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Introduction
Applications and Motivation

� One of the main challenges it to add (spatial) sound recording capabilities
to consumer devices using a relatively compact and flexible microphone
configuration

� In the context of virtual reality, microphones should be placed such that
they are outside the camera’s field-of-view (FOV). This can be challenging
in particular when a full 3D FOV is required
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Introduction
Parametric Spatial Processing Concept

� A flexible processing scheme is required which can be used for different
applications on the different devices

� Parametric-based spatial audio processing makes use of an efficient
parametric representation of the sound-field. A major advantage compared
to classical spatial processing is the limited number of parameters.

Parameter 
estimation 

Filtering 

Application-
dependent 
processing 

microphone 
signals 

side information (DOA) 

direct sound(s) 
and diffuse sound 

desired 
output parametric 

information 
parametric 

representation 

Figure: Parametric spatial audio processing scheme.
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Introduction
Existing Parametric Spatial Processing Approaches

Some selected examples:

� 1993 : Computational Auditory Scene Analysis (CASA) c.f. [Kollmeier,
Peissig, and V. Hohmann, 1993; Wittkop and V Hohmann, 2003]

� 2000 : Parametric Stereo Coding and Binaural Cue Coding

� 2006 : Using instantaneous TDOAs [Tashev and Acero, 2006]

� 2007 : Directional Audio Coding (DirAC) [Ville Pulkki, 2007]

� 2009 : Dereverberation techniques that make use of the reverberation
time and direct-to-reverberation ratio [Habets, Gannot, and Cohen, 2009]

� 2010 : High Angular Resolution Planewave Expansion (HARPEX) [Berge
and Barrett, 2010]

� 2015 : Using instantaneous phase differences [Sugiyama and Miyahara,
2015]
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Figure: Block diagram of the strategy-selective algorithm for dereverberation and
suppression of lateral noise sources [Wittkop and V Hohmann, 2003]
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Introduction
Existing Parametric Spatial Processing Approaches

Figure: Block diagram of the original DirAC system [Ville Pulkki, 2007]
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Introduction
Objectives of this Tutorial

� Provide an overview of parametric spatial audio processing

� Discuss the advantageous and disadvantages of parametric spatial audio
processing

� Explain how the direct and diffuse sound components can be estimated

� Explain how some of the frequently used parameters can be estimated

� Provide some application examples:
� Directional filtering
� Acoustical Zoom
� Spatial Sound Recording and Reproduction
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Introduction
Time–Frequency Analysis and Synthesis

� In practice, the short-time Fourier transform (STFT) is often used.

� STFT Analysis:

X(k, n) =

N−1∑

r=0

x(nR+ r)wa(r)e−jωkr with ωk =
2πk

K
,

k = 0, 1, . . . ,K − 1 and K ≥ N , and R denotes the number of samples
between two successive frames.

c© AudioLabs 2016

Slide 16
Parametric Spatial Audio Processing



Introduction
Time–Frequency Analysis and Synthesis - Window Functions
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Figure: Rectangular, Hamming, and Bartlett windows. Note that an increased tapering
of the window reduces the sidelobe level and increased the width of the main lobe.
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Introduction
Time–Frequency Analysis and Synthesis

� STFT Synthesis:

x(t) =
∑

n

K−1∑

k=0

X(k, n)ws(t− nR)ejωk(t−nR),

where R denotes the number of samples between two successive frames.

� An overlap of 50% is obtained when R = N/2.

� The spectrogram is given by |X(k, n)|2.
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Introduction
Time–Frequency Analysis and Synthesis

� Completeness condition for analysis window (wa) and synthesis window
(ws): ∑

n

wa(t− nR)ws(t− nR) =
1

N
for all t. (1)

� Given analysis and synthesis windows that satisfy (1) we can reconstruct
x(t) from its STFT coefficients X(k, n).

� In practice, a Hamming window is often used for the synthesis window.

� The inverse STFT is efficiently implemented using the weighted
overlap-add method [Crochiere and Rabiner, 1983].
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Introduction
Time–Frequency Analysis and Synthesis - Spectrogram
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Figure: Spectrogram (10 log(|X(k, n)|2)) of a speech signal (sample frequency
16 kHz, DFT length K = 1024, window length N = 512, hamming window).
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Figure: Spectrogram (10 log(|X(k, n)|2)) of a speech signal (sample frequency
16 kHz, DFT length K = 1024, window length N = 64, hamming window).
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Signal Model

� The sound field is modeled and processed in the time-frequency domain.

� The optimal time-frequency resolution depends an multiple aspects:

� It should resample the spectral resolution of the human hearing.

� It depends on the characteristics of the input signals.

� It depends on the employed parameter estimators and filters.

� Therefore, the time-frequency resolution should be chosen carefully
depending on the application and realized system.

� In the following, we consider setups with omnidirectional microphones. In
many cases, an extension to directional setups is straight-forward.
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Signal Model
Total Sound Field

� To achieve the desired flexibility and efficiency, recent approaches use a
parametric representation of the spatial sound at one position.

� The sound field in point p for time index n and frequency band k is
modeled as a superposition of L direct sounds and a diffuse sound, i.e.,

P (k, n,p) =

L∑

l=1

Ps,l(k, n,p) + Pd(k, n,p).

� The direct sounds Ps,l(k, n,p) model the direct sound of the sources. The
diffuse sound Pd(k, n,p) models the reverberation or ambience.

� Well-known examples where a parametric signal model is employed: DirAC
(L = 1), HARPEX (L = 2 direct sounds, no diffuse sound).
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Signal Model
Total Sound Field
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Figure: Example of a single plane wave, a diffuse field, and the sum of both fields.

� Each direct sound Ps,l(k, n,p) is represented as a single plane wave with
DOA expressed by the unit-norm vector nl(k, n).

� The DOA of the direct sounds can vary quickly in practice and represents
a crucial parameter in parametric spatial sound processing.
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Signal Model
Total Sound Field

� Given the sound field model, the microphone signals can be expressed as

x(k, n) = xs(k, n) + xd(k, n) + xn(k, n).

xs: microphone signals corresponding to the sum of the L direct sounds
xd: diffuse sound microphone signals
xn: stationary noise (e.g., microphone self-noise)

� Assuming mutually uncorrelated signal components, the microphone PSD
matrix can be written as

Φx(k, n) = E
{

x(k, n)xH(k, n)
}

= Φs(k, n) + Φd(k, n) + Φn(k).
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Signal Model
Direct Sound Model

� The microphone signals corresponding to the sum of the L direct sounds
can be written as

xs(k, n) = V(k, n)s(k, n,p1),

where the vector s(k, n,p1) contains the L direct sounds Ps,l(k, n,p1) at
the position p1 of the reference microphone.

� The matrix V(k, n) contains the relative transfer functions between the
M microphones and the reference microphone for each direct sound, i.e.,

Vm,l(k, n) = e−κ(pm−p1)Tnl .

� The expected powers of the direct sounds are given by

Φs,l(k, n) = E
{
|Ps,l(k, n,p1)|2

}
.
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Signal Model
Diffuse Sound Model

� The diffuse sound at the m-th microphone is a superposition of many
plane waves with random phase and uniformly distributed DOAs, i.e.,

Xd,m(k, n) =

√
Φd(k, n)

N

N∑

i=1

e−κp
T
mni+θi ,

where Φd(k, n) is the expected power of the diffuse sound

� For this model, the diffuse sound PSD matrix is given by

Φd(k, n) = E
{

xd(k, n)xH
d (k, n)

}

= Φd(k, n)Γd(k),

where Γd(k) is the diffuse coherence matrix.
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Signal Model
Diffuse Coherence
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Figure: Magnitude-squared coherence between two omnidirectional microphones for a
direct sound field a spherically isotropic diffuse sound field

� The (m,m′)-th element of Γd(k) is the diffuse sound coherence between
microphone m and m′, which is the well-known sinc-function depending on
the wavenumber κ and microphone spacing rm′m, i.e., [Cook et al., 1955]

γd,m′m(k) =
sin(κrm′m)

κrm′m
.
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Signal Model
Diffuse Sound Relation between Different Microphones

� In the following, we introduce the definition

u(k, n) ≡ xd(k, n)P−1
d (k, n,p1),

which relates the diffuse sound at the M microphones to the diffuse sound
at the first microphone.

� The vector u(k, n) is an unobservable random variable and its mean is the
diffuse coherence vector, i.e., [Thiergart and Habets, 2014]

E {u(k, n)} = γd(k),

where γd(k) = [1, γd,12(k), . . . , γd,1M (k)]T is the first column of Γd(k)
containing the known diffuse sound coherences.
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Signal Model
Noise Model and Useful Ratios

� The noise component is assumed to be stationary and independent and
identically distributed (iid), i.e.,

Φn(k) = E
{

xn(k, n)xH
n (k, n)

}
= Φn(k)IM .

� A useful ratio for later is the diffuse-to-noise ratio (DNR), defined as

DNR(k, n) =
Φd(k, n)

Φn(k)
,

which is strongly time-varying in practice.

� Another useful ratio is the signal-to-diffuse ratio (SDR), which, for L = 1,
is defined as

SDR(k, n) =
Φs(k, n)

Φd(k, n)
.
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Signal Model
Discussion of the Underlying Model Assumptions

� For L = 1 the source signals must be sparse (W -disjoint orthogonal),
otherwise model violations occur when multiple sources are active.

� For instance in [Thiergart and Habets, 2012; Laitinen and V. Pulkki, 2012]
the effects of such model violations are studied for the application of
spatial sound reproduction.

� Assuming a multi-wave model (L > 1) greatly relaxes the sparsity
requirement but also increases the complexity of the corresponding
parameter estimators and filters.

� The plane wave model holds reasonably well in the far-field of the sources
given that the inter-microphone distances are small compared to the
distance to the sources.

� Assuming that the direct sound and diffuse sound are uncorrelated holds
reasonably well for practical time-frequency resolutions.
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Signal and Parameter Estimation
Overview
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Figure: Parametric spatial audio processing scheme.

� Realizing applications with the parametric spatial audio processing requires

� Estimating parameters of the underlying sound field model (e.g., DOA),

� Extracting the direct sound(s) at the reference microphone,

� Extracting the diffuse sound at the reference microphone.
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Signal and Parameter Estimation
Overview

d

(a) ULA

d

(b) NLA (c) D-grid

Figure: Typical microphone setups in practice.

� There exists a huge variety of parameter and signal estimators depending
on the microphone setup and sound field model (single-wave, multi-wave).

� In the following, we discuss some selected estimators:

� Direct and diffuse sound extraction with optimal single-channel filters,

� Direct and diffuse sound extraction with optimal multi-channel filters,

� SDR estimation based on the spatial coherence.
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Signal and Parameter Estimation
Single-channel Direct Sound Extraction

� We assume the single-wave case (L = 1) for the following single-channel
filters. Applying the filter Ws(k, n) to the reference microphone provides
an estimate of the direct sound, i.e.,

P̂s(k, n,p1) = Ws(k, n)X1(k, n).

� Without loss of generality, we consider an omnidirectional reference
microphone in the following.

� To extract the direct sound from the microphone signals, we commonly
make use of filters which are optimal in some specific sense.
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Signal and Parameter Estimation
Single-channel Direct Sound Extraction: Wiener Filter

� The optimal single-channel Wiener filter minimizes the mean-square error
(MSE) between the true and estimated direct sound, i.e.,

Ws(k, n) = arg min
W

E
{
|WX1(k, n)− Ps(k, n)|2

}
.

� One solution when substituting the signal model is given by

Ws(k, n) =

[
SDR(k, n)

SDR(k, n) + DNR−1(k, n) + 1

]
.

