech or factory noise. In the following we
assume that these noise signals are continuous, i.e., there are
no periods of silence. As mentioned before it is important
that the noise signals have the same power. Therefore, we
normalize the power of the noise signals 2� p�M such that
they have the same power as the first noise signal. The noise
signals are first transformed into the STFT domain to con-
struct the STFT coefficients Np�� ,�k� for p� �1,2 , . . . ,M	.
When these signals are used to generate the sensor signals,
the simulated noise field is not completely homogeneous
since the short-term PSDs of Np�� ,�k� and Nq�� ,�k� are not
equal for p�q. However, in some cases, the long-term PSDs
are approximately equal. For example, due to the nature of
speech this is the case for babble speech signals. Therefore,
only small fluctuations in the long-term PSDs are expected.
Hence, the simulated noise field is approximately homoge-
neous.

It is important to note that when these noise signals are

mixed to generate the desired spatial coherence the resulting
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sensor signals sound like a mixture of M babble speech or
factory noise signals; this is not the case when we use the
noise signals suggested in Sec. III A.

IV. GENERATING COHERENCE

In this section we determine the mixing matrix C��k�
that generates the desired spatial coherence between the sen-
sor signals.

In terms of the mixing matrix C��k� we can formulate
the prerequisites as follows.

�1� The inner product between the pth and the qth column
vector should be equal to �̃pq��k�.

�2� The norm of the column vectors should be equal to 1.

A. Two sensors

In this section we develop an efficient technique to gen-
erate two sensor signals with a predefined spatial coherence.
Here we assume that the predefined spatial coherence be-
tween the first and the second sensor �̃12��k� is real valued.

Let us define the following mixing matrix:

C��k� = �1 sin��12��k��
0 cos��12��k��

 . �10�

It can easily be verified that the norm of the column vectors
equals to 1, and that the inner product equals to sin��12��k��.
Hence, the spatial coherence �̃12��k�=sin��12��k��.

Although the mixing matrix �10� satisfies our prerequi-
sites the mixed signals are not always adequate from a per-
ceptual point of view. Specifically, they are inadequate in
case noise signals exhibit different short-term PSDs �as dis-
cussed in Sec. III B�. Let us assume that two mutually inde-
pendent babble speech signals are mixed using Eq. �10�. The
sensor signal X1�� ,�k� only consists of N1�� ,�k�, while the
sensor signal X2�� ,�k� consists of a mixture of N1�� ,�k� and
N2�� ,�k�. Since N2�� ,�k� is not present in X1�� ,�k� the sen-
sors signals sound unnatural. To solve this problem we re-
quire that the contribution of the noise signals in each of the
sensor signals is equal. In terms of the mixing matrix we
require that �C11�2= �C12�2 and �C21�2= �C22�2, where Cpq de-
notes the element in the pth row and qth column of the
matrix C. Since the norm of the column vectors and the inner
product between the column vectors are not affected by the
rotation operation, a valid solution can be obtained by prop-
erly rotating the mixing matrix.

Define the rotation matrix as

R��k� = �cos����k�� − sin����k��
sin����k�� cos����k��

 . �11�

The rotated mixing matrix is then given by

C���k� = R��k�C��k�

= �cos����k�� sin��12��k� − ���k��
sin����k�� cos��12��k� − ���k��

 . �12�
The additional requirement is fulfilled when
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�cos����k���2 = �sin��12��k� − ���k���2. �13�

Given �12��k� we can easily solve ���k�, viz., ���k�
=�12��k� /2−� /4+�n, where n�Z.

B. Multiple sensors

In this section we develop an efficient technique to gen-
erate multiple sensor signals with a predefined spatial coher-
ence.

The first technique that could be used is based on simu-
lating the actual physical properties of the noise field, as
shown in Ref. 10. However, a large number of mutually in-
dependent noise sources is required to approximate the de-
sired spatial coherence.10 Furthermore, the obtained spatial
coherence depends on the positions of the noise sources.
Therefore it is difficult, if not impossible, to find the appro-
priate positions to simulate an arbitrary spatial coherence.

