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1 Introduction

The human cognitive system tends to organise perceived information into hierar-
chies and structures, a principle that also applies to music. Even listeners who are
not musically trained unconsciously analyse music with regard to several structural
aspects. These include, for example, parsing a musical piece into distinct sections,
identifying main musical themes, and metric as well as tonal components such as
tempo variations, or modulations.
The first-mentioned aspect is often referred to as the grouping structure of a mu-

sical piece which generally also implies a hierarchical segmentation. According to
Marvin Minsky, one of the early pioneers in artificial intelligence, human listeners
enjoy a “childlike fascination” [19] in constructing the grouping structure while lis-
tening. Nevertheless, given the vast amount of digital recordings available today
and still being created, it is certainly unrealistic to expect that the world’s music
will be available along with suitable human annotations regarding its structure any-
time in the future. On the other hand, any navigational aid to browse especially
new and unknown music in large databases would be clearly appreciated by end-
users. Being able to listen to the most representative sections in a piece of music
as well as semantic intra-document browsing provides much more intuitive access
to music than trial-listening methods such as intro scan mechanisms found in CD
players, restricted playback access to randomly cut-out parts, or manually seeking
interesting sections [12]. This is a prominent example where an automatic music
structure analysis would be of great help. Other applications include the use in
musical instruction or scientific analysis of music, as well as improving music audio
data compression.
However, the automatic structural analysis of music is a hard problem. This

is especially true if a musical piece is only given as digital audio recording, for
example on an audio CD or as a file in MP3 format. Here, no structural information
is explicitly provided. This problem, together with the broad range of structural
aspects in music, led to the development of a multitude of techniques to reveal
some of these components in digital audio recordings. Tempo and beat estimation,
instrument identification, source separation, and classification are only a few of them.
In this diploma thesis, methodologies to improve the automatic analysis of group-

ing structure in music are examined. They are based largely on the foundations of
an analysis system presented in [23] and [21]. Here, the approach is to first identify
repeating sections in a piece of music and then, on the basis of this information, to
compute an estimation of the global repetitive structure. In contrast to most other
research in this field, the original system is able to correctly deal with a broad range
of musical variations, for example in dynamics, timbre, execution of note groups,
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1 Introduction

and tempo progression. Therefore, it is especially suited to Western classical music
where the aforementioned variations are commonly found. However, this specialisa-
tion expresses itself in a specifically chosen, fixed set of algorithm parameters, which
do not cover popular music to the same extent. Likewise, and even more challeng-
ingly, the original system is confined to using a single given analysis resolution, that
is, the degree of granularity used to mathematically approximate the audio signal
under examination. In [23] and [21], it was already discovered that varying resolu-
tions reveal distinct structural aspects in music. Therefore, the development of a
single hierarchical model capable of incorporating several analysis resolutions was
stated as the most significant open problem in both publications. This is one of the
major challenges that are addressed in this thesis.
To this end, in the original algorithm, an appropriate place to combine interme-

diate results obtained from parallel analysis using different resolutions has to be
identified. In order to investigate this problem, a closer familiarity with the original
algorithm has to be acquired, which is the purpose of chapter 2. Afterwards, chap-
ter 3 investigates the above-mentioned problem, and as a main result, introduces a
multiresolution approach to discover repetitions in a digital audio recording, with
the aim to combine the strengths of each separate analysis resolution while avoiding
their weaknesses. Furthermore, a method to automatically set the parameters that
are relevant in this part of the original algorithm is proposed, improving on the
analysis of popular music.
Along with an improved range of identified repetitions, the main goal of this thesis

is the development of methodologies that employ this gain in information to better
estimate the global grouping structure of a piece of music. With respect to this, a
clustering algorithm capable of computing a hierarchical structural overview from
the set of repetitions is presented (chapter 4).
In order to quantify the improvements gained by both described techniques, ex-

periments on a larger set of musical pieces are needed. Chapter 5 describes com-
mon approaches to automatic performance evaluation of music structure analysis
systems. On the basis of this, a performance measure to compare a computed hi-
erarchical structure against a manually annotated ground truth is presented along
with its algorithmic implementation. Finally, corresponding evaluation results for
the algorithms presented in chapters 3 and 4 are discussed.
Besides the enhanced audio player applications mentioned at the beginning, music

structure analysis systems may be used to investigate the temporal relations between
different interpretations of the same musical piece. This concept, also known as
partial audio synchronisation, is introduced in chapter 6 as a further prominent
application profiting heavily from an effective structural analysis.
Finally, chapter 7 summarises the presented work and gives an outlook to prospec-

tive future development.
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2 Concepts and Fundamentals

This chapter introduces concepts and fundamentals relevant to automatic music
structure analysis with special emphasis on the methods presented in [23] and [21].
Based on a given digital audio recording, the structural analysis of a musical piece
generally proceeds in four steps.
First, as known from general information retrieval, the audio signal is transformed

into a sequence of features, a concept that is introduced in section 2.1. In order to
find repetitions in this sequence, every two audio features have to be compared.
Therefore, in a second step, a suitable measure of similarity has to be chosen, on
whose basis a similarity matrix is calculated (section 2.2). Successive components of
strong similarity in this matrix reveal repetitions in the underlying feature sequence.
In section 2.3 the notion of a path is introduced as a formal definition for this and a
methodology to extract paths from similarity matrices is presented. Finally, section
2.4 illustrates a clustering method which derives an estimation of the global grouping
structure from the set of extracted paths.

2.1 Audio Features

Often, a piece of music is only available as a digital audio recording. While gen-
erally providing great sound reproduction, this format may very well be the lowest
possible level of semantic representation. Furthermore, it is extremely sensitive to
the slightest variations, so that in most cases it is not suitable for musical analysis.
A higher level of abstraction is needed, which in turn would induce a substantially
lower data rate, allowing a much more efficient analysis.
For this purpose, in music retrieval an audio signal is transformed into a sequence

V := (v1, v2, . . . , vN ) of feature vectors vn ∈ F , 1 ≤ n ≤ N , each representing certain
information inherent in the audio signal during a short time frame. Here, F denotes
a suitable feature space, specifying the kind of information to be extracted.
Obviously, in this transformation some information is lost. Therefore, the feature

vector space F has to be chosen carefully. Ideally, it should extract exactly the
information which is relevant to the desired application or analysis domain. Addi-
tionally, it must allow the definition of meaningful measures of similarity, as most
applications rely on comparisons between feature vectors.
In the case of music structure analysis, extracting information about played notes

would be ideal. While reacquiring the original musical score from an audio signal
is not possible in general, drawing conclusions about dominant musical notes and
harmonies from an energy distribution across the audible frequency range may serve

3



2 Concepts and Fundamentals

as an approximation. In audio feature design, the most prominent technique to
compute this energy distribution is known as short-time Fourier transform (STFT)
[11, 4, 16].

The notion of a note is closely related to musical tuning systems, which define
the mapping of notes to frequencies [2]. To allow for an efficient as well as intuitive
musical analysis, the restriction of the feature space F to a certain tuning system
is necessary. In this feature space, every dimension corresponds to a note in the
respective musical tuning system. Thus, only those frequencies which are mapped
to notes will be of interest in this constellation, and an analysis on the basis of notes
becomes possible. Of course, a certain amount of energy in a note generally does
not mean that this note was actually played by an instrument in the recorded au-
dio. Accumulated overtone energies might also be responsible for this phenomenon.
Nonetheless, in most cases, high energy in a note’s frequency is in close relation to
played musical notes.

This is especially true for Western music and its prominent twelve-tone equal
temperament, where a close relationship between melody and harmony exerts this
effect. Here, a further reduction to chroma is applied in most research [3]. Chroma
is the set of 12 half tones making up an octave, i.e.

{
C,C],D, . . . ,B

}
. For chroma

audio features, the energies of all notes belonging to the same chroma are summed
up over all octaves. This yields a high degree of robustness to variations in timbre
and articulation.

This thesis builds on CENS (chroma energy distribution normalised statistics)
features, a special implementation of chroma features. They are calculated in a two-
stage process. First, a filter bank is used to split the audio signal into 88 frequency
subbands corresponding to notes A0 to C8 in the twelve-tone equal temperament.
Next, every 100ms an 88-dimensional feature vector spanning 200ms of time is com-
puted by convolving each of these subbands with a suitable window function. These
are called short-time mean-square power (STMSP) features. Then, STMSPs for the
set of chromas are computed by adding up corresponding STMSPs of respective
notes. This yields real 12-dimensional vectors v = (v1, v2, . . . , v12) ∈ R12, where v1
corresponds to chroma C, v2 to chroma C], and so on. Finally, each vector v is
normalised to v/(

∑12
i=1 |vi|) which evens out most dynamic variations. While these

features already utilise the desired chroma representation, they are still too sensitive
to most musical variations because of their fine temporal resolution of 10 features
per second.

In the first step of the second stage, feature vector components are quantised
causing another data reduction as well as a further invariance towards dynamic
variations. To obtain the desired reduction in the temporal resolution, the resulting
feature sequence is convolved using a Hann window over w consecutive vectors,
whose outcome is downsampled with factor d. Finally, after normalising resulting
vectors with respect to the Euclidean norm, CENSw

d features are obtained.
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2.1 Audio Features
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Figure 2.1: STMSP chroma (grey curves) and CENS41
10 (black bars) feature sequence

of the segment [96.5 : 112] seconds ((a) corresponding to the beginning
of the first chorus section) and [203 : 218.5] seconds ((b) corresponding
to the beginning of the outro section) of “Can’t Take My Eyes Off You”
by Barry Manilow. Although this part of the outro section is a musical
variation of the chorus which misses the vocals, for example, the har-
monic similarity between both segments is clearly visible on the CENS
feature level.

These features are elements of the set

F :=

v = (v1, . . . , v12) ∈ [0, 1]12|

√√√√ 12∑
i=1

v2
i = 1

 . (2.1)

In order to refer explicitly to values w and d, a CENSw
d feature sequence will be

denoted by V [w,d] = (v[w,d]1, v[w,d]2, . . .) in the following sections.
In general, w is chosen to be much larger than d. This compensates for local time

deviations as well as interpretative variations in the note execution of repetitions.
At the same time, with larger w, music characterisation is shifted from single notes
to harmonies. Depending on the piece of music as well as the desired application,
the possibility to vary both these parameters is essential. The described two-stage
process perfectly serves this purpose.
Furthermore, only the first stage is computationally intensive because of the de-

composition into the frequency subbands. Therefore, in practice, the first stage
features are often pre-calculated, and, depending on the application and musical
content, the second stage is computed as necessary with suitable parameters.
Figure 2.1 illustrates the differences between STMSP chroma and CENS features

on an exemplary basis. The visible coarser temporal and dynamic resolution of the
CENS41

10 features simplifies the identification of musically similar sections.
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2 Concepts and Fundamentals

2.2 Similarity Measure and Similarity Matrix
Thanks to the Euclidean normalisation employed in the calculation of CENSw

d -
features, meaningful similarity measures based on the inner product may be defined.
In this case, the inner product coincides with the cosine of the angle between two
vectors, yielding 1 if they are similar and 0 in the opposite case. Therefore, a cost
measure c : F × F → [0, 1] may be defined by

c(v, w) := 1− 〈v, w〉 (2.2)

for CENSw
d -vectors v, w ∈ F .

In order to obtain the complete information about a cost measure with respect
to a specific sequence of features, it needs to be evaluated for every pair of feature
vectors in that sequence. An intuitive representation serving this purpose is the
self-similarity matrix1[10] which describes the complete cost measure map. It will
be denoted by S[w,d], or simply by S, if w and d are clear from the context, and
is defined by its entries S(n,m) := c(vn, vm), 1 ≤ n,m ≤ N . Two illustrations of
similarity matrices are given in figure 2.2. Similarity matrices are quadratic and
symmetric because of the symmetric cost measure. Additionally, they contain zeros
on the diagonal as c(v, v) = 0 for every feature vector v.
In this thesis, repetitions in the feature sequence V := (v1, v2, . . . , vN ) are of par-

ticular interest. In S, they are visible as lines or curves of entries exhibiting low
cost. Usually, many additional matrix entries will have low values too, representing
micro-term similarities which are not of interest in a global structural analysis. Ad-
ditionally, these entries complicate the extraction of repetitions from S. Therefore,
improved cost measures enhance upon c by combining the costs of consecutive pairs
of features that are necessary to form an acceptable repetition. Assuming constant
tempo throughout a musical piece, filtering S along diagonals would be a solution.
But, tempo is, in general, not constant over time in music. Filtering along diago-

nals would have adverse effects on the similarity matrix in this case. A more flexible
approach incorporates the efficient access to different temporal resolutions inherent
in CENSw

d features.
At the feature level, tempo changes may be locally simulated by modifying w and

d. For example, feature sequence indices of a faster repetition may be matched to a
sequence of indices in the reference tempo by simultaneously lowering w and d.
Therefore, a set of values (wj ,dj), j ∈ [1 : T ] along with reference tempo param-

eters (w,d) contained in this set are used to handle tempo variations. Then, a joint
cost measure cmin

L may be defined by

cmin
L (n,m) := min

j∈[1:T ]

1
L

L−1∑
`=0

c(v[w,d]n+`, v[wj ,dj ]mj+`), (2.3)

1Strictly speaking this sections should be called Cost Measure and Cost Matrix. However, the
terms similarity measure and similarity matrix were established in previous research on music
retrieval. As these are exactly inverse terms, the desired meaning should be easy to grasp.
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2.2 Similarity Measure and Similarity Matrix
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Figure 2.2: Self-similarity matrix S[41, 10] of (a) “Can’t Take My Eyes Off You”
by Barry Manilow and (b) a Chailly interpretation of “Waltz 2” from
“Suite for Variety Stage Orchestra” by Dimitri Shostakovich. A strong
similarity between two features is represented by a dark colour in the
corresponding matrix entry. Furthermore, consecutive entries of strong
similarity are visible which characterise musically similar sections.

where mj := dm · d/dje and 1 ≤ n,m ≤ N , after the involved sequences V [wj ,dj ]
were suitably extended with zero-padding.
Assuming a reference tempo of 1 feature per second, indices n and m in equa-

tion (2.3) correspond to absolute time positions in seconds in the audio signal. In
order to calculate cmin

L (n,m), the subsequence of V [w,d] of length L starting at
absolute time n is compared to the subsequence of V [wj ,dj ] of the same length
starting at absolute time m, which corresponds to position mj in the corresponding
feature sequence, for every j ∈ [1 : T ]. Consequently, the resulting similarity matrix
is denoted by Smin

L .
Table 2.1 on the following page shows the three tempo parameter sets used in

this thesis. Based on STMSP chroma features having a resolution of 10Hz, each set
includes possible tempo variations around a CENSw

d target feature resolution of 1,
2 and 5Hz, respectively.
Note that for higher feature resolutions, less tempo variations are supported. One

reason for this is that higher resolutions reveal other repetitive aspects. For example,
the corresponding features are less smoothed, because they represent a smaller time
frame of music. The same is true in the contextual cost measure calculation, where
for constant L, a shorter amount of time is taken into consideration. Finally, a
higher resolution is naturally computationally more intensive.
Therefore, higher feature resolutions are mainly used to extract short, exact repe-

titions more accurately, whereas lower resolutions like 1Hz are employed to extract
repetitions on a large scale where more musical variations need to be tolerated.
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2 Concepts and Fundamentals

Table 2.1: Tempo changes (tc) simulated by changing the window size w and the
downsampling factor d.