� In practice, Ws(k, n) should be limited to a specific lower bound to avoid
musical tones. Moreover, spectral or temporal smoothing techniques can
be applied (for instance, smoothing in ERB bands).
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Signal and Parameter Estimation
Single-channel Direct Sound Extraction: Parametric Wiener Filter

� The parametric Wiener filter includes additional weighting factors to
control the trade-off between noise suppression and speech distortions, i.e.,

Ws(k, n) =

[
SDR(k, n)

SDR(k, n) + αDNR−1(k, n) + α

]β
.

� For β = 0.5 and α = 1 we obtain the well-known square-root Wiener filter.
Assuming Φn(k) = 0 (high SNR or DNR situations), this filter becomes

Ws(k, n) =
√

1− Ω(k, n),

where

Ω(k, n) =
1

1 + SDR(k, n)
.
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Signal and Parameter Estimation
Single-channel Direct Sound Extraction: Parametric Wiener Filter
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Figure: Comparison of Ω(k, n) to the intensity-based diffuseness Ψ(k, n) [Del Galdo
et al., 2012].

� The term Ω(k, n) is a very close approximation of the so-called diffuseness
Ψ(k, n), which was introduced in DirAC and which is defined based on the
temporal variation of the active sound intensity vector.

� Hence, the diffuseness-based signal extraction in DirAC represents the
single-channel square-root Wiener filter.
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Signal and Parameter Estimation
Single-channel Diffuse Sound Extraction: (Parametric) Wiener Filter

� The diffuse sound can be extracted using a single-channel filter similarly as
for the direct sound, e.g.,

P̂d(k, n,p1) = Wd(k, n)X1(k, n).

� As for the direct sound, we can formulate for instance the Wiener filter
(which here minimizes the MSE between the true and estimated diffuse
sound) or the parametric Wiener filter.

� For example, in case of the square-root Wiener filter and noiseless
assumption, we obtain

Hd(k, n) =
√

Ω(k, n).

� This filter is used for example in DirAC (where Ω(k, n) is the diffuseness).
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Signal and Parameter Estimation
Single-channel Sound Extraction: Conclusions

� Using single-channel filters for the sound extraction has specific
advantages and disadvantages.

� Advantages:

� Cheap: The filtering requires only a single microphone and estimating the
filters and required parameters is usually not very complex.

� Robust: For instance microphone positioning errors have no influence.
Moreover, spectral and temporal smoothing strategies can be applied to
reduce signal distortions and musical tones.

� Disadvantages:

� In general rather poor performance in attenuating undesired signal
components (e.g., direct sounds for the diffuse sound filter).
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Signal and Parameter Estimation
Multi-channel Direct Sound Extraction

� A better performance compared to the single-channel direct sound
extraction can be achieved using multiple microphones, for which different
optimal multi-channel filters exists. For instance, for L = 1,

P̂s(k, n,p1) = wH
s (k, n)x(k, n).

� As for the single-channel filters, the multi-channel filters are recomputed
for each time and frequency with updated information on the DOA and
second-order statistics (SOS) of the underlying sound field model.

� Thus, the filters can adapt fast to changing acoustics and provide a good
trade-off between robustness and attenuation of undesired signals
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Signal and Parameter Estimation
Multi-channel Direct Sound Extraction: Two Optimal Examples

� The linearly-constrained minimum variance (LCMV) filter minimizes the
noise-plus-diffuse power and extracts the direct sound without distortion:

wsLCMV(k, n) = arg min
ws

wH
s [Φd(k, n) + Φn(k)] ws

s.t. wH
s (k, n)v(k, n) = 1.

� In contrast, the parametric multi-channel Wiener filter minimizes the MSE
between the true and estimated direct sound subject to a distortion limit:

wsPMW(k, n) = arg min
ws

wH
s [Φd(k, n) + Φn(k)] ws

s.t. E

{∣∣∣wH
s (k, n)xs(k, n)− Ps(k, n,p1)

∣∣∣
2
}
≤ σ2(k, n).

[Thiergart, Taseska, and Habets, 2014a]
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Signal and Parameter Estimation
Multi-channel Direct Sound Extraction: Automatic Trade-off
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� Both filters can be computed in closed-form, which requires information
on the DOA and SOS of the underlying sound field model.

� The LCMV filter provides a good trade-off between diffuse and noise
attenuation depending on what undesired signal component is stronger.

� The parametric multi-channel Wiener filter provides a trade-off between
signal distortions as well as noise and diffuse attenuation.
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Signal and Parameter Estimation
Multi-channel Diffuse Sound Extraction

look direction 

direct sound 

diffuse 
sound 

� To extract the diffuse sound, we use a spatial filter which cancels out the
direct sound(s) while capturing the diffuse sound with a suitable response.

� State-of-the-art (SOA) approach: Using a spatial filter which nulls out the
direct sound and captures the diffuse sound from a specific look direction.

� Advantage over single-channel filters: Instantaneous cancelation of the
direct sound(s) due to the spatial null(s).
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Signal and Parameter Estimation
Multi-channel Diffuse Sound Extraction

� An even better filter would capture the diffuse sound equally strong from
all directions while canceling the direct sound(s).

� Such a filter can be formulated as an LCMV filter [Thiergart and Habets,
2014]:

wdALCMV(k, n) = arg min
w

wHΦn(k)w

s.t. wHv(k, n) = 0 and wH E {u(k, n)} = 1.

� Advantages:

� Computing the filter requires only the DOA of the direct sound(s).

� No (potentially sub-optimal) look direction needs to be specified.

� The filter provides an almost omnidirectional directivity pattern with spatial
nulls for the DOA of the direct sound(s).
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Signal and Parameter Estimation
Multi-channel Diffuse Sound Extraction

(a) SOA, 500 Hz (b) SOA, 1 kHz (c) SOA, 2 kHz (d) SOA, 4 kHz

(e) ALCMV, 500 Hz (f) ALCMV, 1 kHz (g) ALCMV, 2 kHz (h) ALCMV, 4 kHz

c© AudioLabs 2016

Slide 47
Parametric Spatial Audio Processing



Signal and Parameter Estimation
Single/Multi-channel Sound Extraction: Conclusions

� Compared to single-channel filters, multi-channel filters can better
attenuate undesired signal components (e.g., noise, undesired diffuse
sounds, undesired direct sounds) while extracting the desired signal.

� The discussed multi-channel filters provide a good trade-off between signal
distortions and attenuation of undesired signal components.

� Computing the filters requires the DOA of the direct sound(s) as well as
SOS of the underlying parametric signal model (e.g., SDR, DNR, direct
and diffuse PSDs).

� Recomputing the filters for each time and frequency with updated
parametric information allows the filters to adapt quickly to changing
acoustic scenes.
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Signal and Parameter Estimation
Example SDR and DNR Estimator: Based on the Spatial Coherence

Spatial 
coherence SDR estimation 

two arbitrary 
microphones 

� One practical estimator for the SDR (assuming L = 1) is based on the
spatial coherence between two arbitrary microphones [Thiergart, Galdo,
and Habets, 2012].

� The (complex-valued) spatial coherence describes the correlation between
two microphone signals in the frequency domain. It is computed as

γ12(k, n) =
Φx,12(k, n)√

Φx,11(k, n)
√

Φx,22(k, n)
.

Φx,m′m(k, n): cross and auto PSDs of the microphone signals

c© AudioLabs 2016

Slide 49
Parametric Spatial Audio Processing



Signal and Parameter Estimation
Example SDR and DNR Estimator: Based on the Spatial Coherence
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Figure: Spatial coherence (magnitude squared) as function of the SDR.

� Substituting the parametric sound field model leads to the following
expression (in case of omnidirectional microphones):

γ12(k, n) =
SDR(k, n)γs,12(k, n) + γd,12(k)

SDR(k, n) + 1
.

γs,12(k, n): direct sound coherence, γd,12(k): diffuse sound coherence
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Signal and Parameter Estimation
Example SDR and DNR Estimator: Based on the Spatial Coherence

� A robust solution for the SDR is given by (omnidirectional microphones):

ŜDR(k, n) = Re

{
γ12(k, n)− γd,12(k)

e−∠Φ12(k,n) − γ12(k, n)

}
.

� The estimator can be derived for arbitrary directional microphones as well.

� Note that the estimator is biased. Unbiased estimators which perform
robust in practice were derived recently in [Schwarz and Kellermann, 2015].

� Once the SDR is estimated, it is straight-forward to compute the DNR by
using the microphone signal PSD and noise PSD in the definition of the
DNR presented before.
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Signal and Parameter Estimation
Parameter Estimation: Examples of Further Estimators

� Estimators for the required DOA information and SOS (such as SDR,
DNR, signal and diffuse PSDs) exist for almost any microphone setup.

� DOA:

� Linear arrays: Narrowband estimators such as ESPRIT or Root MUSIC.

� B-format microphone: Based on the active sound intensity vector as
proposed in DirAC (L = 1), or as proposed in HARPEX (L = 2).

� . . .

� Direct sound PSDs and diffuse PSD:

� Based on the power difference between multiple directional microphones
(L = 1) [Thiergart, Ascherl, and Habets, 2014].

� Using a quadratically-constrained null-beamformer and a least-squares
approach (L ≥ 1) [Thiergart, Taseska, and Habets, 2014a].

� . . .
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Signal and Parameter Estimation
Parameter Estimation: Examples of Further Estimators

� Stationary noise PSDs: Estimated during speech pauses (detected using
e.g. VAD or minimum statistics).

� Number of sources L: Assumed fixed or estimated based on the
eigenvalues of the input PSD matrix (considering the minimum description
length or eigenvalue ratios [Markovich, Gannot, and Cohen, 2009]).

� . . .
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General Overview

� The desired signal (loudspeaker or headphone signal) is defined as a
weighted sum of the direct sound and diffuse sound

Y (k, n) =
L∑

l=1

Gs(k, ϕl)Ps,l(k, n)

︸ ︷︷ ︸
Ys(k,n)

+ Gd(k, n)Pd(k, n)

︸ ︷︷ ︸
Yd(k,n)

� The direct weight and diffuse weight depend on the application

© AudioLabs 2015 
Slide 6 

PROBLEM FORMULATION 
Definition of the Desired Signal 

§  The desired signal (loudspeaker or headphone signal) is defined as a 
weighted sum of the direct sound and diffuse sound 

§  The direct weight and diffuse weight depend on the application 

desired direct signal desired diffuse signal 

Application Direct weight Diffuse weight 

Speech enhancement 1 0 

Spatial filtering DOA-dependent spatial window 0 

Spatial sound reproduction DOA-dependent panning 
function for each loudspeaker 

Constant factor > 0 
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Directional Filtering and Dereverberation

� Our goal is to provide a desired directional gain for L (simultaneously
active) plane-waves per time and frequency while reducing both
reverberation and sensor noise

� The spatial filter is controlled by nearly instantaneous information (i.e.,
narrowband DOAs and diffuse-to-noise ratio) to respond quickly to
changes in the acoustic scene

� The proposed solution provides an optimal tradeoff between the white
noise gain (WNG) and the directivity index

� Based on a multi-wave sound field model, the M microphone signals can
be expressed as

x(k, n) =

L∑

l=1

xs,l(k, n)

︸ ︷︷ ︸
L plane waves

+ xd(k, n)︸ ︷︷ ︸
diffuse sound

+ xn(k, n)︸ ︷︷ ︸
sensor noise
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Directional Filtering and Dereverberation
Problem Formulation

� The desired signal is given by

Y (k, n) =

L∑

l=1

Gs(k, ϕl)Ps,l(k, n)

Assuming the three components in (1) are mutually uncorre-
lated, we can express the power spectral density (PSD) matrix of
the microphone signals as

Φ(k, n) = E
{
x(k, n)xH(k, n)

}

=
L∑

l=1

Φl(k, n) + Φd(k, n) + Φn(k, n), (2)

with

Φd(k, n) = φd(k, n) Γd(k), (3)
Φn(k, n) = φn(k, n) I. (4)

Here, I is an identity matrix, φn(k, n) is the expected power of the
microphone self-noise, which is identical for all microphones, and
φd(k, n) is the expected power of the diffuse field, which can vary
rapidly across time and frequency. The ij-th element of the coher-
ence matrix Γd(k), denoted by γij(k), is the diffuse field coherence
between microphone i and j. For instance for a spherically isotropic
diffuse field, we have γij(k)=sinc(κrij) [21] with wavenumber κ
and rij = ||dj − di||.