The second technique, related to Eq. �10�, is based on
the Cholesky decomposition.13 This technique is used in
econometrics,14 and in communications15 to generate random
variables with specific statistical properties. Accordingly, we
obtain the mixing matrix by computing the Cholesky decom-

position of the matrix �̃��k�, i.e.,

�̃��k� = CH��k�C��k� , �14�

where C��k� is an upper triangle matrix. Since the mixing
matrix is an upper triangle matrix we encounter a similar
problem as in the two sensor case. Here, the Mth sensor
signal consists of all noise signals while the first sensor sig-
nal only consists of the first noise signal. Furthermore, it
should be noted that the Cholesky decomposition can only be

calculated in case the matrix �̃��k� is positive definite. This
requirement is fulfilled when Eq. �5� or Eq. �6� is used. In

addition, the condition number of �̃��k� should not be too
close to zero. The latter occurs when the spatial coherence
corresponds to a directional sound source. In that case all

values are nonzero and the rank of �̃��k� equals to 1. Hence,
the response to a directional source cannot be simulated us-
ing this technique.

A more general solution is obtained by calculating the

eigenvalue decomposition �EVD� of the matrix �̃��k� as fol-
lows:

�̃��k� = V��k�D��k�VH��k� . �15�

Now we can split the diagonal matrix D��k� to obtain

�̃��k� = V��k�
D��k�
D��k�VH��k� . �16�

The mixing matrix is then given by

C��k� = 
D��k�VH��k� . �17�

For M �2 the mixing matrix does not provide equal contri-
bution of each of the noise signals in each of the sensor
signals. However, the results of informal listening tests con-
firmed that the sensor signals generated using the mixing
matrix �17� are perceptually satisfactory. It should be noted
that the EVD can also be used to compute the response to a

single directional noise source. In case the spatial coherence
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is related to a coherent sound field only one eigenvalue is
larger than zero. Therefore, only the first row of the mixing
matrix will contain elements larger than zero. Consequently,
the sensor signals are all related to the first noise signal.

V. ALGORITHM SUMMARY AND COMPUTATIONAL
COMPLEXITY

A summary of the developed algorithm for generating M
stationary or nonstationary sensor signals is provided in
Table I. The first three steps are part of the initialization. The
fourth step generates the STFT coefficients of the sensor sig-
nals. Finally, in the fifth step, the inverse STFT is used to
obtain M discrete time signals that exhibit the predefined
spatial constraint.

We now determine the computational complexity of the
algorithm. Let us assume that the frame length of the STFT
equals K. Firstly, we determine the computational complex-
ity required to obtain the mixing matrix. Since the mixing
matrix is time invariant we only need to compute it once.
The complexity of constructing a mixing matrix for a single
frequency is O�M3� for the EVD and O�M2� to construct the
mixing matrix. For K frequencies the complexity is
O�K�M2+M3��. Hence, the computational complexity of the
initialization grows rapidly for increasing K and M. Sec-
ondly, we determine the computational complexity required
to compute Eq. �8�. Specifically, we need to generate M
STFT coefficients, one for each sensor signal, which yields
O�M2� per time frame and frequency index. For K frequen-
cies we then obtain O�KM2�.

Let us assume that we need to generate M sensor signals
of length L. In case R=K /4 denotes the number of samples
between two successive STFT frames, we need to compute
L�= �L /R� time frames. The computational complexity of
computing the STFT coefficients for all time frames, fre-
quencies, and sensor signals yields O�L�KM2�. Finally, we
compute the inverse STFT, which can be efficiently imple-
mented using a weighted overlap-add technique. The discrete
Fourier transform of length K can be computed using the fast
Fourier transform and has a complexity of order
O�K log2�K��. The total computational complexity to com-
pute L	M samples is given by O�L�K2M2 log2�K��
�O�LKM2 log2�K��. We can see that the computational

TABLE I. Summary of the developed algorithm that generates multisensor
signals under a predefined spatial coherence constraint.

�1� Define a matrix �̃��k� for each �k that consists of the predefined
spatial coherence values.

�2� Calculate the eigenvalue decomposition of the matrix

�̃��k�=V��k�D��k�VH��k�. The mixing matrix is then obtained by
C��k�=
D��k�VH��k�.

�3� Generate M mutually independent complex random signals Np�� ,�k�
�see Sec. III�.

�4� For all � and �k.
Calculated X�� ,�k�=CH��k�N�� ,�k�, where
X�� ,�k�= �X1�� ,�k� , . . . ,XM�� ,�k��T and
N�� ,�k�= �N1�� ,�k� , . . . ,NM�� ,�k��T.