1Hz 2Hz 5Hz

j 1 2 3 4 5 6 7 8 1 2 3 1
wj 29 33 37 41 45 49 53 57 17 21 25 9
dj 7 8 9 10 11 12 13 14 4 5 6 2
tc 1.43 1.25 1.1 1.0 0.9 0.83 0.77 0.7 1.25 1.0 0.83 1.0

As a last note, the row labelled tc in table 2.1 contains the tempo change factor
d/dj with respect to the reference tempo whose parameters are set in bold font.
Figure 2.3 shows on an exemplary basis, that the repetitive structure is greatly

enhanced in Smin
L even in the presence of tempo variations in the musical piece.

Simply speaking, entries belonging to lines and curves in S remain so in Smin
L while

the rest of the matrix is smoothed. On the other hand, a blurring effect occurs
around those lines and curves, introducing some uncertainty, which is especially
true at their end, as corresponding entries now incorporate higher costs of following
entries.

2.3 Identifying Repetitions
As noted above, in a similarity matrix, repetitions are represented by lines or curves
of entries exhibiting low values. This section presents a greedy strategy to efficiently
identify repetitions in similarity matrices. In the following, c will denote a con-
textually enhanced cost measure like cmin

L and S a similarity matrix based on this
concept.
To encode repetitions mathematically, the notion of a path is used. It is defined

as a sequence P = (p1, p2, ..., pK) of pairs of feature indices pk = (nk,mk) ∈ [1 : N ]2,
1 ≤ k ≤ K, and may be associated to corresponding entries in the similarity matrix,
that is, it consists of certain preimages of the map S. In the following, pk may also
be denoted as a path link. Of course, further requirements need to be specified in
order to construct paths that may stand for real repetitions. As, generally, exact
repetitions in a feature sequence are the rare exception due to musical variations in
the underlying piece of music, acceptable variations need to be modelled, too.
A valid path is a path adhering to a step-size constraint as well as certain con-

straints regarding its path links’ cost measure values. In [23] and [21], the step-size
constraint

pk+1 = pk + δ for some δ ∈ ∆, (2.4)

where ∆ := {(1, 1), (1, 2), (2, 1)} and 1 ≤ k ≤ K − 1, is employed. Regarding the
projections π1(P ) := (n1, . . . , nK) and π2(P ) := (m1, . . . ,mK) of a valid path onto
the feature index sequence, this means, on the one hand, that real segments in a
piece of music may be described, and, on the other hand, that repetitions of varying
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Figure 2.3: Enhanced self-similarity matrix Smin
16 [41, 10] of (a) the Barry Manilow

and (b) the Dimitri Shostakovich example. In this representation, con-
secutive entries of strong similarity are accentuated which greatly sim-
plifies the identification of musically similar sections. For example, the
thick dark stripe from entry (16, 48) to (48, 80) in the Barry Manilow
matrix corresponds to the repetition of the first verse, and the nearly
identical stripe in the Dimitri Shostakovich example represents the rep-
etition of the first A part in this musical piece.

tempo may be modelled. Regarding the first statement, π1(P ) and π2(P ) may be
identified with the segments σ1(P ) := [n1 : nK ] and σ2(P ) := [m1 : mK ].
Furthermore, path links of a valid path are constrained by several cost measure

thresholds as presented in table 2.2 on the next page. In [23] and [21], fixed values
are chosen for these thresholds, mainly satisfying the demands of classical music.
Using these constraints, the objective of the greedy algorithm is to extract long

valid paths. It proceeds in three stages. First, in an initialisation step, entries irrel-
evant to the path extraction are excluded from S. As S is symmetric this includes
everything below the diagonal. Additionally, the diagonal itself and a suitable sur-
rounding are excluded. This is motivated by the fact that the diagonal contains solely
the information that the whole feature sequence is similar to itself (c(n, n) = 0), and
that this information was blurred into its surrounding by the contextually enhanced
cost measure.
Next, a greedy strategy loop is used to extract paths. Here, the entry p of mini-

mum cost is first sought in S. If c(p) < Cin, a new path P is constructed starting
from p. In this construction, all path links adhering to the path constraint are in-
spected at both end points of P , and the one with minimum cost is added to P as
long as it has admissible cost (Cad in table 2.2). Finally, all extracted path links,
again, together with a suitable surrounding, are excluded from further inspection
and the next loop iteration is started.

9



2 Concepts and Fundamentals

Table 2.2: Cost measure thresholds.

Threshold Description Constraint on a valid path P = (p1, p2, ..., pK)

Cin initial cost ∃k ∈ {1, . . . ,K} : c(pk) < Cin
Cad admissible cost ∀k ∈ {1, . . . ,K} : c(pk) < Cad
Cpr prune cost c(p1) < Cpr ∧ c(pK) < Cpr
Cav average cost 1

K

∑K
k=1 c(pk) < Cav

In the post-processing stage, extracted paths are shortened at their end points
until they fulfil the prune cost constraint. Next, all those paths which violate the
average cost constraint or which are shorter than a length threshold K0 are removed.
Finally, all remaining paths P = (p1, p2, ..., pK) are extended again at their last
link using a heuristic which creates path links that were lost due to the blurring
introduced by the contextually enhanced cost measure (see end of section 2.2).
This leads to a set P = {P1, P2, . . . , PM} of valid paths, each corresponding to a

pair of similar segments in the underlying audio recording. Furthermore, the tempo
progression between two similar segments is encoded by means of the bĳective map
between the corresponding path’s projections.
An illustration of the outlined procedure is given in figure 2.4 on the basis of the

two running examples of this chapter.

2.4 Deriving a Global Structural Overview from Repetitions

In this section, an algorithm is presented that derives a global structural overview
of a musical piece from the set of extracted valid paths P = {P1, P2, . . . , PM}.
Although the resulting structure will only be based on repetitions, it should still
reveal underlying musical conceptions in many cases.
Before introducing the algorithm, some terms and notational conventions need to

be established.
In the following, α = [s : t] denotes a segment consisting of indices in the feature

sequence V = (v1, v2, . . . , vN ). Furthermore, a path P = (p1, p2, ..., pK) of pairs of
feature indices pk = (nk,mk) ∈ [1 : N ]2, 1 ≤ k ≤ K may be characterised by means
of its projections π1(P ) = (n1, . . . , nK) and π2(P ) = (m1, . . . ,mK). According to
the path constraint ∆ := {(1, 1), (1, 2), (2, 1)} introduced in last section, P encodes
a bĳective map between π1(P ) and π2(P ). Both projections correspond to the
segments σ1(P ) := [n1 : nK ] and σ2(P ) := [m1 : mK ], respectively. On the basis of
the bĳective map, it is possible to calculate for every subsegment of σ1(P ) a suitable
counterpart in σ2(P ) and vice versa.
The support of a set of segments αm = [sm : tm], 1 ≤ m ≤M is defined to be the

subset

supp({α1, . . . , αM}) :=
M⋃
m=1

[sm : tm] ⊂ [1 : N ]. (2.5)
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Figure 2.4: Illustration of the path extraction algorithm for the Barry Manilow (top
row) and Dimitri Shostakovich (bottom row) example. The first figure
shows all admissible entries that are originally contained in Smin

16 [41, 10].
The second figure depicts the remaining admissible entries after the ex-
traction of the first path, and the last figure finally shows all extracted
paths.

Finally, a similarity cluster A = {α1, . . . , αM} of size M ∈ N is a set of segments
containing solely mutually similar segments. The following clustering algorithm aims
to compute a global structure, that is, a complete set of relevant similarity clusters
of maximal size.
Fundamentally, the algorithm is based around the notion of the transitive closure.

That is, for a segment α which is similar to segment β which itself is similar to
segment γ, it should be expected that all three segments are mutually similar and
are, therefore, put into the same cluster. Unfortunately, as the information contained
in the set of extracted paths incorporates some uncertainty, simply calculating the
transitive closure will, in general, lead to unsatisfying results. For example, a cluster
containing lots of slightly shifted elements might be a possible outcome.
The algorithm suggested in [23] and [21] tries to circumvent such inconsistencies

by using a tolerance threshold when comparing cluster segments. It proceeds in
three stages.
First, in the transitivity stage, a new cluster CαPi is constructed for every segment

α in Pi ∈ P. To this end, α is compared to every segment of paths Pj ∈ P, i 6= j. If
the intersection of both segments is sufficiently large compared to α, it is put into
CαPi along with a suitable counterpart in Pj .
Then, in the merge step, every two clusters corresponding to a path’s segments are

merged into a single cluster CPi . For that, all segments of both respective clusters
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Figure 2.5: Final result of the clustering algorithm obtained for the (a) Barry
Manilow and (b) Dimitri Shostakovich example. The second and third
similarity cluster of the the Barry Manilow example correspond to the
verse and chorus sections of the musical piece. The other two clusters
complicate the structural overview a little bit, as they cover parts of the
intro and outro section and additionally contain overlapping segments.
The result for the Dimitri Shostakovich example correctly reflects the
A1A2BCA3A4 structure inherent in this musical piece.

are compared in a pairwise fashion. Here, those segments are kept which are for the
most part not covered by other segments. Additionally, if a segment is covered by
other segments yielding a sufficiently large intersection, this intersection is kept too.
In the last stage, the created clusters are compared to each other and only the

most representative clusters are kept. That is, all clusters are discarded that are
covered by another cluster containing a larger number of segments. Here, given a
threshold Tdc, cluster A is said to be a Tdc-cover of cluster B if supp(A) ∩ supp(B)
contains more than Tdc percent of supp(B). In the case of a tie-break, clusters with
smaller support are discarded.
Finally, figure 2.5 shows the clustering results that were obtained on the basis

of this method for the two exemplary musical pieces used throughout this chapter.
Here, a similarity cluster is represented as a row of segments. A segment is coloured
in grey , and its start and end are highlighted by black lines. An overlap between
segments is also coloured in black.
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3 Identifying Repetitions in Music -
Multiresolution Approaches

Nothing contributes more to a melody’s being “memorable”
than incorporating notes, rhythms, and phrases that repeat.

Jason Blume in 6 Steps to Songwriting Success

Repetition is a key element in writing popular music with chart hit potential, but,
although not featured that prominently, it is also an integral part in most other
musical genres. As was pointed out in chapter 2, knowledge about repetitions in
the sequence of notes or harmonies of a musical piece may be utilised to estimate
its global grouping structure.
The repetitions that a listener identifies in a piece of music depend on his level

of abstraction towards musical details. For example, an increased tolerance towards
variations in dynamics, articulation, or the execution of note groups will allow for
longer repetitions. Of course, there are certain musical schemes, like verse-chorus
lineups in popular music, or traditional approaches to music analysis, which lead to
consistent results if two musically trained people are asked to analyse the repetitive
structure in a certain piece of music. However, this situation changes for music that
does not adhere to traditional structural schemes. Also, especially with regard to
a hierarchical structural overview, it is sometimes favourable to find all repetitions
inherent in a musical piece.
The music structure analysis system presented in chapter 2 supports different

levels of abstraction by means of varying the analysis resolution. The two-stage
design of the CENSw

d features together with the resolution-specific sets of predefined
tempo change parameters (cf. table 2.1), provide the foundations for this behaviour.
For example, increasing the feature resolution has two effects. On the one hand,
finer repetitive structures are revealed. On the other hand, repetitions found at
lower resolutions will be split into smaller pieces, because of an increased sensitivity
towards musical variations. Regarding the two running examples from chapter 2,
the effects of different feature resolutions on the analysis result may be examined in
figure 3.1.
The major shortcoming in the design of the original analysis system is its restric-

tion to using a single given analysis resolution at a time. This chapter presents
three so-called multiresolution approaches to repeal this constraint. Here, the origi-
nal algorithm is, to some degree, run in parallel using multiple resolutions. Obtained
intermediate results (e.g. sets of identified repetitions) are subsequently merged into

13
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Figure 3.1: Path extraction results for (a) “Can’t Take My Eyes Off You” by Barry
Manilow and (b) a Chailly interpretation of “Waltz 2” from “Suite for
Variety Stage Orchestra” by Dimitri Shostakovich. Results in the top
row were obtained using a feature resolution of 1Hz. For the bottom
row 2Hz was used. As is easily observable, the path structure at 2Hz
contains more details while some paths that are already present at 1Hz
are more fragmented.
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a single result set. From there, a single instance of the algorithm computes the final
results. The major difference between the techniques described in this chapter, is the
point in the algorithm, where intermediate results from parallel analysis are com-
bined. As a key requirement for all approaches, the final set of repetitions obtained
in a multiresolution analysis should ideally be able to consistently describe all rep-
etitions which would result from an individual analysis using any single resolution.
It is intentional that in the following sections, as few assumptions as possible are

made about the underlying analysis system. There are several publications in which
algorithms similar to the one presented in chapter 2 are described. In particular,
only the following notions and concepts introduced in chapter 2 must be present.
Given a specific analysis resolution, repetitions are to be identified in a contextually

enhanced similarity matrix S representing the pairwise similarity between every two
features in a feature sequence. For a set of analysis resolutions Γ and every γ ∈ Γ,
a corresponding similarity matrix Sγ may be computed by means of the analysis
system under examination. Here, each resolution is given in features per second. In
the case of the analysis system presented in chapter 2, these concepts are provided
by Smin

L and the set {1, 2, 5}. To formally refer to a repetition, the notion of a
path is used, as introduced in section 2.3. Regarding the extraction of paths from
similarity matrices, an admissible cost threshold Cad equivalent to the one described
in table 2.2 must exist, distinguishing acceptable matrix entries from entries that are
not acceptable in the construction of a path. Of course, this threshold may change
from resolution to resolution. Finally, in order to discriminate between objects
specific to one of two distinct analysis resolutions, the terms lower and higher will
be used, respectively.
In the first examined approach, sets of paths extracted using different resolutions

are merged at the target resolution (section 3.1). While, essentially, this uses only
valid information regarding repetitions in a piece of music, it is probably the most
complicated method. As a possible simplification to this approach, the incorpora-
tion of lower resolution paths into higher-resolution similarity matrices is discussed in
section 3.2. Finally, as the main result of this chapter, section 3.3 presents a method-
ology which performs the combination already on the similarity matrix level. Here,
the admissible cost threshold is used to select entries in a lower-resolution similarity
matrix, which should also be acceptable at a higher resolution, elevating musical
robustness to this resolution. Furthermore, a similar technique may be used to elim-
inate a great amount of uncertainty in rearward path links introduced by smooth
contextually enhanced similarity matrices (section 3.4).
Still preventing the universal applicability of the described techniques is the fact

that the admissible cost thresholds are fixated beforehand. Section 3.5 presents
a threshold selection algorithm which countervails even this last constraint. To
illustrate all these techniques, the two examples presented in figure 3.1 will be used.
Finally, a recapitulation of what has been achieved in this chapter and possible
future research directions are pointed out in section 3.6.
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(a) (b) (c)

Figure 3.2: Upsampling a path from resolution 1Hz (a) to resolution 2Hz (b, c). The
method depicted in (b) preserves all original path link information while
the one illustrated in (c) is in conformity with the step-size constraint
at a higher feature resolution.