The directional sound xl(k, n) in (1) can be written as

xl(k, n) = a(k, ϕl) Xl(k, n, d1), (5)

where ϕl(k, n) is the DOA of the l-th plane wave (ϕ = 0 denoting
the array broadside) and a(k, ϕl) = [a1(k, ϕl) . . . aM (k, ϕl)]

T is
the propagation vector. The i-th element of a(k, ϕl),

ai(k, ϕl) = exp
{
 κ ri sin ϕl(k, n)

}
, (6)

describes the phase shift of the l-th plane wave from the first to the
i-th microphone. Note that ri = ||di − d1|| is equal to the distance
between the first and the i-th microphone.

The aim of the paper is to filter the microphone signals x(k, n)
such that directional sounds arriving from specific spatial regions are
attenuated or amplified as desired, while the diffuse sound and mi-
crophone self-noise are suppressed. The desired signal can therefore
be expressed as

Y (k, n) =

L∑

l=1

G(k, ϕl)Xl(k, n, d1), (7)

where G(k, ϕ) is a real-valued arbitrary directivity function which
can be frequency dependent. Figure 1 shows the magnitude of two
example directivities G1(k, ϕ) and G2(k, ϕ). When using G1(k, ϕ)
(solid line), we attenuate directional sound arriving from ϕ < 45◦

by 21 dB while directional sound from other directions is not at-
tenuated. In principle, one can design arbitrary directivities, even
functions such as G2(k, ϕ) (dashed line). Moreover, G(k, ϕ) can
be designed time variant, e. g., to extract moving or emerging sound
sources once they have been localized.

An estimate of the signal Y (k, n) is obtained by a linear combi-
nation of the microphone signals x(k, n), i. e.,

Ŷ (k, n) = wH(k, n)x(k, n), (8)

where w(k, n) is a complex weight vector of length M . It follows
from (5) and (7) that w(k, n) has to satisfy the linear constraints

wH(k, n) a(k, ϕl) = G(k, ϕl), l ∈ {1, 2, . . . , L}. (9)

Moreover, the diffuse sound power and self-noise power at the fil-
ter’s output has to be minimized. The corresponding optimal weight
vector w(k, n) is derived in the next section. In the following, the
dependency of the weights w(k, n) on k and n is omitted for brevity.
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Fig. 1. Two arbitrary directivity functions & source positions

3. OPTIMAL SPATIAL FILTERS

3.1. Existing Spatial Filters

While the PSD φn(k, n) can be estimated during periods of silence,
φd(k, n) is commonly assumed unknown and unobservable. We
therefore consider two existing spatial filters that can be computed
without this knowledge.

The first spatial filter is known as a delay-and-sum beamformer
and minimizes the self-noise power at the filter’s output (i. e., maxi-
mizes the WNG) [1]. The optimal weight vector that minimizes the
mean squared error (MSE) between (7) and (8) subject to (9) is then
obtained by

wn = arg min
w

wH Φn(k, n)w︸ ︷︷ ︸
wHw

s. t. (9). (10)

There exists a closed-form solution to (10) [1] that allows a fast com-
putation of wn. It should be noted that this filter does not necessarily
provide the largest directivity index (DI).

The second spatial filter is known as the robust superdirec-
tive (SD) beamformer and minimizes the diffuse sound power at the
filter’s output (i. e., maximizes the DI) with a lower-bound on the
WNG [22]. The lower-bound on the WNG increases the robustness
to errors in the propagation vector and limits the amplification of the
self-noise [22]. The optimal weight vector that minimizes the MSE
between (7) and (8) subject to (9) and satisfies the lower-bound on
the WNG is then obtained by

wd = arg min
w

wH Φd(k, n)w︸ ︷︷ ︸
wH Γd(k,n)w

s. t. (9) (11)

and subject to a quadratic constraint wH w<β. The parameter β−1

defines the minimum WNG and determines the achievable DI of the
filter. In practice, it is often difficult to find an optimal trade-off
between a sufficient WNG in low signal-to-noise ratio (SNR) situa-
tions, and a sufficiently high DI in high SNR situations. Moreover,
solving (11) leads to a non-convex optimization problem due to the
quadratic constraint, which is time-consuming to solve. This is espe-
cially problematic in our application, since the complex weight vec-
tor needs to be recomputed for each k and n due to the time-varying
constraints (9).

3.2. Proposed Spatial Filters

The proposed spatial filter combines the benefits of the spatial filters
in the previous subsection, i. e., providing a high DI in situations
with high DNR, and a high WNG otherwise. The spatial filter is
only linearly constrained, which allows a fast computation of the
weights.

Figure: Two possible directional gain functions

� The desired signal is estimated using an informed linearly constraint
minimum variance (LCMV) filter

Ŷ (k, n) = wH
LCMV(k, n) x(k, n)
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Directional Filtering and Dereverberation
Proposed Solution (1)

� The proposed informed LCMV filter is given by

wLCMV = arg min
w

wH [Φd(k, n) + Φn(k)] w

s. t. wH(k, n) v(k, ϕl) = Gs(k, ϕl), l ∈ {1, 2, . . . , L}

where v(k, ϕl) denotes the steering vector for the lth plane wave at time
m and frequency k.
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Directional Filtering and Dereverberation
Proposed Solution (1)

� The proposed informed LCMV filter is given by

wLCMV = arg min
w

wH [Φd(k, n)Γd(k) + Φn(k) I] w

s. t. wH(k, n) v(k, ϕl) = Gs(k, ϕl), l ∈ {1, 2, . . . , L}

where v(k, ϕl) denotes the steering vector for the lth plane wave at time
m and frequency k.
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Directional Filtering and Dereverberation
Proposed Solution (1)

� The proposed informed LCMV filter is given by

wLCMV = arg min
w

wH [Φd(k, n)Γd(k) + Φn(k) I] w

s. t. wH(k, n) v(k, ϕl) = Gs(k, ϕl), l ∈ {1, 2, . . . , L}

where v(k, ϕl) denotes the steering vector for the lth plane wave at time
m and frequency k.

� For the assumed signal model, we can alternatively minimize

wH [DNR(k, n) Γd(k) + I] w,

where DNR(k, n) denotes the diffuse-to-noise ratio and Γd(k) denotes the
spatial coherence matrix of the diffuse sound field.

� The filter is computed for each time and frequency given the parametric
information (i.e., DOAs and DNR). For more information see [Thiergart,
Taseska, and Habets, 2014b]).
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Directional Filtering and Dereverberation
Proposed Solution (2)
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Fig. 3. DI and WNG of the spatial filters in Sec. 3. For wd, the
minimum WNG was set to −12 dB to make the spatial filter robust
against the microphone self-noise.

for a silent part of the signal and during speech activity [both signal
parts marked in Fig. 2(b)]. During silence, the proposed spatial filter
(dashed line wnd) provides the same low DI as wn. During speech
activity (solid line wnd), the obtained DI is as high as for the robust
SD beamformer (wd). Figure 3(b) shows the corresponding WNGs.
During silence, the proposed spatial filter (dashed line wnd) achieves
a high WNG, while during signal activity, the WNG is relatively low.

In general, Fig. 3 shows that the proposed spatial filter combines
the advantages of both existing spatial filters: during silent parts,
a maximum WNG is provided leading to a minimal self-noise am-
plification, i. e., high robustness. During signal activity and high
reverberation, where the self-noise is usually masked, a high DI is
provided (at cost of a low WNG) leading to an optimal reduction of
the diffuse sound. In this case, even rather small WNGs are tolera-
ble. Note that for higher frequencies (f > 5 kHz), all spatial filters
perform nearly identically since the coherence matrix Γd(k) in (11)
and (13) is approximately equal to an identity matrix.

5.2. Instantaneous Directional Constraints

For this simulation, we assume that no a priori information on ϕA

and ϕB is available. The DOAs ϕ1(k, n) and ϕ2(k, n) are estimated
with ESPRIT. Thus, the constraints (9) vary across time. Only for
the robust SD beamformer (wd) we use a single and time-invariant
constraint (9) corresponding to a fixed look direction of ϕA = 86◦.
This beamformer serves as a reference.

Figure 4 shows the estimated DOA ϕ1(k, n) and resulting gain
|G(k, ϕ1)|2. The arriving plane wave is not attenuated if the DOA is
inside the spatial window in Fig. 1 (solid line). Otherwise, the power
of the wave is attenuated by 21 dB.

Table 1 summarizes the overall performance of the spatial filters
in terms of signal-to-interference ratio (SIR), signal-to-reverberation
ratio (SRR), and SSNR at the filter’s output. In terms of SIR and
SRR (source separation, dereverberation), the proposed approach
(wnd) and the robust SD beamformer (wd) provide the highest per-
formance. However, the SSNR of the proposed wnd is 6 dB higher
than the SSNR of wd, which represented a clearly audible bene-
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fit. The best performance in terms of SSNR is obtained using wn.
In terms of PESQ, wnd and wd outperform wn. Using instanta-
neous directional constraints (as in this section) instead of time-
invariant constrains (as in Sec. 5.1, values in brackets) mainly re-
duced the achievable SIR, but provides a fast adaption in case of
varying source positions. Note that the computation time of all re-
quired complex weights per time frame was larger than 80 s for wd

(CVX toolbox [28,29]) and smaller than 0.08 s for the proposed ap-
proach (MATLAB R2012b, MacBook Pro 2008).

6. CONCLUSIONS

An informed linearly constrained minimum variance filter was pro-
posed that provides a desired spatial response for L sources being
simultaneously active for each time and frequency in a noisy and re-
verberant environment. The filter exploits instantaneous information
on the direction-of-arrival of L plane waves and on the diffuse-to-
noise ratio (DNR) at the filter input. The DNR information allows
us to design a filter that maximizes the white noise gain when the
DNR is low, and the directivity index when the DNR is high. Simu-
lations results demonstrate the practical applicability of the proposed
filter and DNR estimator.
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SIR [dB] SRR [dB] SSNR [dB] PESQ
∗ 11 (11) −7 (−7) 26 (26) 1.5 (1.5)
wn 21 (32) −2 (−3) 33 (31) 2.0 (1.7)
wd 26 (35) 0 (−1) 22 (24) 2.1 (2.0)
wnd 25 (35) 1 (−1) 28 (26) 2.1 (2.0)

Table 1. Performance of all spatial filters [∗ unprocessed]. Values
in brackets refer to Sec. 5.1, otherwise Sec. 5.2. The signals were
A-weighted before computing the SIR, SRR, and SSNR.
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minimum WNG was set to −12 dB to make the spatial filter robust
against the microphone self-noise.

for a silent part of the signal and during speech activity [both signal
parts marked in Fig. 2(b)]. During silence, the proposed spatial filter
(dashed line wnd) provides the same low DI as wn. During speech
activity (solid line wnd), the obtained DI is as high as for the robust
SD beamformer (wd). Figure 3(b) shows the corresponding WNGs.
During silence, the proposed spatial filter (dashed line wnd) achieves
a high WNG, while during signal activity, the WNG is relatively low.

