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Introduction

Wireless Acoustic Sensor Networks (WASNSs)

@ Microphones can be
placed randomly,
avoiding tedious
calibration.

@ Using more microphones
improves spatial
resolution.

@ High probability to find
microphones close to a
relevant sound source.

@ Improved sound field
sampling.

v
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Introduction

Challenges of Distributed Beamforming

Power

@ Communication bandwidth

@ Computational complexity

Arbitrary Constellation

@ Ad hoc
@ Dynamics

o Calibration

o’

Communication

@ Connectivity

@ Protocol

o Capacity
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Signal Processing

o Partial data
@ Synchronization

@ Dynamics

@ Coherence
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Introduction

Goals

@ Develop beamforming algorithms for distributed microphone
constellation:

e Ad hoc sensor networks.
o Large volume (and many nodes).
@ Robustness against randomly deployed microphones:
o High fault percentage.
o Arbitrary deployment of nodes.

o App|lcabl|lty to Hearing Aids ([Doclo et al., 2009]; [Markovich-Golan et al., 2010]).
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DANSE

Centralized Network-Wide MWF (Fully Connected)

Courtesy of Dr. Alexander Bertrand, K.U.Leuven

P @ Each node has its own
QoY ya\ 9OV 899 local reference
= microphone.

@ Each node k solves

network-wide MWF
] - (here: 12-channel
MWF).

Large computational
Large bandwidth required power required

E.A.P. Habets (FAU) and S. Gannot (BIU)  Linear and Parametric Mic. Array Proc. ICASSP 2013 7/32



DANSE

Distributed Adaptive Node-specific Signal Estimation
(DANSE)

Courtesy of Dr. Alexander Bertrand, K.U.Leuven

@ Parameterized network-wide
filter at node 1: WlT =
@ [Wi1 WG ... WanGiy |

- .OOO 5 o Node k adapts its filter

Tif T coefficients W,
Ggq,...,Gyy based on local
MWEF (here: 6-channel
MWF).

e @ If single desired source:
DANSE converges to
centralized MWF

[Bertrand and Moonen, 2010a].
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DANSE

DANSE and Extensions

Courtesy of Dr. Alexander Bertrand, K.U.Leuven

Can be generalized to @ desired sources [ertrand and Moonen, 2010a].

Small modification allows for simultaneous node updating

[Bertrand and Moonen, 2010b].

DANSE in networks with a tree topology (Tree DANSE [Bertrand and Moonen, 2011]).
LCMV-based DANSE (LC-DANSE [Bertrand and Moonen, 2012]).
Robust DANSE (R-DANSE) for ill-conditioned scenarios (e.g., low-SNR nodes

[Bertrand and Moonen, 2009]).

Improved tracking using internal adaptive filters (this Icassp [szurley et al., 2013)).
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Distributed GSC  Motivation

Distributed LCMV

Formulation

@ N nodes with M, microphones.

o YN M,=m.
0oz2[z] - 2.
@ Closed-form LCMV necessitates the inversion of ®,.

A cumbersome task in distributed networks.

V.

Naive GSC Implementation

@ Summation of local BFs: y = leyzl Vn-
@ Implement a local GSC at each node:
e M, — P outputs of the BM at the nth node (might go negative!).

o Total number of BM outputs: EnNzl(l\/l,, —P)=M— (N xP).
o M— (N x P) < (M- P)= degrees of freedom (DoF) lost
= incomplete minimization = performance degradation.

v
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Distributed GSC  Algorithm

Distributed GSC

[Markovich-Golan et al., 2013a]

@ Introduce P shared signals:
o Broadcast by a subset of output
the nodes.
o Retrieve degrees of
freedom.

o Extended inputs at each
node:

e Local microphones plus
shared signals.

e Purely local FBF, BM,
ANC.

@ DGSC adaptively converges
to the centralized solution.

Total of N + P broadcast channels.
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Distributed GSC  Algorithm

Nodes Connectivity

Sources “Owned” by the nth Node:

@ A node n that receives the pth source with the highest SNR is
declared its “owner”.

o The shared signals broadcast by the nth node: r, = Dz,.
@ D,: an M, x P, selection matrix.