3.1 Combining Paths of Different Resolutions
The multiresolution approach, which is probably the most straight-forward, is to join
the sets of paths which resulted from parallel analysis at different feature resolutions.
Here, two challenges have to be faced. First, a target resolution has to be chosen,
to which all paths need to be resampled. Second, it has to be decided, what to do
with conflicting paths from different resolutions.
Regarding the first question, as mentioned earlier, higher-resolution paths gener-

ally have better, more exact, end points, while at the same time a greater number of
short paths is extracted. Additionally, a lot of those paths will generally be covered
by lower resolution paths. Thus, they might be regarded as a refinement. In order
to maintain this information, the target resolution needs to be at least as fine as the
finest analysis resolution.
Next, a method to upsample paths of a lower resolution to the target resolution

has to be chosen. Provided that the target resolution is a multiple of the analysis
resolution, a method preserving all information needs to map a low resolution path
link to all matrix entries that it covers in the target resolution. Figure 3.2 illus-
trates this on an exemplary basis. Here, as a major disadvantage, upsampled paths
will presumably violate step-size constraint for paths like the one given in equa-
tion (2.4). In this case, further stages of the analysis system need to be modified.
In order to circumvent this problem, upsampling methods are forced to incorporate
heuristics (see figure 3.2(c) for an example), which, in general, will lead to weighted
results. Finally, to obtain the best upsampling results possible, the target resolution
needs to be a common multiple of all resolutions in Γ, which usually implies higher
computational costs.
An even more delicate question is how to deal with conflicting paths. In practice,

path extraction algorithms will compute consistent results, that is, the intersec-
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3.2 Incorporating Pre-Calculated Paths into Cost Matrices

tion of two paths will always be empty with regard to path links. Of course, this
is not guaranteed, if two sets of paths are merged coming from different analysis
resolutions. As mentioned above, higher-resolution paths should, ideally, be used
to improve the temporal exactness of lower resolution paths covering them, which,
unfortunately, is not a well defined relation due to uncertainties inherent in path
extraction algorithms. First, it is possible that the distance between two paths is
smaller than would be allowed in a direct path extraction. Furthermore, upsampled
paths might cover two or more shifted repetitions from higher resolutions. Addi-
tionally, heuristics are, in general, already used to extend path ends in order to
compensate for blurring effects in contextually enhanced similarity matrices. Up-
sampling them generally introduces even more inaccuracy. Consequently, it is a hard
problem to decide which higher-resolution paths to select for a refinement, which
path links or paths to dismiss, and how to bridge possible gaps between nearby
paths.
In the course of this thesis, a pragmatic approach avoiding most of those issues

was implemented. Here, the upsampling method first described is used, and path
conflicts are simply ignored in the hope that the following algorithm stages are still
well defined for the obtained results. With regard to both of the running examples
introduced at the beginning this chapter, this approach resulted in extracted paths
as illustrated in the first row of figure 3.3 on page 20. Most of the problems described
in this section may be retrieved therein.
Another semantically simple approach is to put all resampled paths back into an

empty similarity matrix, and to extract the final set of paths from there. This way,
the obligation to resolve all conflicts is shifted to the path extraction algorithm.
However, path extraction algorithms like the one described in chapter 2 are gener-
ally built with respect to particularities commonly found in contextually enhanced
similarity matrices, that is, its values are expected to fall and rise smoothly. This is
not the case here, as only those entries covered by paths will be set in this scenario.
That is why smoothing this matrix would also be needed.

3.2 Incorporating Pre-Calculated Paths into Cost Matrices

Continuing from the reflections at the end of the previous section, the approach de-
scribed now brings about a great simplification towards resolving conflicting paths.
Here, paths extracted at a lower resolution are suitably upsampled and then incor-
porated into the similarity matrix at the next higher resolution.
This approach is outlined in algorithm 3.1, where set of multiresolution paths
P is computed by iterating over the set of feature resolutions. In every iteration,
previously computed paths are upsampled and then incorporated into the current
similarity matrix. From this matrix, the next set of paths is extracted, and finally
a new iteration is started.
Regarding the given algorithm, it has to be noted that lines 5 and 8 should not

change anything in the first iteration.
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Algorithm 3.1 Incorporating pre-calculated paths into cost matrices
1: P ← {}
2: γ ← γ1
3:
4: for i← 1 . . . |Γ| do
5: P ← upsample every p ∈ P from resolution γ to γi
6: γ ← γi
7: Sγ ← compute similarity matrix for resolution γ
8: Sγ ← IncorporatePaths(Sγ ,P)
9: P ← extract paths from Sγ

10: end for

Algorithm 3.2 IncorporatePaths(S,P)
Require: The set P of upsampled paths and matrix S of the next higher resolution.
Ensure: S includes information from upsampled paths.

1: for p ∈ P do
2: for pk = (nk,mk) ∈ p do
3: if S(nk,mk) ≥ Cad then
4: S(nk,mk)← Cad − ε
5: end if
6: end for
7: end for
8:
9: return S

Similar to last section, a suitable upsampling method has to be chosen. But, the
more important question is how to incorporate upsampled paths into the similarity
matrix at the next higher resolution (line 8). As the main advantage of lower resolu-
tions is their inherent stronger robustness towards musical variations, corresponding
paths will, in general, encode longer repetitions than may be found at a higher
resolution. Therefore, upsampled paths should be used to make the corresponding
matrix entries acceptable for the next path extraction, if this is not yet the case.
An implementation serving this purpose is presented in algorithm 3.2. Note that in
line 4, S(nk,mk) needs to be set slightly lower than Cad, as Cad by definition (see
table 2.2) contains the first non-acceptable cost value. Figure 3.3 (second row) illus-
trates this approach, again, using the two running examples of this chapter. Here,
the same upsampling technique as in the last section was utilised.
As a main advantage, in this scenario path conflicts are avoided, as the last path

extraction is predestined to compute the final result. Furthermore, the chosen up-
sampling method does not have as much influence on the final results as in the
approach described in section 3.1, as here, upsampled paths are only used to make
certain similarity matrix entries acceptable for the following path extraction. As, in
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Algorithm 3.3 Combining cost matrices of different resolutions
1: S ← {}
2: γ ← γ1
3:
4: for i← 1 . . . |Γ| do
5: S ← max(S, Cγad − ε) ∗ C

γi
ad /C

γ
ad

6: Sup ← upsample S from resolution γ to γi
7: γ ← γi
8: S ← compute similarity matrix for resolution γ
9: S ← min(S,Sup)

10: end for
11:
12: P ← extract paths from S

general, further cost thresholds are used to decide where to start the construction
of a path, and to determine the end points of a path, the modifications ideally only
serve the desired purpose of reducing the fragmentation of path structures at higher
resolutions. Therefore, this technique seems to be much more practicable.
Nevertheless, there are still some open problems. First, after the incorporation of

upsampled paths, the smoothness inherent in the original similarity matrix might
be compromised, as only those matrix entries covered by upsampled paths are mod-
ified. Second and more eminently, this approach relies heavily on the correctness of
the path extraction, which has to be performed at every feature resolution. Here,
the greater tolerance towards musical variations at lower resolutions may lead to
slight shifts in the extracted paths, so that the entries that are modified in the
higher-resolution matrix may not be acceptable as an extension in the following
path constructions.

3.3 Combining Cost Matrices of Different Resolutions

The methodology presented in this section further improves on the problematic as-
pects identified at the end of section 3.2. Here, the combination is already performed
on the similarity matrix level, leading to a simple and efficient multiresolution path
extraction.
As may be seen in algorithm 3.3, this approach is very similar to the one presented

in section 3.2. Only this time, the path extraction is not part of every iteration.
On the contrary, the whole similarity matrix from a previous iteration is upsampled
and then suitably incorporated into the similarity matrix at the current analysis
resolution. This incorporation is realised by lines 5 and 9 in the algorithm.
First, the costs in the similarity matrix at a given resolution γ are adjusted so that

all entries relevant to a path extraction become also admissible in a path extraction
at the next higher resolution.
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Figure 3.3: Multiresolution path extraction results (1 and 2Hz) for (a) the Barry
Manilow and (b) the Dimitri Shostakovich example. From top to bot-
tom the following approaches were used: combining paths directly (sec-
tion 3.1), incorporating extracted paths into similarity matrices (3.2),
and combining similarity matrices (3.3). Different shades of grey are
used in the first row to illustrate conflicting paths from both resolutions.
Obviously, the last approach resolves most fragmentation effects.
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Figure 3.4: Adjusted entries in the 2Hz similarity matrix of (a) the Barry Manilow
example and (b) the Dimitri Shostakovich example. The non-white en-
tries were set to admissible costs in the 2Hz similarity matrix on the
basis of the paths that were extracted at resolution 1Hz (first row, sec-
tion 3.2), or on the basis of the whole 1Hz similarity matrix (section 3.3),
respectively.

21



3 Identifying Repetitions in Music - Multiresolution Approaches

To this end, in line 5 of the algorithm, the values of the given matrix are first
bounded by a maximum function and then adjusted to the admissible cost thresh-
old at the next higher resolution. Here, the employed maximum function and the
multiplication work on an per-entry basis.
This is the key element in allowing upsampled matrix entries to counteract frag-

mentation effects at higher resolutions. In this sense, it is similar to algorithm 3.2,
only that here, every matrix entry is considered that would be acceptable in a poten-
tial path construction, whereas, in section 3.2, this is only the case for those entries
that belong to extracted paths. Thus, one of the major concerns mentioned in that
section is resolved here.
Furthermore, the statement in line 9 tries to maintain the smoothness that is

typical for contextually enhanced similarity matrices. This is achieved, because all
entries that are of lower cost in the upsampled matrix are transferred into the current
similarity matrix. Consequently, whole regions of low costs are carried over into the
fragmented areas. Additionally, a more sophisticated upsampling method may be
employed, as now sufficient information for interpolation algorithms is available. To
this end, linear interpolation from nearest neighbours proved to be most suitable.
The difference between the approach presented in this section and the one given

in section 3.2 is illustrated in figure 3.4 on the basis of the two examples that were
previously used in this chapter. Here, it is clearly visible that this section’s method
generally affects more matrix entries. The corresponding path extraction results
given in the last row of figure 3.3 indicate that this effectively compensates the
fragmentation effects that are introduced at higher resolutions.

3.4 Improving Path End Points

In order to make the path extraction more robust and efficient, often contextual
information is added to similarity measures [3, 18, 21, 23]. This was also demon-
strated in section 2.2. The only real problem introduced with these techniques is
that, in general, heuristics are employed to estimate the exact end of a path, as it
is generally blurred in the enhancement procedure.
A simple adaption of the technique presented in section 3.3 resolves this problem.

It is outlined in algorithm 3.4, and depends on another cost threshold, Cpr, having
the same meaning as in table 2.2. That is, the first and the last link of a valid path
have to exhibit costs that are smaller than this threshold.
The key element here, is to incorporate information from the similarity matrix

that is obtained for the reversed audio signal. For this matrix, a path extraction
will compute similar repetitions to the standard case, but here, the beginning of a
potential path corresponds to a blurred path end in the standard similarity matrix,
and vice versa.
A combination of both matrices that replaces all blurred entries should ideally re-

cover the temporal exactness inherent in similarity matrices that do not incorporate
contextual information.
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3.5 An Automatic Threshold Selection Method

Algorithm 3.4 Improving path end points
1: S ← compute similarity matrix for feature sequence
2:
3: Sre ← compute similarity matrix for feature sequence of reversed audio signal
4: Sre ← flip Sre vertically and horizontically
5: Sre ← max(Sre, Cpr − ε)
6:
7: S ← min(S,Sre)
8: P ← extract paths from S

In order for this to work, the reversed similarity matrix first needs to be flipped
(line 4) so that corresponding entries in both matrices represent the similarity be-
tween corresponding time frames.
In most cases the employed feature design will not allow to recreate the standard

feature sequence from the feature sequence of the reversed audio signal. This is
especially true in the case of CENSw

d features. Here, the reversed sequence may
be obtained from the reversed STMSP chroma feature sequence. Afterwards, the
default parameters (see table 2.1) for the second stage of the feature computation
cause each feature to contain a veritable amount of future information which intro-
duces the desired robustness towards musical variations. Starting from that time,
the values in normal and reversed feature sequences are no longer identical.
Because of this effect, paths that are extracted separately from both matrices will

very likely be subtly shifted. Therefore, a straight combination of the normal and
the reversed similarity matrix using the minimum will not lead to the desired result.
That is why, similar to the approach described in section 3.3, costs lower than

the path pruning threshold are first adjusted in the reversed matrix (line 5), which
generally affects those entries that would be used to start the creation of a new path.
Then, after calculating the minimum of both matrices, information from the normal
similarity matrix will largely determine the extracted path links, and information
from the reversed matrix will help to extract more exact path endings.
Of course, this method may be easily integrated into algorithm 3.3. To this end,

the reversed similarity matrix needs only to be computed for the highest feature
resolution γ|Γ|, and may then be incorporated into the final similarity matrix, just
before the path extraction. Figure 3.5 illustrates the results that were obtained with
this approach for the two running examples of this chapter.

3.5 An Automatic Threshold Selection Method

Experiments with popular music examples revealed that the techniques described in
previous sections still suffer a limitation with regard to the employed cost thresholds.
In order to identify all relevant repetitions in a musical piece, these thresholds

should be chosen in subjection to the distribution of cost values throughout the
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Figure 3.5: Multiresolution path extraction with improved path ends for (a) the
Barry Manilow example and (b) the Dimitri Shostakovich example.
Here, the 1Hz and 2Hz similarity matrices (section 3.3) were combined
with the similarity matrix of the reversed audio signal at resolution 2Hz.

similarity matrix. As mentioned at the beginning of this chapter, this is mostly due
to musical uncleanness which may be seen as an integral part of popular music.
Threshold selection techniques are used to transfer grey-scale images into black-

and-white images with the intention of separating darker foreground objects from
a lighter background [29]. This description exactly corresponds to the meaning
behind the admissible cost threshold Cad used throughout this chapter. Here, the
sought-after foreground objects are those regions that should be acceptable in the
construction of valid paths, that is, lines or curves that are visible to the human eye
in similarity matrix figures.
A threshold selection method serving this purpose was already suggested in [12]

and refined in [18]. In both papers a method introduced by Otsu [24] is utilised to
select a threshold which closely corresponds to Cad. Therefore, similar approaches
were investigated in the course of this thesis. To this end, standard thresholding
techniques were applied to similarity matrix figures exported from Matlab using the
open source image editor ImageJ1.
The following observations are based on an empirical comparison of the analysis

results with the personal perception of foreground and background objects. On the
one hand, binarisation results depend on the mapping from cost values into the grey-
scale spectrum in Matlab. A mapping on the basis of the double-logarithm improves
the visibility of interesting regions in the similarity matrix both to the human eye
as well as to threshold selection methods. On the other hand, the Isodata [28] and
the aforementioned Otsu thresholding methods yield the best results.