In general, Fig. 3 shows that the proposed spatial filter combines
the advantages of both existing spatial filters: during silent parts,
a maximum WNG is provided leading to a minimal self-noise am-
plification, i. e., high robustness. During signal activity and high
reverberation, where the self-noise is usually masked, a high DI is
provided (at cost of a low WNG) leading to an optimal reduction of
the diffuse sound. In this case, even rather small WNGs are tolera-
ble. Note that for higher frequencies (f > 5 kHz), all spatial filters
perform nearly identically since the coherence matrix Γd(k) in (11)
and (13) is approximately equal to an identity matrix.

5.2. Instantaneous Directional Constraints

For this simulation, we assume that no a priori information on ϕA

and ϕB is available. The DOAs ϕ1(k, n) and ϕ2(k, n) are estimated
with ESPRIT. Thus, the constraints (9) vary across time. Only for
the robust SD beamformer (wd) we use a single and time-invariant
constraint (9) corresponding to a fixed look direction of ϕA = 86◦.
This beamformer serves as a reference.

Figure 4 shows the estimated DOA ϕ1(k, n) and resulting gain
|G(k, ϕ1)|2. The arriving plane wave is not attenuated if the DOA is
inside the spatial window in Fig. 1 (solid line). Otherwise, the power
of the wave is attenuated by 21 dB.

Table 1 summarizes the overall performance of the spatial filters
in terms of signal-to-interference ratio (SIR), signal-to-reverberation
ratio (SRR), and SSNR at the filter’s output. In terms of SIR and
SRR (source separation, dereverberation), the proposed approach
(wnd) and the robust SD beamformer (wd) provide the highest per-
formance. However, the SSNR of the proposed wnd is 6 dB higher
than the SSNR of wd, which represented a clearly audible bene-
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fit. The best performance in terms of SSNR is obtained using wn.
In terms of PESQ, wnd and wd outperform wn. Using instanta-
neous directional constraints (as in this section) instead of time-
invariant constrains (as in Sec. 5.1, values in brackets) mainly re-
duced the achievable SIR, but provides a fast adaption in case of
varying source positions. Note that the computation time of all re-
quired complex weights per time frame was larger than 80 s for wd

(CVX toolbox [28,29]) and smaller than 0.08 s for the proposed ap-
proach (MATLAB R2012b, MacBook Pro 2008).

6. CONCLUSIONS

An informed linearly constrained minimum variance filter was pro-
posed that provides a desired spatial response for L sources being
simultaneously active for each time and frequency in a noisy and re-
verberant environment. The filter exploits instantaneous information
on the direction-of-arrival of L plane waves and on the diffuse-to-
noise ratio (DNR) at the filter input. The DNR information allows
us to design a filter that maximizes the white noise gain when the
DNR is low, and the directivity index when the DNR is high. Simu-
lations results demonstrate the practical applicability of the proposed
filter and DNR estimator.

7. REFERENCES

[1] J. Benesty, J. Chen, and Y. Huang, Microphone Array Signal
Processing. Berlin, Germany: Springer-Verlag, 2008.

SIR [dB] SRR [dB] SSNR [dB] PESQ
∗ 11 (11) −7 (−7) 26 (26) 1.5 (1.5)
wn 21 (32) −2 (−3) 33 (31) 2.0 (1.7)
wd 26 (35) 0 (−1) 22 (24) 2.1 (2.0)
wnd 25 (35) 1 (−1) 28 (26) 2.1 (2.0)

Table 1. Performance of all spatial filters [∗ unprocessed]. Values
in brackets refer to Sec. 5.1, otherwise Sec. 5.2. The signals were
A-weighted before computing the SIR, SRR, and SSNR.

Figure: Left: DOA ϕ1(k, n) as a function of time and frequency. Right: Desired
response |Gs(k, ϕ1)|2 in dB for DOA ϕ1(k, n) as a function of time and frequency.
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Fig. 3. DI and WNG of the spatial filters in Sec. 3. For wd, the
minimum WNG was set to −12 dB to make the spatial filter robust
against the microphone self-noise.

speech activity due to the reverberant environment. The estimated
DNR in Fig. 2(b) possesses a limited temporal resolution due to the
incorporated temporal averaging process. Nevertheless, the Ψ(k, n)
estimates are sufficiently accurate as shown by the following results.

Figure 3(a) depicts the mean DI for wn and wd (which are both
signal-independent), and for the proposed spatial filter wnd (which
is signal-dependent). For the proposed spatial filter, we show the DI
for a silent part of the signal and during speech activity [both signal
parts marked in Fig. 2(b)]. During silence, the proposed spatial filter
(dashed line wnd) provides the same low DI as wn. During speech
activity (solid line wnd), the obtained DI is as high as for the robust
SD beamformer (wd). Figure 3(b) shows the corresponding WNGs.
During silence, the proposed spatial filter (dashed line wnd) achieves
a high WNG, while during signal activity, the WNG is relatively low.

In general, Fig. 3 shows that the proposed spatial filter combines
the advantages of both existing spatial filters: during silent parts,
a maximum WNG is provided leading to a minimal self-noise am-
plification, i. e., high robustness. During signal activity and high
reverberation, where the self-noise is usually masked, a high DI is
provided (at cost of a low WNG) leading to an optimal reduction of
the diffuse sound. In this case, even rather small WNGs are tolera-
ble. Note that for higher frequencies (f > 5 kHz), all spatial filters
perform nearly identically since the coherence matrix Γd(k) in (11)
and (13) is approximately equal to an identity matrix.

5.2. Instantaneous Directional Constraints

For this simulation, we assume that no a priori information on ϕA

and ϕB is available. The DOAs ϕ1(k, n) and ϕ2(k, n) are estimated
with ESPRIT. Thus, the constraints (9) vary across time. Only for
the robust SD beamformer (wd) we use a single and time-invariant
constraint (9) corresponding to a fixed look direction of ϕA = 86◦.
This beamformer serves as a reference.

Figure 4 shows the estimated DOA ϕ1(k, n) and resulting gain
|G(k, ϕ1)|2. The arriving plane wave is not attenuated if the DOA is
inside the spatial window in Fig. 1 (solid line). Otherwise, the power
of the wave is attenuated by 21 dB.
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Fig. 4. Estimated DOA ϕ1(k, n) and resulting gains G(k, ϕ1)

Table 1 summarizes the overall performance of the spatial filters
in terms of signal-to-interference ratio (SIR), signal-to-reverberation
ratio (SRR), and SSNR at the filter’s output. In terms of SIR and
SRR (source separation, dereverberation), the proposed approach
(wnd) and the robust SD beamformer (wd) provide the highest per-
formance. However, the SSNR of the proposed wnd is 6 dB higher
than the SSNR of wd, which represented a clearly audible bene-
fit. The best performance in terms of SSNR is obtained using wn.
In terms of PESQ, wnd and wd outperform wn. Using instanta-
neous directional constraints (as in this section) instead of time-
invariant constrains (as in Sec. 5.1, values in brackets) mainly re-
duced the achievable SIR, but provides a fast adaption in case of
varying source positions. Note that the computation time of all re-
quired complex weights per time frame was larger than 80 s for wd

(CVX toolbox [28,29]) and smaller than 0.08 s for the proposed ap-
proach (MATLAB R2012b, MacBook Pro 2008).

6. CONCLUSIONS

An informed linearly constrained minimum variance filter was pro-
posed that provides a desired spatial response for L sources being
simultaneously active for each time and frequency in a noisy and re-
verberant environment. The filter exploits instantaneous information
on the direction-of-arrival of L plane waves and on the diffuse-to-
noise ratio (DNR) at the filter input. The DNR information allows
us to design a filter that maximizes the white noise gain when the
DNR is low, and the directivity index when the DNR is high. Simu-
lations results demonstrate the practical applicability of the proposed
filter and DNR estimator.

SIR [dB] SRR [dB] SSNR [dB] PESQ
∗ 11 (11) −7 (−7) 26 (26) 1.5 (1.5)
wn 21 (32) −2 (−3) 33 (31) 2.0 (1.7)
wd 26 (35) 0 (−1) 22 (24) 2.1 (2.0)
wnd 25 (35) 1 (−1) 28 (26) 2.1 (2.0)

Table 1. Performance of all spatial filters [∗ unprocessed]. Values
in brackets refer to Sec. 5.1, otherwise Sec. 5.2. The signals were
A-weighted before computing the SIR, SRR, and SSNR.
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The optimal weights w(k, n) to solve our problem in (8) are
found by minimizing the sum of the self-noise power and diffuse
sound power at the filter’s output, i. e.,

wnd = arg min
w

wH [Φd(k, n) + Φn(k, n)] w s. t. (9). (12)

Using (3) and (4), the optimization problem can be expressed as

wnd = arg min
w

wH [Ψ(k, n)Γd(k) + I]︸ ︷︷ ︸
=J(k,n)

w s. t. (9), (13)

where

Ψ(k, n) =
φd(k, n)

φn(k, n)
(14)

is the time-varying input DNR at the array microphones. The solu-
tion to (13) given the constraints (9) is [23]

wnd = J−1A
[
AHJ−1A

]−1

g, (15)

where A(k, n)= [a(k, ϕ1) . . . a(k, ϕL)] contains the propagation
vectors for the L plane waves. The corresponding gains are given by
g(k, n)= [G(k, ϕ1) . . . G(k, ϕL)]T. The estimation of Ψ(k, n) is
discussed in the next section.

4. PARAMETER ESTIMATION

Several parameters need to be estimated for the proposed approach in
Sec. 3.2. The DOAs ϕl(k, n) of the L plane waves can be obtained
with well-known narrowband DOA estimators such as ESPRIT [24]
or root MUSIC [25]. In the following, we discuss the estimation of
the input DNR Ψ(k, n).

To estimate Ψ(k, n), we propose to use an additional spatial fil-
ter which cancels the L plane waves such that only diffuse sound is
captured. The weights of this spatial filter are found by maximizing
the WNG of the array, i. e.,

wΨ = arg min
w

wHw (16)

subject to

wH a(k, ϕl) = 0, l ∈ {1, 2, . . . , L}, (17)

wH a(k, ϕ0) = 1. (18)

Constraint (18) ensures non-zero weights wΨ. The propagation vec-
tor a(k, ϕ0) corresponds to a specific direction ϕ0(k, n) being dif-
ferent from the DOAs ϕl(k, n) of the L plane waves. In the fol-
lowing, we choose for ϕ0(k, n) the direction which has the largest
distance to all ϕl(k, n), i. e.,

ϕ0(k, n) = arg max
ϕ

(
min

l
|ϕ − ϕl(k, n)|

)
, (19)

where ϕ ∈ [−π
2
, π

2
]. Given the weights wΨ, the output power of the

additional spatial filter is given by

wH
Ψ Φ(k, n)wΨ = φd(k, n)wH

Ψ Γd(k)wΨ

+ φn(k, n)wH
Ψ wΨ. (20)

The input DNR can now be computed with (14) and (20), i. e.,

Ψ(k, n) =
wH

Ψ Φ(k, n)wΨ − φn(k, n)wH
Ψ wΨ

φn(k, n)wH
Ψ Γd(k)wΨ.

(21)
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Fig. 2. True and estimated DNR Ψ(k, n). The two marked areas
indicate respectively a silent and active part of the signal.

The required expected power of the microphone self-noise φn(k, n)
can for example be estimated during silence assuming that the power
is constant over time. Note that the proposed DNR estimator does
not necessarily provide the lowest estimation variance in practice
due to the chosen optimization criteria (16), but provides unbiased
results.

5. EXPERIMENTAL RESULTS

Let us assume L = 2 plane waves in the model in (1) and an ULA
with M =4 microphones with an inter-microphone spacing of 3 cm.
A reverberant shoebox room (7.0 × 5.4 × 2.4 m3, RT60 ≈ 380 ms)
was simulated using the source-image method [26, 27] with two
speech sources at ϕA = 86◦ and ϕB = 11◦, respectively (distance
1.75 m, cf. Fig. 1). The signals consisted of 0.6 s silence followed
by double talk. White Gaussian noise was added to the microphone
signals resulting in a segmental signal-to-noise ratio (SSNR) of
26 dB. The sound was sampled at 16 kHz and transformed into the
time-frequency domain using a 512-point STFT with 50% overlap.