�5� Finally, the sensor signals can be obtained by calculating the inverse
STFT of Xp�� ,�k� for p� �1,2 , . . . ,M	.
complexity per sample grows for increasing K and M. For a
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given M the overall computational complexity can be re-
duced by using a small value of K. The minimum value of
the frame length K is determined by the minimum filter or-
der. The influence of K on the accuracy of the spatial coher-
ence is examined in Sec. VI.

The computational complexity can be reduced by using
more efficient techniques to compute the EVD, by perform-
ing more efficient matrix multiplications, and by exploiting
the fact that the spectrum is conjugate symmetric.

VI. PERFORMANCE EVALUATION

In this section we analyze the generated sensor signals.
The spatial coherences between two sensors in spherical and
cylindrical noise fields are calculated and depicted. Firstly,
the sensor signals received in a homogenous noise field are
generated as described in Sec. III A and analyzed. Secondly,
babble speech is generated as described in Sec. III B and
subsequently analyzed. For the following analysis we have
generated two sensor signals since the spatial coherence can
only be measured between two sensors. The authors con-
ducted the analysis with more than two sensors and con-
firmed that the results are equivalent.

In this work we used a recorded single babble speech
signal available in Ref. 16. Alternatively, one can generate a
babble speech signal by mixing N mutually independent
speech signals. In order to obtain a realistic babble speech
signal one can convolve each speech signal with a different
room impulse response �the source positions are uniformly
spread in a room�. The N room impulse responses �RIRs� can
be generated using the image method proposed by Allen and
Berkley17 with a reverberation time between 0.3 and 0.6 s.
This method can also be used to generate M babble speech
signals that exhibit the characteristics of a 2D or a 3D diffuse
noise field. In the latter case we require MN RIRs. In case
multiple sensor signals are generated, it is recommended to
use only the reverberant parts of the RIRs since the direct
paths are coherent. When multiple babble speech signals are
generated the spatial coherence function is determined by the
geometry of the enclosure and acoustic properties of the
walls. Specifically, a spherical �3D diffuse� noise field is ob-
tained when the reflection coefficients of the six walls are
larger than zero. A cylindrical �2D� noise field is obtained
when the reflection coefficients of the floor and ceiling are
zero, and the other reflection coefficients are larger than zero.

Here we have used the later method for comparison, i.e.,
we generated multiple sensor signals by mixing 50 reverber-
ant noise signals; this method is indicated as the “image
method”. The reverberant noise signals are generated by con-
volving each noise source signal with the reverberant part of
a RIR. The noise sources are positioned such that �i� the
distance between each source and all walls is larger than
1 m, and �ii� the distance between each source and the center
of the sensor array is larger than 1 m. In order to simulate a
spherical noise field the reflection coefficients of the six
walls are set to 0.8. To simulate a cylindrical noise field the
reflection coefficients of the sidewalls are set to 0.8 while
those related to the floor and ceiling are set to 0. It should be

noted that the computational complexity of the developed
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algorithm is much smaller than that of the image method.
The developed algorithm only requires the generation of M
noise sources, while the image method requires the genera-
tion of N noise sources, where N�M to approximate the
desired noise field. For N noise sources and M sensors we
need to compute MN RIRs. Subsequently, each noise source
needs to be convolved with M filters. Hence, the image
method requires MN filter operations while the developed
algorithm requires only M2 filter operations.

Let us define the error between the spatial coherence of
two generated signals and the theoretical spatial coherence
by the normalized mean square error �MSE�, i.e.,

MSE =
�k=0

K/2−1��̂pq��k� − �̃pq��k��2

�k=0
K/2−1��̃pq��k��2 , �18�

where k denotes the discrete frequency index and �̂pq��k�
denotes the estimated spatial coherence of the desired spatial
coherence �̃pq��k�. The MSE is used to evaluate the image
method and the developed algorithm. The coherence between
the pth and the qth sensor was estimated using Welch’s av-
eraged periodogram method.18 We used the fast Fourier
transform of length 2048, a Hann window, and 75% overlap.