1ImageJ http://rsb.info.nih.gov/ij/
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Figure 3.6: Multiresolution path extraction using an automatic threshold selection
for (a) the Barry Manilow example and (b) the Dimitri Shostakovich
example. Again, the 1Hz and 2Hz similarity matrices were combined
with the similarity matrix of the reversed audio signal at resolution 2Hz
(cf. figure 3.5), but, this time, all thresholds relevant to the path extrac-
tion were chosen automatically. This method yields a clearly improved
result for the Dimitri Shostakovich example. On the one hand, the long
repetition from (142, 5) to (217, 81) is correctly detected, while, on the
other hand, not too much irrelevant information is added to the result.

With respect to these observations, a Matlab function was developed that should
be capable of deriving a suitable admissible cost threshold from a given similarity
matrix. To this end, the similarity matrix is first rearranged in order to restrict the
threshold selection algorithm to the part that is relevant for the path extraction.
First, the area above the diagonal and its blurred surroundings is extracted and
transformed into a rectangular matrix which generally is a requirement for thresh-
old selection algorithms. Then, the double-logarithmic mapping is applied to the
cost values of the resulting matrix. Finally, one of the above-mentioned threshold
selection methods is applied yielding the threshold value Cad.
Other cost thresholds which are relevant to the path extraction (cf. table 2.2) are

derived from this value. To this end, Cin is first set to Cad/2 and then iteratively
increased until at least an area of 2/3 of the transformed similarity matrix is neces-
sary to cover all entries fulfilling the initial cost constraint. Finally, Cpr is also set
to this value and Cav is set to be halfway between Cin and Cad.
Experiments on the basis of this function mostly lead to superior results if the

Isodata algorithm is employed. Therefore, this method is preferably used in the
following.
The Otsu method often suffers from the phenomenon that the resulting threshold

causes a nearly equal number of entries to belong to the foreground and background,
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3 Identifying Repetitions in Music - Multiresolution Approaches

respectively, which was also reported in [29]. In this case, Cad is set inappropriately
high which results in too many extracted paths.
In comparison to the previously employed fixed set of threshold values, the de-

scribed selection method leads to comparable results for classical music while mostly
improving the results for popular and jazz music. This should encourage a further
development in this direction. With regard to the two running examples of this chap-
ter, figure 3.6 depicts the result that were obtained using the described threshold
selection method.
Nonetheless, there is still room for improvements as the thresholds are not always

suitably chosen. For some examples, the chosen Cad value diverges in both directions
from the perfect value, but a clear pattern towards these effects could not yet be
identified. Therefore, a theoretical justification for the general applicability of the
chosen threshold selection method should be given.
Furthermore, the improvement towards the Otsu thresholding method described in

[18] may be evaluated. Here, the threshold selection is confined to a defined amount
of the similarity matrix entries emitting the highest values. This is substantiated by
the fact that the Otsu method often classifies approximately half of all entries to be
admissible.

3.6 Final Notes and Future Work

This chapter surveyed several techniques to improve the path extraction performance
of the music structure analysis system introduced in chapter 2. To this end, three
different basic approaches were developed.
First, a simple and efficient method for a multiresolution analysis of a musical piece

was contrived (section 3.3). It is based on the observation that a higher analysis
resolution generally improves the exactness of the extracted paths, while at the same
time, the tolerance towards musical variation is reduced. Here, the start and end of
repetitions are more accurately identified, whereas the extracted paths get easily too
fragmented, which means that several short paths cover only the most prominent
parts of a repetition. To this end, the suggested approach allows the incorporation
of the robustness to musical variation that is present at a lower analysis resolution
into the similarity matrix at a higher resolution.
This approach is nearly independent from the selected path extraction algorithm.

Only a basic threshold needs to be available at each analysis resolution controlling
which similarity matrix entries are acceptable in the path extraction and which are
not. With respect to this, the employed heuristic implies that acceptable similarity
matrix entries at a lower resolution should also be acceptable at the next higher reso-
lution. This goal is achieved by algorithm 3.3. Experimental results indicate that the
above-mentioned fragmentation phenomenon may be relieved in most cases. How-
ever, the presented approach relies on the validity of the above-mentioned heuristic
which must not always be true, for example, if the threshold at the lower resolution
is not correctly chosen.
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3.6 Final Notes and Future Work

Furthermore, a technique to improve the quality at the end of the extracted paths
was introduced. It is virtually impossible to directly extract an exact ending of
a path from an enhanced similarity matrix, as its entries generally represent the
similarity between two time frames of veritable length in the underlying musical
piece. That is why the path extraction method described in section 2.3 employs a
simple heuristic to estimate a path’s end.
In section 3.4, a technique resembling the previously described multiresolution

approach is employed to improve upon this situation. To this end, the audio feature
sequence and the corresponding similarity matrix of the reversed musical piece are
computed.
As a more sophisticated heuristic, it is assumed that entries that fulfil the path

pruning constraint with respect to the threshold Cpr in the reversed similarity ma-
trix should also fulfil this constraint in the actual similarity matrix. Again, this
clearly improves the path extraction results in the case of complicated repetitions.
However, two corresponding entries from the regular and the reversed similarity
matrix generally cover different portions of the underlying musical piece. Moreover,
the manipulated similarity matrix entries are more relevant to the path extraction
than in the previously described approach, as generally Cpr < Cad. Thus, they may
have too much influence on the path extraction results. For example, this may lead
to paths that look more uneven, that is, the corresponding repetitions are seen to
employ an unnatural number of tempo variations.
Finally, in section 3.5, automatic threshold selection methods were evaluated, as

experiments with many popular and jazz pieces showed that the set of preselected
threshold values that was employed so far is not appropriate for every musical piece.
To this end, a given similarity matrix is reduced to the components that are relevant
in the path extraction, and a threshold selection method is applied which originally
allows the separation of a given picture into foreground objects and a background.
On this basis, the admissible cost threshold for the path extraction is selected, and
other relevant thresholds are derived from there.
Although this was only intended as a first test towards the applicability of auto-

matic threshold selection methods, the results are mostly competitive in the cases
where the preselected threshold values worked well, while superior results were ob-
tained for popular and jazz music. Nonetheless, there is still room for improvement.
Some possible future development directions were already discussed at the end of
section 3.5, in order to give space to more global considerations in this section.
With respect to the multiresolution approach, a significant improvement in the

accuracy of extracted paths may be expected if the window length of the employed
audio features could be automatically adapted to the underlying musical material
[31]. On the basis of onset detection or rhythmical and tempo analysis, it may
be possible to calculate audio features that contain information corresponding to
meaningful musical measures such as a complete musical bar.
Furthermore, a universally applicable automatic threshold selection method may

attenuate the need to employ a multiresolution approach, as suitably chosen thresh-
olds often avoid the fragmentation problem normally present at a higher resolution.
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3 Identifying Repetitions in Music - Multiresolution Approaches

Therefore, a combination of both last-mentioned suggestions may yield superior
results while still being computationally efficient.
In order to further improve the extraction of a path’s end, the combination of the

normal and reversed similarity matrix should be revised so that fluttering effects are
avoided. To this end, a path could be extracted from the normal similarity matrix
without directly applying a path end heuristic. Then, the entry corresponding to
the last path link could be selected as starting point for a path extraction in the
reversed matrix, only that here, new path links are confined to extend the path at
its end.
Finally, it may even be possible to completely dispense with the kind of thresholds

used so far. On the one hand, the first entry chosen for a new path is always the
similarity matrix entry of minimum cost. Here, no threshold is required at all. On
the other hand, a further entry should only be accepted as a new path link if its
value is relatively high compared to the entries in a suitably chosen surrounding. In
fact, this problem might be conveniently solved with an artificial neural network.
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4 Clustering - from Repetitions to
Musical Structure

The human cognitive system tends to organise perceived information into hierarchies
and structures. According to the theory of cognition by Jackendoff and Lerdahl [14],
listeners unconsciously organise music along three different dimensions. First, there
is a grouping, or hierarchical structure, where smaller sections such as motifs or
phrases are grouped into larger sections, ultimately ending up in a hierarchical tree of
sections representing a musical piece in its entirety. Second, rhythmical emphasis in
music is translated into a metric structure, which, in its most prominent form, would
be annotated as time signatures in the score notation of a musical piece. Finally,
there is a reductional structure which allows listeners to recognise main musical
themes such as the chorus melody of a pop song independently of its surrounding
arrangement.
As long as artificial intelligence is not on par with that of human beings, an auto-

matic structural analysis which is based on the last-mentioned aspect is infeasible.
Beyond that, an isolated analysis of the metric structure only offers a semantically
poor explanation of a musical piece. However, the tree-like grouping structure of a
musical piece is probably most often associated with musical structure. Therefore,
the problem of computationally approximating the grouping structure is, in most
cases, the first attempt to an automatic understanding of music. Accordingly, this
chapter’s main emphasis is placed on this subject.
Repetitions are one of the corner stones of grouping structures. In most cases,

they are used intentionally by composers to trigger attention and to make a musical
piece more “memorable” [5]. They may be present on a large scale such as repeating
expositions in sonatas, as well as on a smaller scale, say repeating motifs. As shown
in the last chapter, sophisticated methods to identify repetitions in digital audio
recordings already exist. Therefore, in the majority of the research publications on
automatic music structure analysis, the global structure inherent in a musical piece
is approximated from the set of repetitions that were identified in it. This is also
the basic approach employed in this chapter.
Methods that reveal inherent relations in a given set of objects are generally re-

ferred to as clustering techniques. A compact introduction to the above-mentioned
clustering approach is given in [8]. A corresponding algorithm was already presented
in section 2.4. Here, two starting points for major improvements were quickly dis-
covered. On the one hand, the computed structural overview is, in general, not
easy to interpret, as computed similarity clusters may contain overlaps in their own
segments and with segments of other clusters (cf. figure 2.5). On the other hand,
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4 Clustering - from Repetitions to Musical Structure

the corresponding prototypical Matlab implementation contains numerous nested
iterations over the set of identified repetitions, which seems to be a rather inefficient
solution.
In most cases, manually resolving the above-mentioned conflicts in the computed

similarity clusters leads to a hierarchical arrangement of clusters resembling the
grouping structure introduced at the beginning of this chapter. The methodologies
presented in this chapter may be used to directly estimate this grouping structure.
In order to be computationally efficient, they are based on the plane sweep or scan
line paradigm, a technique best known from computational geometry. In general,
its use is geometrically motivated, in which case, a static n-dimensional problem is
transformed into a dynamic (n − 1)-dimensional problem. That is, the remaining
dimension is used to iterate over the set of input objects. In the following, these
objects are repeating segments in the analysed piece of music and the iteration
works along the time domain. Thus, the sweep paradigm also designates a canonical
approach to handle the clustering task.
In order to formalise the outlined approach and the desired outcome, section 4.1

establishes a hierarchy of mathematical terms and definitions. At the top of this
hierarchy is the clustering result, a set of similarity clusters approximating the group-
ing structure of the musical piece. The input data for the clustering, that is, the
repetitions that were identified in a piece of music constitute its foundations.
Nevertheless, all the clustering algorithms developed in this chapter already expect

a set of clusters as their direct input. To this end, section 4.2 explains how to
transform the given repetitions into a corresponding set of clusters. These clusters
generally do not constitute the desired approximation of the grouping structure.
For this, the actual clustering algorithms, which are all based on the plane sweep
paradigm, are employed.
In order to familiarise the reader with this paradigm and its application to the

above-mentioned clustering problem, section 4.3 first discusses a simpler, more clas-
sical clustering problem. In general, further transformations to the original set of
clusters are necessary to obtain the desired result. A basic procedure supporting
most of these transformations is to suitably split a given cluster into two disjoint
subclusters. Section 4.4 introduces an algorithm for this task.
On the basis of this operation, a refinement of the first sweep clustering algorithm

is possible which allows the computation of a hierarchical structural overview for
a piece of music (section 4.5). Further techniques that provide a more efficient
representation of the obtained result are presented in section 4.6. An insight into
implementation details of the described clustering algorithms is given in section 4.7.
Finally, section 4.8 presents related work on the topic including techniques specific
to music structure analysis as well as general approaches to data clustering. It also
highlights the achievements of the presented methodologies as well as directions for
future development.
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valid cluster set
(4.11), (4.12)
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valid cluster
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path P ∈ P
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valid path set P
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Figure 4.1: Overview of clustering data structures. The input of the clustering is
the valid path set P at the bottom. The valid cluster set at the top is
used to encode the requested approximation of the grouping structure.
References to defining equations are given in braces and the multiplicity
of instances of the depicted entities are annotated at the edges.

4.1 Formalisation of the Clustering Problem
In this section, the desired outcome of the clustering is formally specified. To this
end, a hierarchy of definitions is introduced, which explains the connection between
the repetitions that are used as input data, and the set of similarity clusters that
constitute the requested approximation of the grouping structure. This connection
is essential, as all the algorithms introduced in this chapter commonly need to access
the provided input data in order to perform the data transformations that are nec-
essary for the clustering. Furthermore, notational conventions are provided which
allow for a cleaner and easier transcription of the algorithms.
Figure 4.1 provides an overview of the terms and definitions and shows their

place in the aforementioned hierarchy. Additionally, this hierarchy characterises the
associations between the corresponding data structures in the clustering algorithms.
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4 Clustering - from Repetitions to Musical Structure

In order to formalise the following concepts, the vocabulary that was established
in chapter 2 is used.
As mentioned earlier, the clustering approach presented in this chapter is based

on repetitions. Therefore, the notions path, valid path, and projections of a path
onto the feature sequence are the most fundamental concepts.
The valid path set P = {P1, . . . , PM} is the set of valid paths corresponding to the

repetitions that were identified in a piece of music. These paths are assumed to be
in compliance with the step-size constraint that was formulated in equation (2.4).
Then, given the feature sequence V := (v1, v2, . . . , vN ), a bĳective map

ΦP
1 : π1(P ) → π2(P ) (4.1)

nk 7→ mk

may be defined between the projections of a valid path P = (p1, p2, ..., pK) ∈ P,
with pk = (nk,mk) ∈ [1 : N ]2, 1 ≤ k ≤ K. Similarly, one defines ΦP

2 := (ΦP
1 )−1.

As both projections encode subsequences in V , the order of the projections in
P generally does not matter. Therefore, the identifiers accompanying Φ may be
omitted if they are not explicitly necessary for the understanding. The same is true
for the projections π1 and π2 if their corresponding path is evident from the context.
Additionally, in order to refer to the matching projection inherent in P , Φ[π1] = π2,
and vice versa, may be used.
A valid path P = (p1, p2, ..., pK) may be seen as a map P : [1 : K]→ [1 : N ]2 with

P (k) = pk, 1 ≤ k ≤ K. Similarly, one may use

π1, π2 : [1 : K]→ [1 : N ].