We consider the directivity function G1(ϕ) in Fig. 1, i. e., we
aim at extracting source A without distortions while attenuating the
power of source B by 21 dB. We compare the two spatial filters
in Sec. 3.1 and the proposed spatial filter in Sec. 3.2. For the ro-
bust SD beamformer (11), we set the minimum WNG to −12 dB.
For the proposed spatial filter (13), we estimate the DNR Ψ(k, n)
as explained in Sec. 4. The self-noise power φn(k, n) is computed
from the silent signal part at the beginning. The expectation in (2) is
approximated by a recursive temporal average over τ = 50ms.

5.1. Time-Invariant Directional Constraints

For this simulation, we assume prior knowledge about the two source
positions ϕA and ϕB. In all processing steps we used ϕ1(k, n) = ϕA

and ϕ2(k, n) = ϕB. Therefore, the directional constraints in (9)
and (17) do not vary over time.

Figure 2 shows the true and estimated DNR Ψ(k, n) as a func-
tion of time and frequency. We obtain a relatively high DNR during
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Fig. 3. DI and WNG of the spatial filters in Sec. 3. For wd, the
minimum WNG was set to −12 dB to make the spatial filter robust
against the microphone self-noise.

speech activity due to the reverberant environment. The estimated
DNR in Fig. 2(b) possesses a limited temporal resolution due to the
incorporated temporal averaging process. Nevertheless, the Ψ(k, n)
estimates are sufficiently accurate as shown by the following results.

Figure 3(a) depicts the mean DI for wn and wd (which are both
signal-independent), and for the proposed spatial filter wnd (which
is signal-dependent). For the proposed spatial filter, we show the DI
for a silent part of the signal and during speech activity [both signal
parts marked in Fig. 2(b)]. During silence, the proposed spatial filter
(dashed line wnd) provides the same low DI as wn. During speech
activity (solid line wnd), the obtained DI is as high as for the robust
SD beamformer (wd). Figure 3(b) shows the corresponding WNGs.
During silence, the proposed spatial filter (dashed line wnd) achieves
a high WNG, while during signal activity, the WNG is relatively low.

In general, Fig. 3 shows that the proposed spatial filter combines
the advantages of both existing spatial filters: during silent parts,
a maximum WNG is provided leading to a minimal self-noise am-
plification, i. e., high robustness. During signal activity and high
reverberation, where the self-noise is usually masked, a high DI is
provided (at cost of a low WNG) leading to an optimal reduction of
the diffuse sound. In this case, even rather small WNGs are tolera-
ble. Note that for higher frequencies (f > 5 kHz), all spatial filters
perform nearly identically since the coherence matrix Γd(k) in (11)
and (13) is approximately equal to an identity matrix.

5.2. Instantaneous Directional Constraints

For this simulation, we assume that no a priori information on ϕA

and ϕB is available. The DOAs ϕ1(k, n) and ϕ2(k, n) are estimated
with ESPRIT. Thus, the constraints (9) vary across time. Only for
the robust SD beamformer (wd) we use a single and time-invariant
constraint (9) corresponding to a fixed look direction of ϕA = 86◦.
This beamformer serves as a reference.

Figure 4 shows the estimated DOA ϕ1(k, n) and resulting gain
|G(k, ϕ1)|2. The arriving plane wave is not attenuated if the DOA is
inside the spatial window in Fig. 1 (solid line). Otherwise, the power
of the wave is attenuated by 21 dB.
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Table 1 summarizes the overall performance of the spatial filters
in terms of signal-to-interference ratio (SIR), signal-to-reverberation
ratio (SRR), and SSNR at the filter’s output. In terms of SIR and
SRR (source separation, dereverberation), the proposed approach
(wnd) and the robust SD beamformer (wd) provide the highest per-
formance. However, the SSNR of the proposed wnd is 6 dB higher
than the SSNR of wd, which represented a clearly audible bene-
fit. The best performance in terms of SSNR is obtained using wn.
In terms of PESQ, wnd and wd outperform wn. Using instanta-
neous directional constraints (as in this section) instead of time-
invariant constrains (as in Sec. 5.1, values in brackets) mainly re-
duced the achievable SIR, but provides a fast adaption in case of
varying source positions. Note that the computation time of all re-
quired complex weights per time frame was larger than 80 s for wd

(CVX toolbox [28,29]) and smaller than 0.08 s for the proposed ap-
proach (MATLAB R2012b, MacBook Pro 2008).

6. CONCLUSIONS

An informed linearly constrained minimum variance filter was pro-
posed that provides a desired spatial response for L sources being
simultaneously active for each time and frequency in a noisy and re-
verberant environment. The filter exploits instantaneous information
on the direction-of-arrival of L plane waves and on the diffuse-to-
noise ratio (DNR) at the filter input. The DNR information allows
us to design a filter that maximizes the white noise gain when the
DNR is low, and the directivity index when the DNR is high. Simu-
lations results demonstrate the practical applicability of the proposed
filter and DNR estimator.

SIR [dB] SRR [dB] SSNR [dB] PESQ
∗ 11 (11) −7 (−7) 26 (26) 1.5 (1.5)
wn 21 (32) −2 (−3) 33 (31) 2.0 (1.7)
wd 26 (35) 0 (−1) 22 (24) 2.1 (2.0)
wnd 25 (35) 1 (−1) 28 (26) 2.1 (2.0)

Table 1. Performance of all spatial filters [∗ unprocessed]. Values
in brackets refer to Sec. 5.1, otherwise Sec. 5.2. The signals were
A-weighted before computing the SIR, SRR, and SSNR.
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Fig. 3. DI and WNG of the spatial filters in Sec. 3. For wd, the
minimum WNG was set to −12 dB to make the spatial filter robust
against the microphone self-noise.

speech activity due to the reverberant environment. The estimated
DNR in Fig. 2(b) possesses a limited temporal resolution due to the
incorporated temporal averaging process. Nevertheless, the Ψ(k, n)
estimates are sufficiently accurate as shown by the following results.

Figure 3(a) depicts the mean DI for wn and wd (which are both
signal-independent), and for the proposed spatial filter wnd (which
is signal-dependent). For the proposed spatial filter, we show the DI
for a silent part of the signal and during speech activity [both signal
parts marked in Fig. 2(b)]. During silence, the proposed spatial filter
(dashed line wnd) provides the same low DI as wn. During speech
activity (solid line wnd), the obtained DI is as high as for the robust
SD beamformer (wd). Figure 3(b) shows the corresponding WNGs.
During silence, the proposed spatial filter (dashed line wnd) achieves
a high WNG, while during signal activity, the WNG is relatively low.

In general, Fig. 3 shows that the proposed spatial filter combines
the advantages of both existing spatial filters: during silent parts,
a maximum WNG is provided leading to a minimal self-noise am-
plification, i. e., high robustness. During signal activity and high
reverberation, where the self-noise is usually masked, a high DI is
provided (at cost of a low WNG) leading to an optimal reduction of
the diffuse sound. In this case, even rather small WNGs are tolera-
ble. Note that for higher frequencies (f > 5 kHz), all spatial filters
perform nearly identically since the coherence matrix Γd(k) in (11)
and (13) is approximately equal to an identity matrix.

5.2. Instantaneous Directional Constraints

For this simulation, we assume that no a priori information on ϕA

and ϕB is available. The DOAs ϕ1(k, n) and ϕ2(k, n) are estimated
with ESPRIT. Thus, the constraints (9) vary across time. Only for
the robust SD beamformer (wd) we use a single and time-invariant
constraint (9) corresponding to a fixed look direction of ϕA = 86◦.
This beamformer serves as a reference.

Figure 4 shows the estimated DOA ϕ1(k, n) and resulting gain
|G(k, ϕ1)|2. The arriving plane wave is not attenuated if the DOA is
inside the spatial window in Fig. 1 (solid line). Otherwise, the power
of the wave is attenuated by 21 dB.
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Table 1 summarizes the overall performance of the spatial filters
in terms of signal-to-interference ratio (SIR), signal-to-reverberation
ratio (SRR), and SSNR at the filter’s output. In terms of SIR and
SRR (source separation, dereverberation), the proposed approach
(wnd) and the robust SD beamformer (wd) provide the highest per-
formance. However, the SSNR of the proposed wnd is 6 dB higher
than the SSNR of wd, which represented a clearly audible bene-
fit. The best performance in terms of SSNR is obtained using wn.
In terms of PESQ, wnd and wd outperform wn. Using instanta-
neous directional constraints (as in this section) instead of time-
invariant constrains (as in Sec. 5.1, values in brackets) mainly re-
duced the achievable SIR, but provides a fast adaption in case of
varying source positions. Note that the computation time of all re-
quired complex weights per time frame was larger than 80 s for wd

(CVX toolbox [28,29]) and smaller than 0.08 s for the proposed ap-
proach (MATLAB R2012b, MacBook Pro 2008).

6. CONCLUSIONS

An informed linearly constrained minimum variance filter was pro-
posed that provides a desired spatial response for L sources being
simultaneously active for each time and frequency in a noisy and re-
verberant environment. The filter exploits instantaneous information
on the direction-of-arrival of L plane waves and on the diffuse-to-
noise ratio (DNR) at the filter input. The DNR information allows
us to design a filter that maximizes the white noise gain when the
DNR is low, and the directivity index when the DNR is high. Simu-
lations results demonstrate the practical applicability of the proposed
filter and DNR estimator.

SIR [dB] SRR [dB] SSNR [dB] PESQ
∗ 11 (11) −7 (−7) 26 (26) 1.5 (1.5)
wn 21 (32) −2 (−3) 33 (31) 2.0 (1.7)
wd 26 (35) 0 (−1) 22 (24) 2.1 (2.0)
wnd 25 (35) 1 (−1) 28 (26) 2.1 (2.0)

Table 1. Performance of all spatial filters [∗ unprocessed]. Values
in brackets refer to Sec. 5.1, otherwise Sec. 5.2. The signals were
A-weighted before computing the SIR, SRR, and SSNR.

Informed LCMV Filter 

6 

The optimal weights w(k, n) to solve our problem in (8) are
found by minimizing the sum of the self-noise power and diffuse
sound power at the filter’s output, i. e.,

wnd = arg min
w

wH [Φd(k, n) + Φn(k, n)] w s. t. (9). (12)

Using (3) and (4), the optimization problem can be expressed as

wnd = arg min
w

wH [Ψ(k, n)Γd(k) + I]︸ ︷︷ ︸
=J(k,n)

w s. t. (9), (13)

where

Ψ(k, n) =
φd(k, n)

φn(k, n)
(14)

is the time-varying input DNR at the array microphones. The solu-
tion to (13) given the constraints (9) is [23]

wnd = J−1A
[
AHJ−1A

]−1

g, (15)

where A(k, n)= [a(k, ϕ1) . . . a(k, ϕL)] contains the propagation
vectors for the L plane waves. The corresponding gains are given by
g(k, n)= [G(k, ϕ1) . . . G(k, ϕL)]T. The estimation of Ψ(k, n) is
discussed in the next section.

4. PARAMETER ESTIMATION

Several parameters need to be estimated for the proposed approach in
Sec. 3.2. The DOAs ϕl(k, n) of the L plane waves can be obtained
with well-known narrowband DOA estimators such as ESPRIT [24]
or root MUSIC [25]. In the following, we discuss the estimation of
the input DNR Ψ(k, n).