A. Minimum frame length

As discussed in Sec. V we prefer to use short STFT
frames to achieve low computational complexity. In this sec-
tion we determine the minimum length of the STFT frames,
or in other words the minimum filter length. For the follow-
ing experiment the mutually independent noise signals were
generated as described in Sec. III A. Subsequently, we gen-
erated two sensor signals obtained in spherically and cylin-
drically isotropic noise fields as described in Sec. IV. The
obtained MSE values for different values
K� �4,8 ,16, . . . ,1024	 are shown in Fig. 1. For both noise
fields we can see that the MSE is not significantly improved
when K
256. Hence, we chose K=256, which provides a
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FIG. 1. Minimum square error between the theoretical spatial coherence and
the spatial coherence of the generated signals versus the STFT frame length
K.
low MSE and results in a computationally efficient algo-
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rithm. Similar results were obtained when the noise signals
are generated using the method described in Sec. III B.

B. Isotopic noise

The developed algorithm, as summarized in Table I, was
used to generate the sensor signals obtained in spherically
and cylindrically isotropic noise fields. Here we used nonsta-
tionary speechlike noise signals that were generated using
the method described in Sec. III A. For comparison we also
generated a set of sensor signals using the image method. We
generated two sensor signal of 20 s and intersensor distance
d=20 cm.

The simulation and theoretical results for the spherical
and cylindrical noise fields are shown in Fig. 2. From the
results shown in this figure we can see that the spatial coher-
ence of the generated sensor signals obtained using the pro-
posed method closely matches the theoretical spatial coher-
ence for all frequencies. The spatial coherence of the
generated sensor signals obtained using the image method
only gives a good match at low frequencies. The MSE ob-
tained by the proposed method is significantly lower than the
MSE obtained by the image method for both noise fields.

C. Babble speech

Now the developed algorithm was used to generate the
nonstationary sensor signals in spherically and cylindrically
isotropic noise fields. The noise signals consist of babble
speech signals that were generated using the method de-
scribed in Sec. III B. We generated two sensor signals of 20 s
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FIG. 2. �Color online� Spatial coherence between two nonstationary speech-
like noise signals �d=20 cm�: �a� spherically isotropic noise field and �b�
cylindrically isotropic noise field.
and intersensor distance d=20 cm.
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The simulation and theoretical results for the spherical
and cylindrical noise fields are shown in Fig. 3. From these
results we can see that the spatial coherence of the generated
signals closely matches the theoretical spatial coherence.
Again we see that the MSE of the proposed method is sig-
nificantly smaller than the MSE of the image method. In Fig.
4 the long-term PSDs of sensor signals 1 and 2 are shown.
We can see that the long-term PSDs of the multisensor
babble speech signals are approximately equal although the
short-term PSD of the babble speech signal at each time
frame is known to be different. This demonstrates that we
can accurately generate diffuse babble speech.

VII. CONCLUSION

We have developed a computationally efficient algo-
rithm to generate sensor signals that exhibit a predefined
spatial coherence. Different noise types such as babble
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FIG. 3. �Color online� Spatial coherence between two babble speech sensor
signals �d=20 cm�: �a� spherical noise field and �b� cylindrical noise field.

0 0.5 1 1.5 2 2.5 3 3.5 4
−60

−50

−40

−30

−20

−10

Frequency [kHz]

P
ow

er
S

pe
ct

ru
m

M
ag

ni
tu

de
(d

B
)

Sensor 1
Sensor 2
FIG. 4. Estimated PSD of sensor signals 1 and 2.

Habets et al.: Generating nonstationary multisensor signals



speech and factory noise can easily be generated. The algo-
rithm consists of two steps: Firstly, we generate M mutually
independent noise signals in the STFT domain, where M is
equal to the number of sensors. Secondly, we calculate a
frequency dependent mixing matrix, which will induce the
predefined spatial coherence. We generate the spectral coef-
ficients of the sensor signals for each time frame by multi-
plying the mixing matrix with the spectral coefficients of the
noise signals. The sensor signals are then obtained by com-
puting the inverse STFT. The major benefits of the developed
algorithm are that �i� we can induce any spatial coherence
and �ii� we only require M mutually independent noise sig-
nals. The performance evaluation showed that the spatial co-
herence of the generated sensor signals closely resembles the
desired spatial coherence. Therefore the generated signals are
useful for the evaluation and analysis of various signal pro-
cessing algorithms. In addition, we showed that the MSE
between the desired spatial coherence and the spatial coher-
ence of generated signals is smaller than the MSE between
the desired spatial coherence and the spatial coherence ob-
tained using the image method that is frequently used in the
acoustic signal processing community.
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