Now, every restriction [i : j] ⊆ [1 : K] of the index sequence induces a subpath
Ps = (pi, pi+1, . . . , pj) of P . In the following, subpaths will generally be constructed
implicitly by restricting a single projection of a path to [i : j]. This is possible, as
a single projection together with the corresponding map Φ suffices to completely
describe a path. Moreover,

Π(P ) := {πi(Ps), i ∈ [1 : 2] |Ps is subpath of P} (4.2)

designates the set containing all projections onto the feature sequence of any subpath
of P .
To obtain a clear and precise notation, the following operations are defined for

projections π in the valid path P :

Start(π) := π(1)
End(π) := π(K)

Length(π) := |π(K)− π(1)|.

Furthermore, π corresponds to the segment [Start(π) : End(π)].
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Figure 4.2: Three possibilities to visualise a set of paths. (a) Integration into
the similarity matrix representation including a path index annota-
tion. (b) Canonical representation of a path’s projections as segments
in the time domain. (c) A projection π of a path is depicted as point
(Start(π),End(π)) ∈ R2.

There are various possibilities to visualise a set of paths. For example, the three
representations depicted in figure 4.2 all have advantages and disadvantages.
The representation used in previous chapters, given in figure 4.2(a), shows the

direct correspondence to lines or curves of entries in the similarity matrix. It is
very detailed, as even the point-wise relation between a path’s projections is visible.
The second illustration is a more canonical representation, where Start, End, and
Length of a projection are easily discernible, but the point-wise relations are miss-
ing. Finally, figure 4.2(c) is the most compact representation of the set of paths.
Here, for example, the projections of the first path are given by the points (2, 80) and
(152, 230), respectively. While this representation excludes the information which
projections are musically similar, it is, among others, simple to identify nearly iden-
tical projections. This representation more closely resembles classical clustering
problems where points that lie close to one another have to be collected.
A cluster element containing L projections, is defined as E = {π1, . . . , πL} with

πl = (nl1 , . . . , nlKl ), 1 ≤ l ≤ L, where

∃P ∈ P : πl ∈ Π(P ), 1 ≤ l ≤ L. (4.3)

In the following, a cluster element will be used to model a segment of a similarity
cluster as introduced in section 2.4. To this end, E is mapped to the segment
α := [Start(E) : End(E)] using its average start and end points defined by

Start(E) := round
(

1
L

L∑
l=1

nl1

)
and End(E) := round

(
1
L

L∑
l=1

nlKl

)
, (4.4)

where mathematical rounding is used to regain valid feature indices. In this case,
all of E’s projections should substantially be identical.
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Given an identity threshold Tid ∈ N0, E is said to fulfil the identity constraint, if

∀i, j ∈ [1 : L] : |ni1 − nj1 | ≤ Tid ∧ |niKi − njKj | ≤ Tid, (4.5)

that is, its projections may only differ by Tid indices at their start and end, respec-
tively. Here, Tid = 0 is only useful under idealised conditions, as the given set of
paths P generally contains uncertain information.
Furthermore, Tid induces a lower limit for the length of meaningful cluster ele-

ments. Given a minimum length threshold Tlen ∈ N0, Tlen ≥ 2Tid, E is said to fulfil
the length constraint, if

Length(E) := |End(E)− Start(E)| ≥ Tlen. (4.6)

This constraint guarantees that start and end points of arbitrary projections con-
tained in E are distinct.
Now, a valid cluster element is a cluster element fulfilling the identity and length

constraint and, additionally,

∃m : [1 : L]→ [1 : M ], injective : πl ∈ Π(Pm(l)), 1 ≤ l ≤ L. (4.7)

Here, the map m guarantees that every valid cluster element contains at most a
single projection per valid path in the given set P. There are two reasons why
this constraint is useful. On the one hand, it serves efficiency, as the number of
projections in a valid cluster element is bounded by the number of paths in P, that
is, by the size of the input to the clustering algorithm. On the other hand, multiple
projections of the same path would need to be almost identical due to the identity
constraint 4.5 and, therefore, would provide nearly no gain in information.
All clustering algorithms presented in this chapter work directly on valid cluster

elements. Therefore, the given set of valid paths P must be mapped to valid cluster
elements beforehand (cf. section 4.2). Here, at least equation (4.7) prevents that
both projections associated with a path are put into the same cluster element. This
induces that for every projection π in a cluster element there is a corresponding
cluster element containing Φ[π], consequently, providing a connection between these
both cluster elements.
Because of the similarity relation between the projections of a path, all elements

in the set
Ω(E) :=

{
cluster element E′ | ∃π ∈ E with Φ[π] ∈ E′

}
(4.8)

are regarded as being similar to E. This constellation has a direct parallel in graph
theory [1]. Here, it corresponds to a connected, undirected graph, where similar
cluster elements stand for vertices, and the edges between them are given by Ω.
While the definition of a cluster element is directed towards storing a number of

projections from different paths, the previous statements generally imply that each
projection is put into a separate cluster element. That is why the question may
arise, why cluster elements need to be defined in the first place.
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With regard to the identity threshold Tid, it might be possible to merge valid
cluster elements that encode nearly identical segments in the underlying piece of
music. To this end, all involved projections are conflated in a single valid cluster
element. Here, the challenge is to remain compliant with the previously established
constraints, especially (4.7). With regard to this, two valid cluster elements E1 and
E2 are called mergeable, if the cluster element E = {π|π ∈ E1 ∨ π ∈ E2} fulfils the
identity constraint (4.5). A suitable merge operation for two mergeable, valid cluster
elements that also enforces the other constraints is presented in section 4.3.
The fact that all cluster elements in the set Ω(E) of a merged valid cluster element

E are seen to be similar to E implies a form of transitive closure. The intuition
behind this is that if a section A in a piece of music is similar to a section B which
itself is similar to a section C, then A should also be regarded as being similar to
C. Ideally, the repetitions in the valid path set P exactly reflect this situation. In
reality, there are often some paths that are not completely extracted because of a
missing tolerance towards specific musical variations. For example, the build-up
of tension in many musical pieces leads to a varying amount of musical variation
in repetitions. By exploiting the above-mentioned transitive relations, it may be
possible to repair these incomplete repetitive relations.
A cluster C = {E1, . . . , EK} is a set of K valid cluster elements all being mutually

similar, that is

∀E ∈ C : Ω(E) ⊆ C. (4.9)

Regarding the above-mentioned parallel to graph theory, C corresponds to a con-
nected graph. Furthermore, this definition implies that after merging two cluster
elements, their corresponding clusters need to be merged too.
A cluster C may be mapped to a similarity cluster by using the segment represen-

tation for each of its contained cluster elements. C is a valid cluster if it fulfils

∀i, j ∈ [1 : K], i 6= j : αi ∩ αj = ∅, (4.10)

that is, its corresponding similarity cluster segments do not overlap.
In its simplest form, a valid cluster consists solely of two cluster elements each

corresponding to one of the projections of a path P ∈ P, or a corresponding sub-
path Ps of P if this is necessary to fulfil the valid cluster constraints. This exactly
corresponds to the situation outlined in figure 4.1. Furthermore, each of the pre-
viously used exemplary paths given in figure 4.2 may be transformed into a valid
cluster this way. Then, figure 4.2(b) may also be seen as an illustration of these
clusters where each cluster element E is represented by its corresponding segment
α = [Start(E) : End(E)], and each row represents a valid cluster.
Given an identity threshold Tid = 3, two mergeable cluster elements may be

identified in this set of clusters. After merging both these elements the situation
depicted in figure 4.3(a) is obtained. With respect to figure 4.2(b) it may also be
seen that the two corresponding clusters were merged.
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Figure 4.3: Transformation results for the previously depicted paths, (a) after con-
flating mergeable cluster elements, and (b) after a further transformation
into a valid cluster set. A cluster element E is represented by the seg-
ment α := [Start(E) : End(E)], and each row represents a cluster of
similar cluster elements.

Finally, a valid cluster set {C1, . . . , CL} is a set of valid clusters Cl =
{
El1 , . . . , ElKl

}
,

1 ≤ l ≤ L, if without loss of generality1,

∀(i, j) ∈ [1 : L]2, i < j,∀(k, l) ∈ [1 : Ki]× [1 : Kj ]

either
αik ∩ αjl = ∅, (4.11)

or
αik ∩ αjl = αjl , and ∀πi ∈ Eik ∃πj ∈ Ejl ∃P ∈ P : πi, πj ∈ Π(P ) (4.12)

holds.
In the latter case, Eik is said to contain cluster element Ejl . As Ejl is bound to

contain a suitable restriction of every projection contained in Eik , a similar relation
must be present for every other cluster element in Ci in order for Cj to be valid.
This may be seen as a consistency constraint which guarantees that clusters with
shorter, contained elements at least reproduce the information that is provided by
the clusters that are associated with their containing elements.
A valid cluster set that is free of mergeable cluster elements while still retaining

as much information as possible from the given set of paths P should be capable of
providing an estimation of the grouping structure inherent in a piece of music. This
is the desired result of the clustering approach introduced in this chapter. However,
a result which complies with all the described constraints generally implies numerous
manipulations to the originally given input data.

1That is, there is a suitable permutation of the set [1 : L].
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Figure 4.4: A block diagram of this chapter’s clustering approach. The input of the
clustering is the valid path set at the left. The simplified valid cluster
set at the right encodes the requested approximation of the grouping
structure. References to the respective sections are provided for each
depicted algorithm.

A valid cluster set that may be obtained for the set of paths introduced in figure 4.2
is shown in figure 4.3(b).
In the following sections, several algorithms will be introduced which are capable

of performing the necessary data transformations. In figure 4.4, a block diagram is
given which visualises the sequence of these algorithms.
In order to foster a clear and easily readable notation in the the coming sec-

tions, the following definitions will be used with respect to cluster element E =
{π1, . . . , πL} with πl = (nl1 , . . . , nlKl ), 1 ≤ l ≤ L:

MinimumStart(E) := min
l=1,...,L

(nl1)

MaximumStart(E) := max
l=1,...,L

(nl1)

MinimumEnd(E) := min
l=1,...,L

(nlKl )

MaximumEnd(E) := max
l=1,...,L

(nlKl ).

4.2 Transforming a Valid Path Set into a Set of Valid
Clusters

All clustering algorithms that are introduced later in this chapter work directly on
a given set of valid clusters. However, the actual input to the clustering is the result
of a path extraction, that is, a valid path set.
A valid path encodes the temporal relation between two similar sections in the

analysed piece of music. Therefore, the easiest way to obtain a usable input, is to
transform each path into a valid cluster of two cluster elements, each containing one
of the path’s projections (cf. section 4.1).
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A1 B1 A2

A2 B2 A3

(a)

A1 B1

A2 B2

(b)

A1 A2 A3

B1 B2

(c)

Figure 4.5: Resolving short to intermediate overlaps. (a) Original overlapping
projections. (b) Both projections are shortened at their end if
Length(A2) < Tlen. (c) Otherwise, two valid clusters are necessary
to retain all the information given by both projections.

As elements in a valid cluster need to fulfil equation (4.10), it is reasonable to first
adjust those paths that contain overlapping projections. Here, the aim is to create
a valid cluster that reproduces as much information as possible inherent in a given
path. Additionally, requirements like equation (4.6) have to be respected.
Algorithm 4.1 on the facing page shows one possibility to transform a valid path

into a set of valid clusters2. As mentioned above, its main task is to resolve a possible
overlap given by

π12 = π1 ∩ π2 = [Start(π2) : End(π1)] (4.13)

in line 2 of the algorithm. Depending on Length(π12), three different techniques
are used to obtain valid clusters.
In the first two cases, the projections π1 and π2 may be identified with musical

sections A1B1A2 and A2B2A3, exhibiting an overlap corresponding to section A2.
Both scenarios are outlined in figure 4.5. In the algorithm, this corresponds to lines 1
to 12. After the first split operation in line 2, one obtains π11 = A1B1, π12 = A2,
π21 = A2B2 and π22 = A3, respectively.
If the overlap A2 is of negligible length, that is Length(A2) < Tlen, both pro-

jections are shortened at their end (line 5ff.) leading to a cluster with elements
corresponding to A1B1 and A2B2, respectively. Here, the intuition is that paths ex-
tracted from contextually enhanced similarity matrices exhibit the most uncertain
information at their end (cf. end of section 2.3). Additionally, in some applications,
for example music players, it is desirable to be able to jump to the exact beginning
of a section so that here no information should be discarded on the basis of simple
heuristics.
In the second case, the overlap is of intermediate length so that two clusters

are necessary to retain all the information inherent in the given path. To this end,
another split operation is performed (line 10), leading to π31 and π32 which represent
the musical sections A2 and B2, respectively. Then, the subprojections π12 and
π31 corresponding to the overlap section A2 are put into a single cluster element.
Together with its similar sections A1 and A3 this leads to a cluster consisting of
three elements. Both remaining B sections constitute a second, individual cluster.

2Note that cluster elements are simply represented as sets of projections in the algorithm.
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Algorithm 4.1 Transforming a valid path set into a set of valid clusters
Require: A valid path P = (p1, . . . , pK) with Start(π1) < Start(π2).
Ensure: A set of valid clusters V representing P .

1: if End(π1) ≥ Start(π2) then . resolve overlap
2: (π11 , π12)← split π1 at value Start(π2)− 1
3: (π21 , π22)← (Φ[π11 ],Φ[π12 ])
4:
5: if Length(π12) < Tlen then
6: C ← {{π11} , {π21 ]}}
7: V ← {C}
8:
9: else if Length(π12) < Length(π21) then . End(π12) < Start(π22)

10: (π31 , π32)← split π21 at value End(π12)
11: C1 ← {{π12 , π31} , {π22} , {Φ[π31 ]}}
12: C2 ← {{π32} , {Φ[π32 ]}}
13: V ← {C1, C2}
14:
15: else
16: s← 0
17: while Length(π11) < Tlen do . determine necessary index shift
18: s← number of indices in π21

19: (π11 , π12)← split π1 at value End(π21)
20: (π21 , π22)← (Φ[π11 ],Φ[π12 ])
21: end while
22:
23: if s > 0 then . redefine P, π1, π2
24: P ← ( (π1(1), . . . , π1(K − s)), (π2(1 + s), . . . , π2(K)) )
25: (π11 , π12)← split π1 at value Start(π2)− 1
26: (π21 , π22)← (Φ[π11 ],Φ[π12 ])
27: end if
28:
29: C ← {{π11}} . cluster of shorter elements
30: while End(π12) ≥ End(π21) do
31: (π11 , π12)← split π12 at value End(π21)
32: C ← C ∪ {{π11 , π21}}
33: (π21 , π22)← (Φ[π11 ],Φ[π12 ])
34: end while
35: C ← C ∪ {{π21}}
36: V ← {C}
37: end if
38: else . no overlap
39: C ← {{π1} , {π2}}
40: V ← {C}
41: end if
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Figure 4.6: Resolving overlaps that span at least half of each projection with the ideal
situation that ε = ∅. (a) In the simplest case, the overlap covers half
of each projection. (b) If Length(A1) ≥ Tlen, each A section is trans-
formed into an individual cluster element. (c) If Length(A1) < Tlen,
the original path first needs to be manipulated. Here, Length(A1A2) ≥
Tlen.