To estimate Ψ(k, n), we propose to use an additional spatial fil-
ter which cancels the L plane waves such that only diffuse sound is
captured. The weights of this spatial filter are found by maximizing
the WNG of the array, i. e.,

wΨ = arg min
w

wHw (16)

subject to

wH a(k, ϕl) = 0, l ∈ {1, 2, . . . , L}, (17)

wH a(k, ϕ0) = 1. (18)

Constraint (18) ensures non-zero weights wΨ. The propagation vec-
tor a(k, ϕ0) corresponds to a specific direction ϕ0(k, n) being dif-
ferent from the DOAs ϕl(k, n) of the L plane waves. In the fol-
lowing, we choose for ϕ0(k, n) the direction which has the largest
distance to all ϕl(k, n), i. e.,

ϕ0(k, n) = arg max
ϕ

(
min

l
|ϕ − ϕl(k, n)|

)
, (19)

where ϕ ∈ [−π
2
, π

2
]. Given the weights wΨ, the output power of the

additional spatial filter is given by

wH
Ψ Φ(k, n)wΨ = φd(k, n)wH

Ψ Γd(k)wΨ

+ φn(k, n)wH
Ψ wΨ. (20)

The input DNR can now be computed with (14) and (20), i. e.,

Ψ(k, n) =
wH

Ψ Φ(k, n)wΨ − φn(k, n)wH
Ψ wΨ

φn(k, n)wH
Ψ Γd(k)wΨ.

(21)
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Fig. 2. True and estimated DNR Ψ(k, n). The two marked areas
indicate respectively a silent and active part of the signal.

The required expected power of the microphone self-noise φn(k, n)
can for example be estimated during silence assuming that the power
is constant over time. Note that the proposed DNR estimator does
not necessarily provide the lowest estimation variance in practice
due to the chosen optimization criteria (16), but provides unbiased
results.

5. EXPERIMENTAL RESULTS

Let us assume L = 2 plane waves in the model in (1) and an ULA
with M =4 microphones with an inter-microphone spacing of 3 cm.
A reverberant shoebox room (7.0 × 5.4 × 2.4 m3, RT60 ≈ 380 ms)
was simulated using the source-image method [26, 27] with two
speech sources at ϕA = 86◦ and ϕB = 11◦, respectively (distance
1.75 m, cf. Fig. 1). The signals consisted of 0.6 s silence followed
by double talk. White Gaussian noise was added to the microphone
signals resulting in a segmental signal-to-noise ratio (SSNR) of
26 dB. The sound was sampled at 16 kHz and transformed into the
time-frequency domain using a 512-point STFT with 50% overlap.

We consider the directivity function G1(ϕ) in Fig. 1, i. e., we
aim at extracting source A without distortions while attenuating the
power of source B by 21 dB. We compare the two spatial filters
in Sec. 3.1 and the proposed spatial filter in Sec. 3.2. For the ro-
bust SD beamformer (11), we set the minimum WNG to −12 dB.
For the proposed spatial filter (13), we estimate the DNR Ψ(k, n)
as explained in Sec. 4. The self-noise power φn(k, n) is computed
from the silent signal part at the beginning. The expectation in (2) is
approximated by a recursive temporal average over τ = 50ms.

5.1. Time-Invariant Directional Constraints

For this simulation, we assume prior knowledge about the two source
positions ϕA and ϕB. In all processing steps we used ϕ1(k, n) = ϕA

and ϕ2(k, n) = ϕB. Therefore, the directional constraints in (9)
and (17) do not vary over time.

Figure 2 shows the true and estimated DNR Ψ(k, n) as a func-
tion of time and frequency. We obtain a relatively high DNR during
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Fig. 3. DI and WNG of the spatial filters in Sec. 3. For wd, the
minimum WNG was set to −12 dB to make the spatial filter robust
against the microphone self-noise.

speech activity due to the reverberant environment. The estimated
DNR in Fig. 2(b) possesses a limited temporal resolution due to the
incorporated temporal averaging process. Nevertheless, the Ψ(k, n)
estimates are sufficiently accurate as shown by the following results.

Figure 3(a) depicts the mean DI for wn and wd (which are both
signal-independent), and for the proposed spatial filter wnd (which
is signal-dependent). For the proposed spatial filter, we show the DI
for a silent part of the signal and during speech activity [both signal
parts marked in Fig. 2(b)]. During silence, the proposed spatial filter
(dashed line wnd) provides the same low DI as wn. During speech
activity (solid line wnd), the obtained DI is as high as for the robust
SD beamformer (wd). Figure 3(b) shows the corresponding WNGs.
During silence, the proposed spatial filter (dashed line wnd) achieves
a high WNG, while during signal activity, the WNG is relatively low.

In general, Fig. 3 shows that the proposed spatial filter combines
the advantages of both existing spatial filters: during silent parts,
a maximum WNG is provided leading to a minimal self-noise am-
plification, i. e., high robustness. During signal activity and high
reverberation, where the self-noise is usually masked, a high DI is
provided (at cost of a low WNG) leading to an optimal reduction of
the diffuse sound. In this case, even rather small WNGs are tolera-
ble. Note that for higher frequencies (f > 5 kHz), all spatial filters
perform nearly identically since the coherence matrix Γd(k) in (11)
and (13) is approximately equal to an identity matrix.

5.2. Instantaneous Directional Constraints

For this simulation, we assume that no a priori information on ϕA

and ϕB is available. The DOAs ϕ1(k, n) and ϕ2(k, n) are estimated
with ESPRIT. Thus, the constraints (9) vary across time. Only for
the robust SD beamformer (wd) we use a single and time-invariant
constraint (9) corresponding to a fixed look direction of ϕA = 86◦.
This beamformer serves as a reference.

Figure 4 shows the estimated DOA ϕ1(k, n) and resulting gain
|G(k, ϕ1)|2. The arriving plane wave is not attenuated if the DOA is
inside the spatial window in Fig. 1 (solid line). Otherwise, the power
of the wave is attenuated by 21 dB.
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Fig. 4. Estimated DOA ϕ1(k, n) and resulting gains G(k, ϕ1)

Table 1 summarizes the overall performance of the spatial filters
in terms of signal-to-interference ratio (SIR), signal-to-reverberation
ratio (SRR), and SSNR at the filter’s output. In terms of SIR and
SRR (source separation, dereverberation), the proposed approach
(wnd) and the robust SD beamformer (wd) provide the highest per-
formance. However, the SSNR of the proposed wnd is 6 dB higher
than the SSNR of wd, which represented a clearly audible bene-
fit. The best performance in terms of SSNR is obtained using wn.
In terms of PESQ, wnd and wd outperform wn. Using instanta-
neous directional constraints (as in this section) instead of time-
invariant constrains (as in Sec. 5.1, values in brackets) mainly re-
duced the achievable SIR, but provides a fast adaption in case of
varying source positions. Note that the computation time of all re-
quired complex weights per time frame was larger than 80 s for wd

(CVX toolbox [28,29]) and smaller than 0.08 s for the proposed ap-
proach (MATLAB R2012b, MacBook Pro 2008).

6. CONCLUSIONS

An informed linearly constrained minimum variance filter was pro-
posed that provides a desired spatial response for L sources being
simultaneously active for each time and frequency in a noisy and re-
verberant environment. The filter exploits instantaneous information
on the direction-of-arrival of L plane waves and on the diffuse-to-
noise ratio (DNR) at the filter input. The DNR information allows
us to design a filter that maximizes the white noise gain when the
DNR is low, and the directivity index when the DNR is high. Simu-
lations results demonstrate the practical applicability of the proposed
filter and DNR estimator.

SIR [dB] SRR [dB] SSNR [dB] PESQ
∗ 11 (11) −7 (−7) 26 (26) 1.5 (1.5)
wn 21 (32) −2 (−3) 33 (31) 2.0 (1.7)
wd 26 (35) 0 (−1) 22 (24) 2.1 (2.0)
wnd 25 (35) 1 (−1) 28 (26) 2.1 (2.0)

Table 1. Performance of all spatial filters [∗ unprocessed]. Values
in brackets refer to Sec. 5.1, otherwise Sec. 5.2. The signals were
A-weighted before computing the SIR, SRR, and SSNR.

sources silent 

sources active 

sources silent 

sources active 

Figure: Top: Directivity index (DI) in dB.
Bottom: White noise gain (WNG) in dB.
wn minimizes the noise power, wd minimizes
the diffuse power, wnd is the proposed LCMV
filter that minimizes the diffuse plus noise power
[shown when the sources are active (red solid
line) and silent (red dashed line)].
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Directional Filtering and Dereverberation
Results (2)

� The proposed spatial filter provides a high DI when the sound field is
diffuse and a high WNG when the sensor noise is dominant.

� Interfering sound can be strongly attenuated if desired.

� The proposed DNR estimator provides a sufficiently high accuracy and
temporal resolution to allow signal enhancement under adverse conditions
even in changing acoustic scenes.

SegSIR [dB] SegSRR [dB] SegSNR [dB] PESQ
∗ 11 (11) −7 (−7) 26 (26) 1.5 (1.5)
wn 21 (32) −2 (−3) 33 (31) 2.0 (1.7)
wd 26 (35) 0 (−1) 22 (24) 2.1 (2.0)
wnd 25 (35) 1 (−1) 28 (26) 2.1 (2.0)

Table: Performance of all spatial filters [∗ unprocessed, first
sub-column using true DOAs (of the sources), second
sub-column using estimated DOAs (of the plane waves)].
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Directional Filtering and Dereverberation

Audiovisual Demo

https://www.audiolabs-erlangen.de/fau/professor/habets/demos
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! Aim of the proposed approach: Recording and reproduction of the original
spatial sound such that it is consistent with the video
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Sound Field Model 

! We assume that for each time-frequency instant the sound is composed
of a single plane wave plus diffuse sound:

! The plane wave models the direct sound of the sources while the diffuse
sound models the reverberation

An Acoustical Zoom Based on ISF 

recording side 

6 

� We assume that for each time-frequency instant the sound is composed of
a single plane wave plus diffuse sound

x(k, n) = xs(k, n)︸ ︷︷ ︸
plane wave

+ xd(k, n)︸ ︷︷ ︸
diffuse sound

+ xn(k, n)︸ ︷︷ ︸
sensor noise

� The plane wave models the direct sound of the sources while the diffuse
sound models the reverberation
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Acoustical Zoom
Sound Field Model

� The desired signal is a weighted sum of the direct sound and diffuse sound
at the reference microphone

Yq(k, n) = Gs,q(k, ϕ)Ps(k, n) +Q(k)Pd(k, n)

� The gains Gs,q and Q are used to align the visual and acoustical image
and to create the acoustical zoom. The gains are adjusted when zooming.

� The gain Gs,q assures that the direct sound is reproduced from the correct
direction, while the gain Q controls the output signal-to-diffuse ratio.
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Acoustical Zoom
Zoom Parameters

where the m-th element of a(k,n) is the relative transfer function
of the direct sound from the first to the m-th microphone. The ar-
ray steering vector a(k,n) depends on the DOA of the plane wave
represented by the unit-norm vector n(k, n).

Since the different components in (1) are assumed to be mutually
uncorrelated, we can write the power spectral density (PSD) matrix
of the microphone signals as

Φx(k, n) = E
{
x(k, n)xH(k, n)

}
(3a)

= Φdir(k, n) + Φdiff(k, n) + Φn(k)︸ ︷︷ ︸
Φu(k,n)

, (3b)

where Φdir(k, n), Φdiff(k, n), and Φn(k) are the PSD matrix of the
direct sound, diffuse sound, and stationary noise, respectively. The
diffuse sound PSD matrix can be expressed as

Φdiff(k, n) = φdiff(k, n)Γdiff(k), (4)

where φdiff(k, n) = E
{
|Xdiff(k, n,d)|2

}
is the power of the dif-

fuse sound and Γdiff(k) is the spatial coherence matrix. We assume
an isotropic and homogeneous diffuse field. The (m′, m)-th element
of the coherence matrix Γdiff(k, n) is the diffuse field coherence be-
tween microphone m′ and m. For a spherically isotropic diffuse
field, the diffuse field coherence equals a sinc function depending on
the wavenumber and microphone spacing [9].