@ A shared signal (one component of r,) is responsible for only one
source.

@ Shared signals serve as a reference for RTF estimation in each node.

Extended Inputs at the nth Node

@ P — P, shared signals (excluding self-owned signals): f,,.
@ Total number of signals: M,=M,+P—P,.

T

e Signals: Z, = [z
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Distributed GSC  Algorithm

DGSC at the nth Node

High Level Block-Diagram

ool r |
7 BN Select n Broadcast
o n s Owner

rn
From otherb L
Nodes ﬁ "y

Yireeos Yoras Ysar- -0 Y

Local & Global BF

@ An M, x 1 local GSC-BF at the nth node: w,.

o Outputs of local GSC-BFs: y, = wHz,: Vn=1,2,... N.
o Global BF: w 2 [w] -~ w]] .
@ Global output (available at each node): y = ZnN:1 Vn-

v
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Distributed GSC  Algorithm

Blocks of the DGSC at the nth Node

Fixed Beamformer (Local)

A

@ H,: the RTF relating the extended inputs and the shared signals.
@ Build local FBF q, using only local RTFs.

A ~A A~ \—1 _
o d,2 1A, (H,,HH,,> g=A'g, =g

Blocking Matrix (Block Diagonal)
e B,: M, x (M, — P) BM.
@ Noise references: i, = B,,HE,,
o N (M, —P)=N (M, - P,) =M — P = DoF fully utilized.

4

Adaptive Noise Canceler (Local)

o Least Mean Squares: f,(¢) =f,(¢ — 1) + Mﬁ,,l_ge)y(ﬁ;()z)-

@ Power normalization P, ().
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Distributed GSC  Algorithm

DGSC at the nth Node

Low Level Block-Diagram

Broadcast

Select f
V4 -
%, Owner

From other
Nodes

Yireoor Yor Ynerr-- 0 Y
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Distributed GSC  Algorithm

DGSC Summary |

Features

@ Distributed processing for distributed constellation.

(] It |S ShOWn [Markovich-Golan et al., 2013a] that the dIStrIbuted and Centralized
LCMV implementations identifies.

@ Proof is based on: constraint set is a subspace of the M-dimensional
linear space. Extending the linear space dimensions to M does not
alter the sub-space.

@ Local input signals selection (quasi-) fixed:

o Original inputs.
o Shared signals selected by the system.
o Hence RTF estimation valid until the acoustics changes.

@ The DGSC sequentially converges to the centralized solution using
local ANC updates.
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Distributed GSC  Algorithm

DGSC Summary Il

Important Practical Considerations

@ Latency in the communication channel might require large buffering
in each node.

@ Owner selection is a cumbersome task if several speakers are
concurrently active, since it is not clear how to identify each speaker.

@ RTF can be very long for remote nodes.

@ Number of nodes and constraints can dynamically change (see
[Markovich-Golan et al., 2012c] for pOSSib|e Cure).
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Distributed GSC Experimental study

Scenario

@ 4m X 4m x 3m room.

@ Reverberation time

T60 = 300ms.
N G3)
@ N=4 nodes.
35
@ M, = 2 microphones Vn. . . °
@ Desired and competing 25
speaker with the same level. e e
@ 2 point source Gaussian "
o 1 O Microphone
noises, 13dB lower than the & Compeing sester
. 05 X Interference
speech signals. x

0 05 1 15 2 25 3

@ Sensors noise.