The decision, whether the overlap A2 encodes a valid musical section or not, is
based solely on the minimum length threshold Tlen. Thus, it has to be chosen with
great care. More often than not, overlaps are caused by path extraction parameters
that were chosen to be too tolerant towards musical variations. Setting Tlen too low,
in this case, may have bad effects on the overall clustering, as the resulting short
and musically irrelevant cluster elements have to be integrated into a structural
hierarchy which itself generally induces further disadvantageous transformations.
The third of the mentioned techniques is used if the overlap spans at least half of

each projection. In this case, the path may be seen to encode numerous repetitions
of a single shorter musical section A.
Here, the simplest example is projections that correspond to A1A2ε and A2A3ε,

where ε is a negligible portion at the start of an A section. If, additionally, ε = ∅,
this corresponds to π12 = π21 in the algorithm, or empty B sections in the previous
cases. This situation is outlined in figure 4.6(a).
The larger the amount of overlap, the higher the number of A sections will be

in each projection (cf. figure 4.6(b)). Here, each A section is created by consecu-
tive split operations on the projection π1, where new split values are provided by
corresponding split results of projection π2 (line 31ff.).
In extreme situations, the overlap may induce Length(A1) < Tlen, that is, A1

cannot be represented by a valid cluster element. In this case, a transformation into
a valid cluster is only possible if the original path is manipulated.
To this end, k ∈ N is sought, so that A1 . . . Ak is of acceptable length (see

line 17ff.). Then, π2 is shortened at its start by the amount of feature indices
spanned by the sections A2 . . . Ak and π1 is shortened at its end by a similar number
of features indices (line 24). This leads to a new path with projections corresponding
to A1 . . . Ak . . . AKε and Ak+1 . . . AK+kε with a suitable K ∈ N.
This manipulation is motivated by the fact that all of the A sections are seen to

be mutually similar, so that the direct relation between the two sections Al and Al+1
given by the original path P may be replaced by a relation between Al and Al+k,
1 ≤ l ≤ K. Figure 4.6(c) illustrates this solution for the case k = 2.
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Figure 4.7: Originally extracted paths (top row) and their corresponding transfor-
mation into valid clusters (bottom row) for (a) “Can’t Take My Eyes Off
You” by Barry Manilow and (b) a Chailly interpretation of “Waltz 2”
from the “Suite for Variety Stage Orchestra” by Dimitri Shostakovich.
Clusters that contain more than two elements originate from overlapping
paths. The results were obtained at a feature resolution of 1Hz, using
the clustering parameters Tid = 3 and Tlen = 6.
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However, this manipulation only works well if all A sections are of similar length.
Otherwise, the temporal relation between the features in the resulting projections
will not be accurate. Fortunately, this manipulation is only necessary if the original
path is located near the diagonal of the underlying similarity matrix. Therefore,
this situation may be circumvented by excluding a suitable area surrounding the
diagonal from path extraction which is generally the case for the approach presented
in section 2.3.
As stated at the beginning of this section, the outlined algorithm designates only

one possibility to transform the given paths into valid clusters. One of its major
advantages is that it generally conserves a large amount of information inherent in
a path. Figure 4.7 illustrates the results of the algorithm on the basis of the two
running examples introduced in chapter 2.
The split operation on projections, as seen in line 2 of the algorithm, warrants

a more detailed examination. In order to split a projection π at a value v, first, a
binary search for v in π is performed. The split itself is performed in a way that
afterwards

∀n ∈ π, n ≤ v : n ∈ π1 and π2 = π \ π1 (4.14)

holds for the resulting subprojections π1 and π2. As described in section 4.1, splitting
projection π induces the creation of two new subpaths which use the index sets that
are created for π1 and π2. Therefore, the projections Φ[π1] and Φ[π2] are directly
accessible as seen in line 3.
There is one problematic aspect to this split operation. Because of the step-size

constraint for paths, it is possible that v /∈ π, and consequently v /∈ π1. That is
why, the last part of equation (4.13) only holds in an ideal scenario. This fact is
especially delicate if the split operation is used to cut cluster elements to specific
end points, for example, to enforce the structural hierarchy.
Furthermore, only a minimum number of length constraint tests is performed in

algorithm 4.1. Thus, in an implementation all created clusters need to be checked
for compliance with equation (4.6) before a further use.
The transformations outlined in this section are also typical for the following

algorithms, where equivalent operations are defined for clusters and cluster elements.

4.3 A Sweep Approach to a Classical Clustering Problem

This section describes a first, highly simplified clustering method. Its main purpose
is to introduce the sweep paradigm and to outline its applicability to this chapter’s
problem domain. The presented algorithm may be seen as a classical clustering
procedure in R2, where points that lie close to one another are to be collected
into identity clusters. In general, squares of a given side length are used to define
an identity cluster. Then, the clustering algorithm has to find as small a number
of disjoint and non-empty squares as possible that cover all the given points (cf.
figure 4.8).

42



4.3 A Sweep Approach to a Classical Clustering Problem

50 100 150 200

50

100

150

200

sweep line

(a)

50 100 150 200

50

100

150

200

sweep line

(b)

Figure 4.8: A sweep approach to find nearly identical points in R2. Only those
points that are crossed in short succession by the sweep line are tried to
be fitted into an identity cluster. Here, intermediate clustering results
at time 30 (a) and 170 seconds (b) are illustrated.

In the more general case described in this section, a set of given cluster elements
is transformed into subsets of R2 and the squares are of side length Tid, so that
identified identity clusters characterise mergeable cluster elements (cf. section 4.1).
To this end, the transformation of a cluster element E is given by

[MinimumStart(E) : MaximumStart(E)]× (4.15)
[MinimumEnd(E) : MaximumEnd(E)] ⊂ R2.

Instead of identity clusters, the desired outcome of this chapter are clusters that
encode disjoint, musically similar sections as defined in section 4.1. Therefore, in
order to avoid confusion, the result of this section’s clustering will be referred to as
identified mergeable cluster elements in the following.
The plane sweep paradigm was first introduced in [30]. An excellent application-

oriented introduction is given in [9].
The sweep algorithms developed in this chapter share some basic concepts. First,

they all are seen to employ a so-called sweep line that iterates over the set of cluster
elements handling a number of discrete events for every element.
All operations relevant to a sweep algorithm are partitioned into such events.

Thus, they must be chosen with regard to the desired application. Furthermore, all
events are associated with an event time, that is, a specific, discrete point in time
determining when an event should be processed by the algorithm. For example, the
start event of a cluster element could be associated with the element’s average start
time (4.4).
In the following, the cluster element belonging to the event that is currently

processed will be referred to as current element.
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In a static scenario, all events are known beforehand and inserted into the event
data structure E in the order of ascending event time. Thus, an iteration over the
event structure corresponds to the motion of the sweep line across the plane from
left to right, see figure 4.8. The processing of an event often depends on information
about other cluster elements which are located in the proximity of the sweep line. A
further data structure, the status structure S, is used to store these active objects.
Again, events are used to define the period of an element’s activity, by means of
adding it to or removing it from S, respectively.
The main characteristic of sweep algorithms is that geometric properties inherent

in the problem domain are exploited in order to confine comparisons between objects
to relevant cases. For problems that might be modelled in a suitable fashion, the
sweep paradigm often leads to time optimal algorithms. Here, the major challenge
is to find an appropriate geometric model. This includes the definition of events
together with a suitable processing of involved objects, specifying when objects are
active, and how to efficiently access them.
The sweep clustering algorithm introduced now, is capable of identifying merge-

able cluster elements in a given set of valid clusters. A naive approach to this prob-
lem generally involves the inspection of every pair of cluster elements. This number
may be strongly reduced if the two data dimensions given by equation (4.15) are
processed independently.
As outlined in section 4.1, two mergeable, valid cluster elements E1 and E2 are

mainly constrained by equation (4.5). This implies that a conjunction of two sepa-
rate tests concerning the start and end of two cluster elements may be employed in
order to determine if they are mergeable.
Here, the dimension corresponding to the start of an element is used for the sweep

iteration, and the second dimension is only accessed if the mergeability test in the
first dimension is successful. More precisely, the aim is to define sweep events that
implicitly guarantee that all cluster elements present in the status structure S fulfil
this requirement with respect to a currently processed element. Thus, a sophisticated
criterion characterising the start of two mergeable cluster elements is necessary.
Two mergeable, valid cluster elements E1 and E2 with

MinimumStart(E1) < MinimumStart(E2), (4.16)

also need to fulfil

MaximumStart(E2) ≤MinimumStart(E1) + Tid. (4.17)

Geometrically, this simply means that the Start points of E1 and E2 need to lie
close to one another.
In the following algorithm, sweep events corresponding to MaximumStart(E)

and MinimumStart(E) + Tid are used for every cluster element E. These two
events also designate the start and end of its activity, that is, the start and end of
its presence in the status structure S. This is well-defined, as according to equa-
tion (4.5),

MaximumStart(E) ≤MinimumStart(E) + Tid.
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Then, a cluster element E2 fulfils (4.16) as well as (4.17) with respect to an
arbitrary cluster element E1, if and only if it is present3 in the status structure S at
time MinimumStart(E1) + Tid. In order to be mergeable, E1 and E2 further need
to fulfil a similar constraint at their end. This conforms to the above-mentioned
requirements and finally yields the sweep algorithm 4.2 on the next page.
As mergeable cluster elements encode nearly identical segments in the underlying

piece of music, they should be merged into a single cluster element, which implies
that their associated clusters must be merged as well (cf. section 4.1). These opera-
tions are directly triggered if mergeable cluster elements are identified in the sweep
iteration (line 19ff.).
To this end, algorithm 4.3 on page 47 presents a suitable merge operation for

mergeable, valid cluster elements. Here, special attention is required if both elements
contain projections π1 and π2 that originate from the same path P (line 3). In
general, π1 and π2 will not be identical, but, in order to regain a valid cluster
element, only a single projection per P is allowed (cf. equation (4.7)).
Therefore, π1 and π2 are replaced by a single projection π which might, for exam-

ple, use the average of both projections’ start and end points (line 4). In order to
maintain a connection between the cluster element resulting from the merge oper-
ation and the elements containing Φ[π1] and Φ[π2], both these projections need to
be replaced by Φ[π] (cf. line 9 in the algorithm and equation (4.9)).
Then, both of these elements may be seen to represent an identical section and,

therefore, should also be merged, which itself might result in further merge opera-
tions. However, in this case, special treatment may be necessary. As the respective
elements may contain further projections, they generally do not need to be merge-
able.
Nevertheless, these problems lie outside the scope of this section. In any case,

the clustering algorithm should detect all mergeable cluster elements, so that it is
sufficient to trigger all merge operations from there. The only facility necessary, in
this case, is a means to associate a single projection with multiple cluster elements.
In contrast to this, it is relatively easy to implement a merge operation for clus-

ters. Here, the respective sets of cluster elements are simply joined. Consequently,
after merging two cluster elements, it is guaranteed that all elements containing the
projections of a specific subpath belong to the same cluster.
Given N valid cluster elements as input for the clustering algorithm, a run time in

O(N logN +NM) is obtained, where M denotes an upper bound for the number of
elements E2 fulfilling (4.16) and (4.17) with respect to an arbitrary cluster element
E1. Here, the first term in the addition corresponds to the sort operation which is
necessary for the set of 2N sweep events, and the second term estimates the time
required to process these events in the sweep iteration.
In the worst case, this also yields a run time in O(N2) which was previously

considered unacceptable. But, in contrast to a naive approach, this bound is only

3Note that MinimumStart(E1) + Tid < MinimumStart(E2) + Tid ⇔ MinimumStart(E1) <
MinimumStart(E2).
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Algorithm 4.2 Simple sweep clustering
Require: A set of clusters V = {C1, . . . , CL} with Cl =

{
El1 , . . . , ElKl

}
, 1 ≤ l ≤ L.

Ensure: The set of clusters V, now, free of mergeable cluster elements.

1: . Initialisation
2: E ← sorted set of MaximumStart and MinimumStart + Tid events for given

cluster elements
3: S ← {}
4:
5: for all e ∈ E do . Sweep
6: Ecur ← element associated with e
7:
8: switch type of e
9:

10: case MaximumStart
11: S ← S ∪ {Ecur}
12: end case
13:
14: case MinimumStart + Tid
15: S ← S \ {Ecur}
16: Ccur ← cluster associated with Ecur
17:
18: for all E ∈ S do
19: if E and Ecur are mergeable then
20: C ← cluster associated with E
21: if C 6= Ccur then
22: V ← V \ {C}
23: Ccur ← Merge(Ccur, C)
24: end if
25:
26: S ← S \ {E}
27: Ecur ← Merge(Ecur, E)
28: end if
29: end for
30: end case
31:
32: end switch
33:
34: end for
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Algorithm 4.3 Merge(E1, E2)
Require: Mergeable valid cluster elements E1 and E2.
Ensure: A valid cluster element containing the information inherent in both ele-

ments.