To create the acoustical zoom effect, we define the desired sig-
nal for the i-th loudspeaker channel as a weighted sum of the direct
sound and diffuse sound at the first microphone, i. e.,

Yi(k, n)=Gi(k, n)Xdir(k, n, d1)+QXdiff(k, n,d1) (5a)
= Ydir,i(k, n) + Ydiff,i(k, n). (5b)

The weights Gi(k, n) and Q are user-controlled parameters used
to create the acoustical zoom effect (discussed in Sec. 3). The de-
sired signal Yi(k, n) is obtained by filtering the microphone signals
x(k, n). We can estimate Yi(k, n) either directly, or separately by
estimating Ydir(k, n) and Ydiff(k, n). The latter option has the ad-
vantage that the required filters can be computed and applied at the
near-end side (recording side), while the user at the far-end side (re-
production side) is still able to control the acoustical zoom. There-
fore, we focus on the latter option in this paper. The estimation of
Ydir(k, n) and Ydiff(k, n) is discussed in Sec. 4.

3. ZOOMING PARAMETERS

To derive the zoom parameters Gi(k, n) and Q in (5a), let us con-
sider the geometry in Fig. 1, where l is an arbitrary look direction in
which the zoom is performed. Typically, l corresponds to the look
direction of the visual camera. Without loss of generality, we let l
define the y-axis of the coordinate system. The azimuth of the DOA
of the direct sound in the depicted (x, y) coordinate system is given
by ϕg(k, n) and the location of the source on the x-axis is given by
xg(k, n). In this paper, we assume that all sound sources are located
at the same distance g to the x-axis, i. e., the source positions are
located on the left dashed line. This assumption is only required to
ensure that the visual and acoustical image are aligned.

On the reproduction side, the display is located at b and the posi-
tion of the source on the display is given by xb(k, n). Moreover, xd

is the display size, ϕd is the corresponding maximum visual angle,
S is the sweet spot of the sound reproduction system, and ϕb(k, n)
is the angle from which the direct sound should be reproduced so
that the visual and acoustical image are aligned. Clearly, ϕb(k, n)

recording side reproduction side

x

y
g

S b

ϕbl

ϕd

xg(k, n)

xb(k, n)

ϕg

xd

Fig. 1. Geometry considered throughout this paper

depends on xb(k, n) and on the distance between the sweet spot S
and the display located at b. Moreover, xb(k, n) depends on sev-
eral parameters such as the distance g of the source from the camera,
the image sensor size and zooming factor of the camera (i. e., open-
ing angle of the camera), and the display size xd. Unfortunately, at
least some of these parameters are often unknown in practice such
that xb(k, n) and ϕb(k, n) cannot be determined for a given DOA
ϕg(k, n). However, assuming the optical system is linear, we have

tan ϕb(k, n) = β c tan ϕg(k, n), (6)

where β ≥ 1 is the user-controlled zooming factor and c is an un-
known constant compensating for the aforementioned unknown pa-
rameters. Note that in a visual camera, zooming in by a factor β
is equivalent to multiplying xb(k, n) by β. Moreover, c is constant
only if all source positions have the same distance g to the x-axis.
In this case, c can be considered as a calibration parameter which is
adjusted once such that the visual and acoustical image are aligned.

To achieve the desired zoom effect explained in the introduction,
the gains for the direct sound Gi(k, n) in (5a) are computed as

Gi(k, n) = Pi(ϕb)W (ϕb), (7)

where Pi(ϕb) is the panning gain for the i-th loudspeaker to repro-
duce the direct sound from the correct direction and W (ϕb) is a
gain to attenuate the direct sound if the source is mapped to a posi-
tion outside the visual image. Examples for Pi(ϕb) and Wi(ϕb) are
depicted in Fig. 2. The panning gain Pi(ϕb) depends on the loud-
speaker setup and panning scheme. The depicted curves for Pi(ϕb)
in Fig. 2 show the panning gains for a stereo reproduction as defined
by vector base amplitude panning (VBAP) [10]. Note that Pi(ϕb)
can also represent a head-related transfer function (HRTF) in case
of binaural sound reproduction. In this case, Pi(ϕb) and Gi(k, n),
respectively, are typically complex.

The real-valued diffuse sound gain Q ∈ [0, 1] in (5a) attenuates
the diffuse sound depending on the zooming factor, i. e., zooming
in increases the DRR of the reproduced signal. This is achieved by
lowering Q for larger β. In fact, zooming in means that the opening
angle of the camera becomes smaller, i. e., a natural acoustical cor-
respondence would be a more directive microphone which captures
less diffuse sound. To mimic this effect, we can use for instance the
gain function shown in Fig. 2(b).

Computing the diffuse gain Q requires only the zooming fac-
tor β. The gain Gi(k, n) can be computed for the desired zooming
factor β after ϕb(k, n) was estimated from (6). The required an-
gle ϕg(k, n) is found when estimating the DOA of the direct sound,
e. g., using classical narrowband estimators such as ESRIT [11] or
root MUSIC [12]. Note that the estimated DOA must be mapped to
the (x, y) coordinate system that is defined by l, which can be dif-
ferent from the local coordinate system of the microphone array that
was used to estimate the DOAs.

� Since the optical system is linear, the DOA of the direct sound at the
recording side is related to the DOA at the reproduction side by

tanϕb(k, n) = β c tanϕg(k, n)

� Here, β is the zoom factor and c is a constant depending on the screen
size, position of the sweet spot, and distance of the source
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� Example gain functions for the direct sound and diffuse sound:
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Fig. 2. Example gain function for the zoom parameters

4. INFORMED SPATIAL FILTERING

4.1. Direct Sound Extraction

The desired direct signal Ŷdir,i(k, n) for the i-th loudspeaker chan-
nel in (5b) is estimated by applying a linear multi-channel filter to
the microphone signals x(k, n), i. e.,

Ŷdir,i(k, n) = wH
dir,i(k, n)x(k, n). (8)

To find the optimal filter weights wdir,i, we consider the informed
linearly constrained minimum variance (LCMV) filter proposed
in [6], which is suited for this application as it minimizes the diffuse
sound and noise at the filter output while providing an arbitrary de-
sired response for the direct sound. The filter weights are computed
as

wdir,i(k, n) = arg min
w

wHΦu(k, n)w (9)

subject to the linear constraint wHa(k,n) = Gi(k, n) which en-
sures that the direct sound is captured with the desired zooming gain.
The solution to (9) is given by

wdir,i(k, n) = hdir(k, n) G∗
i (k, n), (10)

where hdir(k, n) = Φ−1
u a(k,n)

[
aH(k,n)Φ−1

u a(k,n)
]−1

. To
compute the filter, we need to estimate the diffuse plus noise PSD
matrix Φu(k, n) defined in (3b). For this purpose, the PSD matrix
of the stationary noise Φn(k) can be estimated during speech pauses
while the diffuse PSD matrix Φdiff(k, n) is computed with (4).
The required power of the diffuse sound φdiff(k, n) is estimated as
explained in the next subsection. Moreover, the array propagation
vector a(k,n) can be computed after estimating the DOA n(k, n)
of the direct sound using a narrowband DOA estimator.

When substituting (10) into (8), we can estimate Ydir,i(k, n) as

Ŷdir,i(k, n) = Gi(k, n)X̂dir(k, n,d1), (11)

where X̂dir(k, n, d1) = hH
dir(k, n)x(k, n).

The filter hdir(k, n) is independent from the zoom parameters.
Thus, it can be applied at the near-end side to obtain the direct sound
X̂dir(k, n,d1), which can then be transmitted to the far-end side
together with the estimated DOAs as side information to provide a
full control over the zoom effect for the direct sound.

4.2. Diffuse Sound Extraction

The desired diffuse signal Ydiff,i(k, n) is estimated by applying a
second spatial filter to the microphone signals, i. e.1,

Ŷdiff(k, n) = wH
diff(k, n)x(k, n). (12)

1We use the same filter for all loudspeaker channels i and Ŷdiff,i(k, n) is
found by decorrelating Ŷdiff(k, n) at the far-end side.

To find the optimal filter for the diffuse sound wdiff(k, n), we con-
sider the recently proposed filter in [7], which can extract the diffuse
sound with a desired arbitrary response while minimizing the noise
at the filter output. For spatially white noise, the filter is given by

wdiff(k, n) = arg min
w

wHw (13)

subject to wHa(k,n) = 0 and wHγ1(k) = Q. The first linear con-
straint ensures that the direct sound is suppressed, while the second
constraint ensures that on average, the diffuse sound is captured with
the desired gain Q [7]. Note that γ1(k) is the diffuse sound coher-
ence vector, i. e., γ1(k) is the first column of Γdiff(k). The solution
to (13) is given by

wdiff(k, n) = hdiff(k, n) Q, (14)

where hdiff(k, n) = Λγdiff(k)
[
γH

diff(k)Λγdiff(k)
]−1. Here,

Λ(k,n) = I − a(k,n)
[
aH(k,n)a(k,n)

]−1

aH(k,n), (15)

where I is the identity matrix of size M × M .
Substituting (14) into (12), we can compute Ŷdiff(k, n) as

Ŷdiff(k, n) = Q(k, n)X̂diff(k, n, d1), (16)

where X̂diff(k, n,d1) = hH
diff(k, n)x(k, n). Note that φ̂diff(k, n) =

E
{

|X̂diff(k, n, d1)|2
}

is an estimate of the diffuse sound power,

which can be used to compute the filter hdir(k, n) in (10).
The filter hdiff(k, n) does not dependent on the zoom parame-

ters and thus, it can be computed and applied at the near-end side to
obtain X̂diff(k, n,d1). In doing so, we only need to transmit a sin-
gle audio signal to the far-end side, namely X̂diff(k, n, d1), while
still being able to fully control the zoom effect for the diffuse sound.

5. EXPERIMENTAL RESULTS

In the following we study the performance of the proposed acoustical
zoom. Note that the performance of the filters in Sec. 4.1 and 4.2 was
already studied in [6] and [7]. Listening examples for the acoustical
zoom are provided online [13].

5.1. Simulation Setup

On the recording side in Fig. 1, a shoebox room (6 × 5 × 3.5 m3)
with a reverberation time of RT60 = 270 ms was simulated using
the source-image method [14, 15]. An uniform linear array with
M = 6 microphones and r = 3 cm microphone spacing was lo-
cated on the x-axis. The array center was the origin of the coor-
dinate system. Two speech sources at angles ϕg = −4◦ (male
speaker) and ϕg = 28◦ (female speaker) were simulated, both lo-
cated at a distance of g = 1.7 m to the x-axis. Both speakers were
active at the same time (double talk). The sound was captured at
fs = 16 kHz and transformed into the time-frequency domain using
a 1024-point short-time Fourier transform (STFT) with 50% overlap.
White Gaussian noise was added to the microphone signals resulting
in a segmental signal-to-noise ratio (SNR) of 21 dB.