@ 90 Monte-Carlo experiments
(sources’ positions).
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Distributed GSC  Experimental study

Convergence

20 T T T T

18r A
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—e— DGSC
6 —+&— Single node GSC |- {
4+ |
2l |
0 ‘ ‘ ‘ ‘ ‘

0 10 20 30 40 50 60
Time [sec]
The convergence of the tested algorithms versus time. J
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Distributed GSC Experimental study

Speech Samples

B 15 1s
Time (sec] Time (sec]

(c) Centralized GSC (d) Distributed GSC
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Distributed GSC  Distributed single constraint GSC

Distributed single constraint GSC (DS-GSC)

[Markovich-Golan et al., 2012b]

@ Two stage filtering:
o Local filtering R e .
o Global filtering >

@ N transmission channels

o Alternating local and
global filter updates

o lterative version Pl

e Time-recursive version

Wireless link

@ Converges to the
centralized TF-GSC

Node n [
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Synchronization Problem formulation

Blind Sampling Rate Offset Estimation and Compensation

[Markovich-Golan et al., 2012a]

Scenario

@ Fully connected N nodes network with M, microphones at the nth
node.

@ Nominal sampling rate f;.

o Sampling rate fs , = (1 + €,) fs, sampling period T, with Sampling
rate offset ¢,.

TF-GSC (cannot et a1, 200 with Sampling Rate Offsets

@ RTF is constantly changing: signal distortion.
@ ANC is constantly updating: increased noise level.

@ Microphone signals are less coherent: degraded performance.
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Synchronization  Solution sketch

Block diagram of synchronized TF-GSC

Offsets Output
compensation :

Synchronized TF-GSC

@ Sampling rate estimation: based on the phase drift of the coherence
between microphones in stationary noise-only segments (in coherent
frequency bands).

@ Resampling with Lagrange polynomials interpolation.

@ Other beamforming sync. methods: [wenr et al., 2004]; [Ono et al., 2009]

v
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Synchronization Experimental study

Results

TF-GSC Algorithms

W.o. offsets; Conventional TF-GSC; Synchronized TF-GSC

Signal to Distortion ratio (SDR); Signal to Noise (SNR)

Without offset With offset
Conventional || Conventional || Synchronized
Q || SDR SNR Ex. Ex. Ex. Ex.
Dist. | Noise || Dist. | Noise
15.0 34.3 112 | 7.7 0.0 0.0
14.9 27.5 11.2 | 49 0.1 0.0
14.6 24.5 115 | 34 0.4 0.1
14.7 23.5 119 | 29 0.8 0.2

Values in dB, Ex. stands for excess values

O
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Statistical Beamformer

WASNs with Random Node Deployment

[Markovich-Golan et al., 2011]; [Markovich-Golan et al., 2013b]; general reading [Lo, 1964]

@ Ad hoc sensor networks.

@ Large volume (and many nodes).
@ High fault percentage.
°

Arbitrary deployment of nodes.

@ How many nodes are required?

@ What is the expected
performance?

@ Is there an optimal deployment?

[Kodrasi et al., 2011]
y
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Statistical Beamformer

Random Beampattern using WASN

@ Desired speaker.

@ Coherent or diffused noise fields.
@ Microphones are randomly positioned.
@ Reverberant enclosure.

Derivation

@ ATFs are complex random variables.

@ Derive a model for ATFs (based on the work of Schroder [schroeder, 1962);
[Schroeder, 1987]).

o Consider two BF performance criteria: SNR, White noise gain

@ These criteria become random variables.

o Analyze the statistics.
o Derive reliability functions: The probability that the criteria exceed a
pre-defined level.
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Statistical Beamformer

Reliability |

ir i
o09f 09
o8l o8l
o7t 07l
osf o6l
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heoretical —+— =5, empircal
oaf empirical 0.4l = = ~M=5, theoretical
theoretical m:;g, ehmwma\ !
~ M=10, theoretical
o0af empirical 03l 3
theoretical —¥— =15, empiical
02} empirical 0af| 7 1S teoretca
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-2 0 2 4 6 R 2 4 6 8 10
. mprovement (dB] x, improvement

(a) Diffuse Noise, SIR=30dB, residual in- (b) Coherent Noise, SIR=0dB, residual
terference dominant noise dominnat

SINRout — SNRin, Teo = 0.4sec, Room dimensions 4 x 4 x 3m. J

E.A.P. Habets (FAU) and S. Gannot (BIU)  Linear and Parametric Mic. Array Proc. ICASSP 2013 27 / 32



Statistical Beamformer
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