1: for all π1 ∈ E1 do
2:
3: if ∃π2 ∈ E2 ∃P ∈ P : π1, π2 ∈ Π(P ) ∧ π1 6= π2 then
4: π ← merge π1 and π2
5: E2 ← (E2 \ {π2}) ∪ {π}
6:
7: for all i ∈ {1, 2} do
8: E ← element associated with Φ[πi]
9: E ← (E \ {Φ[πi]}) ∪ {Φ[π]}

10: end for
11: else
12: E2 ← E2 ∪ {π1}
13: end if
14:
15: end for
16:
17: E1 ← {}
18: remove E1 from its associated cluster
19:
20: return E2

reached if M = N . Thus, the run time of the sweep iteration depends on the
configuration present in the input data which is, of course, preferable to the case
where N2 operations are always required.
In order to improve the run time even more, the status structure S may be sorted

by the average end time of the cluster elements. Then, an iteration over S in the
order of ascending end time could be stopped prematurely at the first element E
with MinimumEnd(E) > MinimumEnd(Ecur) + Tid. This leads to a run time in
O(N logN + K) if K pairs of mergeable cluster elements are present in the input
and insert, remove, and search operations on S are bounded by O(logN).
An essential characteristic of the presented sweep clustering procedure is its first-

fit heuristic which implies that mergeable cluster elements are identified in the order
of the sweep iteration. With regard to the sweep paradigm, this is the most natural
approach. However, this method generally does not identify the largest sets of
mergeable cluster elements possible.
Finally, it has to be noted that the presented clustering algorithm on its own is

nothing more than an educational example. The resulting clusters are, in general,
not valid as they may contain overlapping cluster elements.
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Figure 4.9: Valid clusters obtained from the path transformation (top row) and the
result of the simple clustering (bottom row) for (a) the Barry Manilow
and (b) the Dimitri Shostakovich example. The clustering parameters
Tid = 3 and Tlen = 6 were used.
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4.4 Splitting a Valid Cluster

The desired result of this chapter is a valid cluster set that provides a suitable
approximation of the grouping structure of the underlying musical piece. The clus-
tering algorithms portrayed in this chapter work directly on a set of valid clusters,
and a transformation of the original input data into this form is given in section 4.2.
However, a valid cluster set is subject to a number of constraints, for example

equations (4.11) and (4.12). Thus, the clusters obtained from the input data gener-
ally need to be transformed heavily in order to obtain a corresponding valid cluster
set. A basic approach supporting most of these transformations is to split a given
cluster into two disjoint subclusters which is discussed in this section.
The source of a split operation on a cluster is, in general, a cluster element E that

needs to be split into two disjoint parts in order to fit into a hierarchical structure.
In order to integrate the result of this operation into a set of valid clusters, it
is required by equation (4.9) that all of the cluster’s elements are split accordingly.
This effectively corresponds to a split operation on the cluster itself. To this end, the
point-wise temporal relations between the elements of a cluster need to be exploited.
A suitable approach to implement this operation is outlined in algorithm 4.4.
As stated in section 4.1, the temporal point-wise relation between cluster elements

is based on the projections they contain (cf. line 9ff.). Consequently, every cluster
element E that is split is at least connected to another element Easc in the same
cluster whose split value is determined accordingly. This induces a traversal over all
elements in the given cluster.
In the algorithm, the split operation for every such element Easc at value Φ(v) is

queued into the data structure Q and, a corresponding entry in the set T is made
to guarantee that this happens only once. In graph theory, this corresponds to the
creation of a minimum spanning tree for the connected graph corresponding to the
cluster.
The split algorithm may be seen to employ a first-fit heuristic, as the split value

for all elements except for the one provided as input is determined on the basis of
the first suitable projection that is split, respectively (cf. line 14ff.). In fact, this
helps to circumvent inconsistencies inherent in the original valid path set P.
Regarding the parallel to a connected graph, the traversal algorithm generally

has more than one possibility to get from an element E1 to element E2 in the given
cluster. This implies that a split value in E1 may entail different split values in E2.
The reason for this is that the underlying set of paths and their corresponding maps
Φ, in general, do not contain consistent information. As a heuristic solution, the
presented algorithm ensures that a shortest possible route is taken from the cluster
element given as input to every other element in the cluster. This implies that a
minimum number of evaluations of the different Φ incarnations is necessary.
The split operation on projections as seen in line 10 of the algorithm was already

discussed in section 4.2. Similar to algorithm 4.3, the connection between elements
in the original cluster needs to be recreated in both clusters resulting from the split
operation. In the implementation of the presented algorithm, two subpaths are
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Algorithm 4.4 SplitValidCluster(C, E, v)
Require: Valid cluster element E of cluster C and split value v.
Ensure: C split at value v in E into clusters C1 and C2.

1: C1 ← C2 ← {}
2: Q ← {(E, v)} . queue data structure
3: T ← {E} . traversed elements
4:
5: while Q 6= {} do
6: E1 ← E2 ← {}
7: (E, v)← Dequeue(Q)
8:
9: for all π ∈ E do

10: (π1, π2)← split π at value v
11: E1 ← E1 ∪ {π1}
12: E2 ← E2 ∪ {π2}
13:
14: Easc ← element associated with Φ[π]
15: if Easc /∈ T then
16: Enqueue(Q, (Easc,Φ(v)))
17: T ← T ∪ {Easc}
18: end if
19: end for
20:
21: C1 ← C1 ∪ {E1}
22: C2 ← C2 ∪ {E2}
23: end while
24:
25: return (C1, C2)

created instead of simple projections when π is split (cf. line 10), and instead of
splitting Φ[π], the corresponding projections of the previously created subpaths are
used if the respective element is traversed.
Furthermore, it is desirable that splitting a cluster element at value v results in a

cluster element that has an average end point of v and the second element having its
average start point at value v+ 1. However, as shown at the end of section 4.2, this
is generally not the case, as it is possible that v is not contained in every projection
due to the step-size constraint for paths. Here, the next lower value will be used
for splitting the affected projections. This fact demands attention, especially, if the
split operation is employed to retain the hierarchical integrity of a valid cluster set.
If a suitable hash map is employed for the data structure T , the time complexity

of the outlined algorithm is bounded by O(|C| |P|) as every cluster element in C may
contain up to |P| projections (cf. equation 4.7).
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Finally, it is useful to keep track of the relation between the cluster C and the
clusters resulting from the split operation, for example, to avoid similar operations
at a later point in a sweep clustering algorithm. In fact, this information is generally
needed on an per element basis. Therefore, in the following sections, it is assumed
that an operation

(E1, E2)← GetDescendants(E)

is defined that returns the cluster elements of similar name in algorithm 4.4 for every
element E ∈ C after a split operation was performed on cluster C. For simplicity rea-
sons, the implementation of this technicality is not shown explicitly in the presented
algorithm.

4.5 Computing a Valid Cluster Set

This section presents a sweep clustering algorithm that is capable of transforming a
given set of valid clusters into a valid cluster set. Therefore, it may be seen as an
enhanced version of the clustering algorithm presented in section 4.3 which employs
the splitting technique introduced in section 4.4 to enforce the requested hierarchical
structure (cf. figure 4.4). Additionally, a refined sweep iteration is employed which
allows dynamic changes to the set of clusters during its progression over time.
As mentioned earlier, computing a valid cluster set is generally a challenging task

due to the tight constraints this implies. To this end, the solution presented in
algorithm 4.5 on the next page looks surprisingly simple, but, as with most simple
solutions, “the devil is in the details”.
The employed sweep iteration is based on events corresponding to Start(E) and

End(E) for a given cluster element E which also define the duration of its activity.
Similar to algorithm 4.2, data structures V, S, and E are utilised to store the set of
clusters, active elements and sweep events, respectively.
The sweep iteration across the plane is used to find constellations of cluster ele-

ments that conflict with valid cluster set constraints. In this case, the cluster of a
conflicting element is split into two new, disjoint clusters that resolve the conflict.
However, as is typical for the sweep paradigm, this only constitutes a local solu-
tion. In general, the newly created clusters still contain conflicting cluster elements
that start later in time. Therefore, a dynamisation of the event data structure E
is required, which allows the incorporation of new clusters into the current sweep
iteration. Similarly, the originally conflicting cluster should be discarded.
The above-mentioned conflicts are identified during the processing of Start events,

where newly created and discardable clusters are temporarily stored in the data
structures Vold and Vnew (line 11). These data structures are then used to update
the set of clusters V, the status structure S, and the event structure E (line 13ff.).
Regarding the latter two, special care has to be taken. First, only those cluster

elements in Vnew which are active in the current sweep context should be added to
S.
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Algorithm 4.5 Computing a valid cluster set
Require: A set of clusters V = {C1, . . . , CL} with Cl =

{
El1 , . . . , ElKl

}
, 1 ≤ l ≤ L.

Ensure: The valid cluster set V.

1: . Initialisation
2: E ← sorted set of Start and End events for given cluster elements
3: S ← {}
4:
5: for all e ∈ E do . Sweep
6: Ecur ← element associated with e
7:
8: switch type of e
9:

10: case Start
11: (Vold,Vnew)← HandleStart(Ecur)
12:
13: V ← (V \ Vold) ∪ Vnew
14: S ← (S \ {elements ∈ Vold}) ∪ {active elements ∈ Vnew}
15: E ← (E \ {events ∈ Vold}) ∪ {relevant events ∈ Vnew}
16: end case
17:
18: case End
19: S ← S \ {Ecur}
20: end case
21:
22: end switch
23: end for

Second, it is advisable to enhance E only with events which are relevant at the
current event time or later. Everything before that is no longer of interest to the
sweep iteration.
Furthermore, according to the motivation at the end of section 4.3, the employed

status structure S allows the traversal of the set of contained active elements in
ascending or descending order of their average end points. To this end, the im-
plementation of the algorithm employs a doubly-linked sorted data structure that
supports efficient updates and queries.
The main part of the Start event handling is outsourced into algorithm 4.6.

Here, the principal data structures S, E , and V defined in the main algorithm are
expected to be freely accessible for simplicity reasons. Only the cluster element Ecur
is provided as input parameter in order to indicate whose Start event is about to
be processed.
All constellations that are incompatible with valid cluster set constraints at the

given event time are resolved in this algorithm. In general, this concerns all elements
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Algorithm 4.6 HandleStart(Ecur)
1: Vold ← Vnew ← {}
2: Ccur ← cluster associated with Ecur
3: isUpdated← False
4:
5: for all E ∈ S in descending order of End(E) do
6: if MaximumEnd(Ecur) ≤MinimumEnd(E) + Tid then . containment
7: Ecut ← CutElement(Ecur, E)
8: if Ecut = E then
9: V ← V \ {C}

10: S ← S \ {E}
11: E ← E \ {events of E}
12: end if
13:
14: E ← E \ {events of Ecur}
15: Ccur ←Merge(Ccur, cluster associated with Ecut)
16: Ecur ←Merge(Ecur, Ecut)
17: isUpdated← True
18: else . overlap
19: C ← cluster associated with E
20: (C1, C2)← Split(C, E,Start(Ecur)− 1)
21: (E1, E2)← GetDescendants(E)
22: Vold ← Vold ∪ {C}
23: Vnew ← Vnew ∪ {C1}
24:
25: if ∀E ∈ C2 : Length(E) ≥ Tlen then . cf. (4.6)
26: (C′2, Ctmp)← Split(Ccur, Ecur,End(E))
27: (E′2, Etmp)← GetDescendants(Ecur)
28:
29: if ∀E ∈ C′2 : Length(E) ≥ Tlen then . cf. (4.6)
30: C2 ←Merge(C2, C′2)
31: E2 ←Merge(E2, E

′
2)

32: Vnew ← Vnew ∪Clean(C2)
33: end if
34: end if
35: end if
36: end for
37:
38: if isUpdated then
39: Vold ← Vold ∪ {Ccur}
40: Vnew ← Vnew ∪Clean(Ccur)
41: else
42: S ← S ∪ {Ecur}
43: end if
44:
45: return (Vold,Vnew)
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E that have a non-empty intersection with Ecur, which is the case, if and only if E is
contained in the status structure S. This is evident, as elements are active between
their Start and End events and thus

Start(E) ≤ Start(Ecur) ≤ End(E), (4.18)

while Start(E) < End(E) holds for the valid cluster element E.
The algorithm enforces the valid cluster set constraints given by equation (4.11)

and (4.12). Two different types of conflicts between Ecur and an active element are
possible. If Ecur is contained in element E this implies that Ecur must be enhanced
with information from the valid path set P that it lacks compared to E, that is, for
all P ∈ P where ∃π ∈ E @π′ ∈ Ecur : π, π′ ∈ Π(P ), a suitable subprojection of π has
to be added to Ecur (line 6ff.). Otherwise, both elements overlap, and the cluster
containing E is split which results in two elements, each conforming to one of the
equations cited above (line 18ff.).
With respect to the first case, it is assumed that E contains Ecur, if

MaximumEnd(Ecur) ≤MinimumEnd(E) + Tid, (4.19)

as this implies that both elements are at least mergeable at their end (line 6). This
corresponds to equation (4.17) for the start of cluster elements. In order to achieve
the compliance with equation (4.12) a suitably shortened copy of E is computed,
which is then merged into Ecur.
The shortened copy is obtained using the function CutElement which is outlined

in algorithm 4.7 on the facing page. Given two cluster elements E1 and E2, it
computes a cluster element that is mergeable with E1 while containing a relevant
part of every projection in E2.
Here, two aspects are especially notable. First, it is checked, whether the given

element E2 may directly be used for merging (line 1). This is generally desirable as it
retains as much information as possible from the two elements. Second, if E2 is not
mergeable, a shortened copy is created on the basis of the split operation on clusters
which was introduced in section 4.4 (line 6ff.). Generally speaking, element E2 is
cut at both ends in order to obtain an element whose Start and End correspond
to E1.
Nevertheless, both alternatives imply that Start and End of Ecur may change

subtly after merging it with the resulting element (line 16 in HandleStart). The
reason for this was already discussed at the end of sections 4.4 and 4.2. Additionally,
this may be promoted by the rounding function that is used to compute Start and
End in equation (4.4).
This fact might at first seem problematic given that, in general, there are numerous

elements in S which have to be compared to Ecur.
Regarding the end of Ecur, this is unsubstantiated, as always the most recent

version is used to determine the type of conflict with an active element (line 6).
In contrast to this, cluster elements are only implicitly compared at their start by
means of the sweep iteration. As Start events of cluster elements are processed
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Algorithm 4.7 CutElement(E1, E2)
1: if E1, E2 are mergeable then
2: return E2
3: end if
4:
5: C2 ← cluster associated with E2
6: if Start(E2) < Start(E1) then
7: (Ctmp, C2)← Split(C2, E2,Start(E1)− 1)
8: (Etmp, E2)← GetDescendants(E2)
9: end if

10:
11: if End(E2) > End(E1) then
12: (C2, Ctmp)← Split(C2, E2,End(E1))
13: (E2, Etmp)← GetDescendants(E2)
14: end if
15:
16: return E2

in ascending order, the corresponding conflicts of an element E with Start(E) <
Start(Ecur) are resolved, before processing the Start event of Ecur. Furthermore,
algorithm 4.3 guarantees that

Start(Merge(E1, E2)) ≥ min(Start(E1),Start(E2))

for two arbitrary valid cluster elements E1 and E2 which induces that ∀E ∈ S :
Start(Ecur) ≥ Start(E) even after possible merge operations. Because of these
two facts, no new conflicts with non-active elements occur.
In the case that the conflict between Ecur and E is of the overlap type, the cluster

associated with E is manipulated. To this end, the sort order inherent in the status
structure S is an important factor. The iteration over the elements in S in descending
order of their average end implies that all conflicts of this type are handled after the
above-mentioned merge operations that might change Ecur. This fact is eminent,
as, here, the manipulations to an active element’s cluster are based on Ecur. To this
end, cluster C of active element E is split in a way that the resulting element E1
does not overlap with Ecur and E2 is completely contained in it (line 20ff.).
The cluster associated with E1 is directly added to Vnew. Corresponding to sec-

tion 4.2, it is assumed that a test against the length constraint (4.6) is performed
implicitly when trying to add newly created clusters to V. In the case that a cluster
fails this test, it simply should be discarded.
An explicit version of this test is performed for the cluster of element E2 (line 25).