On the recording side, we were assuming a visual camera with
an opening angle of 90◦ (when completely zoomed out) and look
direction l. On the reproduction side in Fig. 1, we were assuming
a display with a width of 1.2 m (xd = 0.6 m) and the sweet spot
located at a distance of 2 m. For this setup and when completely

� The direct sound gain is the product of a panning function and window
function and depends on the DOA of the direct sound at the reproduction
side. The diffuse sound gain depends on the zoom factor.
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Direct and Diffuse Sound Estimation

� The desired signals Ydir and Ydiff are estimated using so-called informed
spatial filters (ISFs). The desired direct signal can be estimated as follows:
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Informed Spatial Filtering 

! The desired signals Ydir and Ydiff are estimated using so-called
informed spatial filters (ISFs). E.g., for the desired direct signal: 

! The filter is informed with parametric information of the underlying
sound field model and is updated for each time-frequency instant

An Acoustical Zoom Based on ISF 

DNR 
estimation

DOA 
estimation

desired 
response

filter 
weights

10 

zoom factor 

� The diffuse sound can be estimated using the diffuse beamformer
explained earlier. More details can also be found in [Thiergart, Kowalczyk,
and Habets, 2014].
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Fig. 2. Example gain function for the zoom parameters

4. INFORMED SPATIAL FILTERING

4.1. Direct Sound Extraction

The desired direct signal Ŷdir,i(k, n) for the i-th loudspeaker chan-
nel in (5b) is estimated by applying a linear multi-channel filter to
the microphone signals x(k, n), i. e.,

Ŷdir,i(k, n) = wH
dir,i(k, n)x(k, n). (8)

To find the optimal filter weights wdir,i, we consider the informed
linearly constrained minimum variance (LCMV) filter proposed
in [6], which is suited for this application as it minimizes the diffuse
sound and noise at the filter output while providing an arbitrary de-
sired response for the direct sound. The filter weights are computed
as

wdir,i(k, n) = arg min
w

wHΦu(k, n)w (9)

subject to the linear constraint wHa(k,n) = Gi(k, n) which en-
sures that the direct sound is captured with the desired zooming gain.
The solution to (9) is given by

wdir,i(k, n) = hdir(k, n) G∗
i (k, n), (10)

where hdir(k, n) = Φ−1
u a(k,n)

[
aH(k,n)Φ−1

u a(k,n)
]−1

. To
compute the filter, we need to estimate the diffuse plus noise PSD
matrix Φu(k, n) defined in (3b). For this purpose, the PSD matrix
of the stationary noise Φn(k) can be estimated during speech pauses
while the diffuse PSD matrix Φdiff(k, n) is computed with (4).
The required power of the diffuse sound φdiff(k, n) is estimated as
explained in the next subsection. Moreover, the array propagation
vector a(k,n) can be computed after estimating the DOA n(k, n)
of the direct sound using a narrowband DOA estimator.

When substituting (10) into (8), we can estimate Ydir,i(k, n) as

Ŷdir,i(k, n) = Gi(k, n)X̂dir(k, n,d1), (11)

where X̂dir(k, n, d1) = hH
dir(k, n)x(k, n).

The filter hdir(k, n) is independent from the zoom parameters.
Thus, it can be applied at the near-end side to obtain the direct sound
X̂dir(k, n,d1), which can then be transmitted to the far-end side
together with the estimated DOAs as side information to provide a
full control over the zoom effect for the direct sound.

4.2. Diffuse Sound Extraction

The desired diffuse signal Ydiff,i(k, n) is estimated by applying a
second spatial filter to the microphone signals, i. e.1,

Ŷdiff(k, n) = wH
diff(k, n)x(k, n). (12)

1We use the same filter for all loudspeaker channels i and Ŷdiff,i(k, n) is
found by decorrelating Ŷdiff(k, n) at the far-end side.

To find the optimal filter for the diffuse sound wdiff(k, n), we con-
sider the recently proposed filter in [7], which can extract the diffuse
sound with a desired arbitrary response while minimizing the noise
at the filter output. For spatially white noise, the filter is given by

wdiff(k, n) = arg min
w

wHw (13)

subject to wHa(k,n) = 0 and wHγ1(k) = Q. The first linear con-
straint ensures that the direct sound is suppressed, while the second
constraint ensures that on average, the diffuse sound is captured with
the desired gain Q [7]. Note that γ1(k) is the diffuse sound coher-
ence vector, i. e., γ1(k) is the first column of Γdiff(k). The solution
to (13) is given by

wdiff(k, n) = hdiff(k, n) Q, (14)

where hdiff(k, n) = Λγdiff(k)
[
γH

diff(k)Λγdiff(k)
]−1. Here,

Λ(k,n) = I − a(k,n)
[
aH(k,n)a(k,n)

]−1

aH(k,n), (15)

where I is the identity matrix of size M × M .
Substituting (14) into (12), we can compute Ŷdiff(k, n) as

Ŷdiff(k, n) = Q(k, n)X̂diff(k, n, d1), (16)

where X̂diff(k, n,d1) = hH
diff(k, n)x(k, n). Note that φ̂diff(k, n) =

E
{

|X̂diff(k, n, d1)|2
}

is an estimate of the diffuse sound power,

which can be used to compute the filter hdir(k, n) in (10).
The filter hdiff(k, n) does not dependent on the zoom parame-

ters and thus, it can be computed and applied at the near-end side to
obtain X̂diff(k, n,d1). In doing so, we only need to transmit a sin-
gle audio signal to the far-end side, namely X̂diff(k, n, d1), while
still being able to fully control the zoom effect for the diffuse sound.

5. EXPERIMENTAL RESULTS

In the following we study the performance of the proposed acoustical
zoom. Note that the performance of the filters in Sec. 4.1 and 4.2 was
already studied in [6] and [7]. Listening examples for the acoustical
zoom are provided online [13].

5.1. Simulation Setup

On the recording side in Fig. 1, a shoebox room (6 × 5 × 3.5 m3)
with a reverberation time of RT60 = 270 ms was simulated using
the source-image method [14, 15]. An uniform linear array with
M = 6 microphones and r = 3 cm microphone spacing was lo-
cated on the x-axis. The array center was the origin of the coor-
dinate system. Two speech sources at angles ϕg = −4◦ (male
speaker) and ϕg = 28◦ (female speaker) were simulated, both lo-
cated at a distance of g = 1.7 m to the x-axis. Both speakers were
active at the same time (double talk). The sound was captured at
fs = 16 kHz and transformed into the time-frequency domain using
a 1024-point short-time Fourier transform (STFT) with 50% overlap.
White Gaussian noise was added to the microphone signals resulting
in a segmental signal-to-noise ratio (SNR) of 21 dB.

On the recording side, we were assuming a visual camera with
an opening angle of 90◦ (when completely zoomed out) and look
direction l. On the reproduction side in Fig. 1, we were assuming
a display with a width of 1.2 m (xd = 0.6 m) and the sweet spot
located at a distance of 2 m. For this setup and when completely

recording side reproduction side 

14 
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Demo

� Simulated shoebox room (RT60 = 270ms), single talk and double talk

� Sound captured with a linear array with 6 noisy microphones

� DOAs estimated with ESPRIT
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Figure 1.18: Geometry considered for the spatial sound reproduction measurements using a B-format
microphone (SoundField T350).

1.2.3 Spatial Sound Reproduction Using a B-Format Microphone

This subsection evaluates a complete system for spatial acquisition and reproduction. It

demonstrates the benefit of multi-channel filters over single-channel filters and the benefit

of a multi-wave model (L ≥ 1) over a single-wave model (L = 1). We have carried out

measurements with a B-format microphone, which is the preferred recording device in many

spatial sound reproduction approaches, for example, DirAC, HARPEX, and Ambisonics. For

the sound reproduction we were considering a 5.1 surround sound loudspeaker setup.

Measurement Setup The measurements were carried out in two different rooms, which are

illustrated in Fig. 1.18. The first room was relatively dry (RT60 ≈ 110ms) and the second

one was relatively reverberant (RT60 ≈ 390ms). The sound was created with 5 loudspeakers

at different positions and recorded using a B-format microphone (SoundField ST350) at a

distance of 1.4 m (Room 1) and 2 m (Room 2) to the loudspeakers. The microphone was

oriented such that the x-dipole was pointing along the positive x-axis as indicated by the

arrow. We were considering a total of six different scenarios:

• ST: Room 2 with Loudspeaker A emitting male speech. This scenario was used to

investigate the performance for a single-talk case.

• DT1: Room 2 with A emitting male speech and C emitting female speech. This represents

a reverberant double-talk scenario with relatively sparse signals.

• DT2: Room 1 with A emitting broadband choir sound and C emitting male speech. This

represents a double-talk situation where one source signal was less sparse.

� Processing using the informed spatial filtering scheme

� Sound reproduction using a 5.1 surround sound setup
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Application Examples
Spatial Sound Recording and Reproduction

� We aim at reproducing the sound at the reproduction side with the same
spatial impression as on the recording side

� The q-th loudspeaker signal are given by

Yq(k, n) =

L∑

l=1

Gs,q(k, ϕl)Ps,l(k, n) +Gd,q(k, n)Pd(k, n)

= Ys,q(k, n) + Yd,q(k, n)

� The weights for the direct sound are selected from a panning function

� The weights for the diffuse sound are fixed

Gd,q(k, n) =

√
1

Q

where Q is the number of loudspeakers.
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Application Examples
Spatial Sound Recording and Reproduction

� We consider the vector-base amplitude panning (VBAP) function to select
the direct sound weights depending on the estimated DOA
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Figure 1.22: MUSHRA results for the 5.1 spatial sound reproduction from a B-format microphone
recording. The listening test was carried out by 14 participants.

In general, the listeners graded the different approaches quite differently, also depending

on the scenario, as indicated by the rather large confidence intervals. The reason was that

the different approaches yielded different effects and the participants were asked to grade

the overall quality compared to the reference. For example, for some approaches the di-

rect sound reproduction was more accurate (MCMW), whereas other approaches yielded less

undesired coloration (DirAC). Nevertheless, we observe a clear trend when considering the

overall results. We can see that overall, the proposed multi-channel approaches (MCSW, MCMW)

were significantly better than all SOA approaches. This demonstrates the good performance

which can be achieved when applying multi-channel filters. When excluding the single-talk

scenario (ST) from the overall evaluation (all\ST), then the proposed multi-wave processing

was significantly better than the single-wave processing. This verifies the advantage of a

multi-wave model in scenarios where multiple sources are active at the same time.

1.3 Acoustical Zooming

In digital cameras, zooming allows for narrowing the apparent angle of view in a video or

an image. When sounds compliment the visual information, a desirable function would be

to provide an acoustical zoom which is aligned with the zoomed visual image. For instance,

when zooming in, the direct sound of the visible sources in the visual image is reproduced from

the correct directions such that the visual and acoustical image are aligned, while sources

outside the visual image are attenuated. Moreover, the diffuse sound is reproduced from all
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an image. When sounds compliment the visual information, a desirable function would be

to provide an acoustical zoom which is aligned with the zoomed visual image. For instance,

when zooming in, the direct sound of the visible sources in the visual image is reproduced from

the correct directions such that the visual and acoustical image are aligned, while sources

outside the visual image are attenuated. Moreover, the diffuse sound is reproduced from all

c© AudioLabs 2016

Slide 75
Parametric Spatial Audio Processing



Outline

1. Introduction

2. Signal Model

3. Signal and Parameter Estimation

4. Application Examples

5. Summary and Outlook
Summary
Outlook

c© AudioLabs 2016

Slide 76
Parametric Spatial Audio Processing



Summary and Outlook
Summary

� Parametric spatial audio processing relies on a simple yet powerful
description of the sound-field.

� Accurate estimation of the parameters as well as the estimation of the
direct and diffuse sound signal is of paramount importance.

� Several applications have been developed over the last few years.

� Using this approach we were able to perform robust, flexible and efficient
spatial audio processing.
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Summary and Outlook
Outlook

� In some cases the sound field model is violated, for example due to early
reflections. Research towards more sophisticated models is ongoing.

� Especially in adverse environments (low SNR and low SDR) the parameter
estimation remains a challenging task. Further research is needed to
develop estimators that are even more accurate in such challenging
scenarios.

� The framework allows to include additional perceptual information into the
design of the desired spatial response.

� We are exploiting new applications, for example, in the areas of virtual and
augmented reality.

� Be creative...
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