If it fails, the overlap with Ecur is of negligible length, and the cluster is discarded.
Hence, the performed manipulation corresponds to a shortening of cluster C at its
end. The motivation behind this is similar to the one given in section 4.2 for the
corresponding case of overlapping projections.
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If the test is successful, a containment conflict is obtained which is similar to the
one discussed above. This time, E2 and its corresponding cluster C2 have to be en-
hanced with information from element Ecur and cluster Ccur, respectively (line 26ff.).
It has to be noted that the resolution of overlap conflicts is based on a rather

simple heuristic. The motivation to split clusters of active elements and not the one
of Ecur is solely based on the fact that this fits best into the sweep iteration.
In order to complete the analysis of algorithm 4.6, the Clean operation on clusters

needs to be discussed (lines 32 and 40).
Clusters obtained from previously described manipulations fulfil the valid cluster

set constraints at least locally. The main reason for avoiding a direct inclusion into
the set V, is that they generally are not valid, that is, the constraint given by (4.10)
is violated. In order to resolve overlap conflicts inherent in a single cluster, the
Clean operation is used.
Similar to the algorithm presented in this section, it is implemented using the plane

sweep paradigm, but its manipulations are based on the transformations described
in section 4.2. This is due to the fact that, here, all involved elements are seen to
be repetitions of the same musical section. In general, it is necessary to transform
a given cluster into numerous clusters of shorter elements in order to resolve all
conflicts. That is why a set of clusters is returned from Clean. As essential property
this operation preserves the locally calculated hierarchical structure. This is evident,
as all cluster elements that are created during the processing of a Start event include
at least all relevant information from their containing elements. Due to the similarity
to techniques already described in this chapter, no algorithm is provided explicitly
for the Clean operation.
The presented clustering algorithm successfully transforms a given set of valid

clusters into a valid cluster set. As outlined in figure 4.10, it enforces the valid
cluster set constraints locally in the proximity of the sweep line while the structure
prior to this point is refined or enhanced with consistent information.
The final clustering result for the two running examples of this chapter is depicted

in figure 4.11. This indicates that the algorithm is capable of computing an easily
comprehensible structural overview of a musical piece. Still, some possible improve-
ments are visible. On the one hand, the results contain some redundancy, that is,
clusters whose information is completely described by another cluster. On the other
hand, there are corresponding sequences of cluster elements only separated by very
short gaps which may be seen as a sort of over-fragmentation. These problems are
addressed in a post-processing step which is introduced in section 4.6.
The presented algorithm adopts best practices regarding the sweep paradigm as

the two dimensions inherent in a cluster element are processed separately (cf. equa-
tion (4.15)). Corresponding to section 4.3, the employed Start and End events
and the processing in ascending order of the Start event time implicitly confine the
elements in the status structure to conflicting elements. Furthermore, the design
of the status structure S allows the resolution of conflicts with active elements in
order of their end points which implies that different conflict types are processed
independently.
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Figure 4.10: Intermediate clustering results obtained at 50 (top row), 100 (middle),
and 150 seconds (bottom) during the sweep iteration for (a) the Barry
Manilow example and (b) the Dimitri Shostakovich example. It is eas-
ily visible that conflicts with valid cluster set constraints are resolved
locally at the current event time while preserving and refining the hi-
erarchical structure prior to this point. 57
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Figure 4.11: Valid cluster sets computed by the clustering algorithm for (a) the
Barry Manilow and (b) the Dimitri Shostakovich example. With re-
spect to the valid clusters depicted in figure 4.7, the presented structural
overview is more easily comprehensible while, still, some redundancy
and a possible over-fragmentation are present.

Finally, the time complexity of the given algorithm depends on several factors.
Given a suitable implementation of the dynamic event data structure E , it may be
bounded by O(N logN+NM), whereM is an upper bound for the time complexity
of the HandleStart algorithm. This algorithm has major impact on the overall run
time, and depends itself on the complexity of the SplitValidCluster and Clean
algorithms. While the time complexity of the former was examined at the end of
section 4.4, the Clean operation was said to be virtually similar to this section’s
sweep algorithm, only that it operates solely on a single cluster. Overall, it seems
to be difficult to avoid at least a quadratic time complexity.

4.6 Further Improvements

Although the clustering algorithm outlined in section 4.5 computes valid cluster sets,
in general, the obtained representation of the grouping structure of a musical piece is
not as efficient as possible. On the one hand, some of the resulting information may
be redundant, and, on the other hand, a subtle fragmentation between clusters may
be seen as the consequence of computational deficiencies rather than being inherent
in the musical material. This section introduces two further clustering algorithms
which were developed to alleviate this situation.
Regarding the first aspect, all clusters whose information may be completely de-

scribed by another cluster should be discarded. To this end, two different scenarios
are possible.
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Figure 4.12: Improved clustering results for (a) the Barry Manilow and (b) the Dim-
itri Shostakovich example. Most of the artifacts that were present in
the regular valid cluster sets are resolved. Only the third cluster in
the Dimitri Shostakovich example is redundant. Furthermore, for both
pieces the relevant musical sections were correctly identified. From top
to bottom, the clusters obtained for the Barry Manilow example cor-
respond to the intro, verse, and chorus / outro sections. The second
cluster of the Dimitri Shostakovich example correctly reflects the re-
peating A section of this musical piece.

First, if there are two clusters C1 = {E11 , . . . , E1K} and C2 = {E21 , . . . , E2L},
K ≤ L, and

∃m : [1 : K]→ [1 : L], injective : α1k ∩ α2m(k) = α1k , (4.20)

then, all information provided by cluster C1 is already present in C2.
In a more specific situation, each E1k has an inverse relation to E2m(k) , that is,

α1k ∩α2m(k) = α2m(k) , and the elements contained in C1 are only slightly larger than
their counterparts in C2. In this case, the additional information provided by C1 is
merely negligible. Consequently, one may argue that C1 should be discarded in order
to obtain a cleaner structural overview.
This may be seen as a softening of the identity constraint given by equation (4.5).

To this end, threshold Tid could be re-used for the definition: E1k is slightly larger
than E2m(k) , if and only if α1k ∩ α2m(k) = α2m(k) , and

Start(E2m(k)) ≤ Start(E1k) + Tid ∧End(E1k) ≤ End(E2m(k)) + Tid. (4.21)

The main challenge of this approach is to find an efficient implementation that
avoids the discarding of both versions of a cluster that have a one-to-one relation in
the last-mentioned scenario.
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With regard to the fragmentation problem, it may be assumed that the elements
in cluster C1 are contiguously followed by elements in cluster C2, if and only if

∀E1 ∈ C1 ∃E2 ∈ C2 : MinimumStart(E2)−MaximumEnd(E1) ≤ Tid.

In this case, a similarity cluster consisting of the segments [Start(E1) : End(E2)]
may be seen as a valid replacement for C1. If the relation between the elements in
C1 and C2 additionally exists on a one-to-one basis, C2 should be discarded too.
Of course, this transformation should only be employed in situations where a valid

cluster set can be regained. Furthermore, it should be directly applied in a way that
the remaining set of clusters is free of contiguously followed clusters.
Both of these clustering approaches were implemented in a similar manner to the

sweep algorithm presented in section 4.5. Due to this fact, corresponding pseudo-
code algorithms are not provided.
The serial combination of the three clustering algorithms constitutes the final

algorithmic result of this chapter (cf. figure 4.4). As may be seen in figure 4.12, an
easily comprehensible overview of the hierarchical structure inherent in a musical
piece may be obtained using this approach.

4.7 Implementation Details

All of the above-mentioned algorithms were implemented using the JAVA program-
ming language. First, a framework of classes was developed that is capable of rep-
resenting the objects introduced in section 4.1, such as paths, subpaths, projections,
cluster elements, and clusters, together with elementary manipulation operations
like splitting and merging. On this basis, each of the presented sweep clustering
algorithms was implemented in a separate class. This allows, for example, nearly
arbitrary serial combinations of the clustering algorithms.
JAVA was chosen as implementation language, as it offers some important ad-

vantages over other alternatives. First, as all of the previous analysis steps which
compute the valid path set P are based on Matlab, it was attempted to also employ
the Matlab language for this clustering approach. This soon proved to be an infea-
sible solution, as Matlab generally is not suitable for the type of data manipulations
which are required to efficiently implement the various types of objects and data
structures mentioned above. However, Matlab features a tight integration of JAVA.
In JAVA all sorts of pre-built data structures are directly available from the accom-
panying class library, which allowed an efficient and more meaningful object-oriented
modelling of the problem domain.
This resulted in a framework of around twenty JAVA classes which are bundled

into a single JAVA archive for inclusion in Matlab. All clustering classes employ a
common interface allowing the formation of arbitrary serial combinations of clusters
and a unified input and output. Moreover, this generally allows an easy integration
into other audio structure analysis systems which need not be based on Matlab.
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4.8 Final Notes and Future Work

The methodologies presented in this chapter are all referred to as clustering tech-
niques. To this end, clustering applications in other sciences were studied with the
aim of finding similar approaches.
According to [15] and [33], the clustering method developed in this chapter may

be described as transitive, agglomerative clustering. In order to take advantage of
these techniques, an exact representation of this chapter’s problem domain in the
terms of other clustering approaches has yet to be developed. The most challenging
aspect which has to be modelled is the desired consistency in the output objects as
well as the tolerance towards the threshold Tid described by equations (4.12) and
(4.5), respectively. Corresponding to section 4.1, this model surely needs to based
on the point-wise temporal relations between the projections inherent in a path.
The exemplary results obtained in this chapter indicate that the presented for-

malisation of the clustering problem and its desired outcome (cf. figure 4.1) allows
the modelling of an approximation of the hierarchical structure inherent in a musical
piece. Moreover, the introduced framework of clustering algorithms (cf. figure 4.4)
is capable of computing a corresponding result, generally providing a compact and
easily comprehensible representation of the structure.
To this end, one of the major design principles is to preserve as much information

as possible from the set of paths given as input to the clustering. Another important
aspect is the utilisation of the plane sweep paradigm which minimises the necessary
number of comparisons between the projections of the given paths. This allows
an efficient implementation which is one of the cornerstones facilitating the data
transformations that are required to obtain a hierarchical structure.
Apart from these qualities, the developed approach also features an easily un-

derstandable parameter set whose main purpose is to specify the expected amount
of inconsistencies in the input data. On the one hand, the threshold Tid defines a
tolerance for identical segments (cf. equation (4.5)), and, on the other hand, the
threshold Tlen designates the minimum length of acceptable segments (cf. equa-
tion (4.6)).
Of course, there are still some open problems as well as further possible improve-

ments. First, while as much information as possible is preserved from the given set
of paths, this generally does not imply that always the most relevant data is kept.
With respect to this, a possible improvement is directly evident from the results

obtained in section 3.4. As, in this case, the extraction quality at both ends of a path
is assumed to be similar, it is no longer substantiated to shorten paths or cluster
elements only at their end in order to resolve inconsistencies. On the contrary, this
should be based on the quality of the involved path links. To this end, each path
link needs to be enhanced with its corresponding similarity measure.
For example, the shortening of a path employed in algorithm 4.1 (line 6) could

be implemented as outlined in algorithm 4.8. Here, Start and End operations
on paths are defined similarly to the respective operations for projections given in
section 4.1.
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Algorithm 4.8 Qualitative shortening of a path
1: start← 1
2: end← K
3:
4: while K − end+ start− 1 < Length(π12) do
5: if S(End(P )) < S(Start(P )) then . evaluate similarity matrix
6: start← start+ 1
7: else
8: end← end− 1
9: end if

10: P ← P |[start:end] . redefine P, π1, π2
11: end while
12:
13: C ← {{π1} , {π2}}

Another problem accompanying the split operations described in section 4.2 and
4.4 is due to the step-size constraint for paths. Possible feature index gaps inherent
in projections generally prevent exact split results although projections and cluster
elements are seen to represent continuous segments in a musical piece. This may
affect the run time of the clustering as more Clean operations may be necessary in
order to obtain a consistent result. To this end, the definitions of Start and End
of cluster elements (cf. equation (4.4)) should be revised.
A more architectural problem is the complexity of the the developed hierarchy

of definitions and data structures (section 4.1). This is caused by the fact that the
desired hierarchical result needs to be encoded while still preserving the temporal
point-wise relations inherent in the input data, as these are necessary for transfor-
mations that are invariant to tempo variations. Nevertheless, the above-mentioned
qualitative shortening of overlapping paths or cluster elements is also based on this
point-wise information.
Another relevant factor is the required tolerance towards inconsistencies in the

given set of paths. A simplification of the formal model may be possible if inconsis-
tencies in the input data are resolved before applying the clustering algorithm.
Furthermore, a continuous model of the problem domain might at least clarify the

formalisation given in section 4.1.
A more general question is whether the first-fit heuristic induced by the sweep

paradigm is always a good choice. This heuristic implies, for example, that the
order of the average start points of cluster elements controls to a great extent the
way in which conflicts are resolved.
Finally, there is one problem which is not solvable by improving the presented

algorithms alone. As the whole analysis system is based on repetitions, it is not
possible to identify musical structure which goes beyond that. Apart from heuristic
approaches like the ones presented in [12] and [31], the metric structure of a musical
piece could be analysed to further subdivide identified musical sections.
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5 Evaluation
The techniques and algorithms that were introduced in chapters 3 and 4 were only
evaluated on an exemplary basis. In order to gain more confidence in their perfor-
mance, an automatic evaluation on a larger data set of musical pieces is needed.
In general, the evaluation of the results obtained from an automatic structural

analysis of a musical piece depends on a ground truth reflecting the desired outcome.
Therefore, manual annotations need to be provided for every piece of music in the
chosen test data set. In this context, the manual annotation of a musical piece
is defined as the process of labelling events or scenes with correct descriptions by
an expert listener [13]. Unfortunately, many aspects in music may be described in
several ways. For example, there may be several structural descriptions for a single
musical piece each characterising a different level of abstraction.
Section 5.1 provides insight into these problems and introduces the annotation

method used in this thesis. Correspondingly annotated test data sets are presented
in section 5.2. In section 5.3, evaluation measures that are generally employed by
other researchers are introduced and analysed with respect to their applicability to
this thesis’ problem domain. This results in two performance evaluation procedures
which are capable to quantify the quality of a computed grouping structure of a
musical piece (section 5.4). Finally, the evaluation results for the chosen test data
sets are given and discussed in section 5.5.

5.1 Manual Music Annotation
Manual music annotation is a straining task. With regard to structural analysis,
similar sections in a piece of music have to be identified. Here, every section may be
described by its start and end time (in seconds) together with a label where similar
labels are used to identify musically similar sections. To this end, the similarity
of label strings still has to be defined. Table 5.1 on the next page gives a simple
annotation example for the pop song “Should I Stay or Should I Go” by The Clash
as used in [17].
It can be easily seen that this song consists of two repeating sections, namely verse

and chorus, as well as an introductory section which is not repeated. Unfortunately,
labelling is not always unambiguous [7, 25]. In general, a single manual annotation
of a musical piece solely reflects one level of abstraction, eventually providing only a
single label per instant of time. In fact, the same song might be annotated in several
ways (see figure 5.1).
Sometimes it is not even clear whether two sections should be treated as being

similar or not.
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Table 5.1: Manual annotation of “Should I Stay or Should I Go” by The Clash.

Label Start time End time

intro 0.356009 15.166168
verse 15.166168 40.615873
verse 40.615873 66.448163
chorus 66.448163 89.742857
verse 89.742857 117.315374
verse_instru 117.315374 140.886531
chorus 140.886531 185.213968

For example, the section labelled “verse_instru” in the “Should I Stay or Should
I Go” annotation is an instrumental solo interpretation of the verse and might as
well be identified as an individual instrumental section (see figure 5.1(d)). Thus,
the underscore could be used to delimit alternative section labels, which may all be
allowed as possible solutions in the computed result [25].
Further problems might occur if repeating sections expose large musical variations

such as the introduction of extra measures. Again, multiple annotation possibilities
exist in this case, for example splitting sections into several sub-sections or treating
sections as being similar nonetheless.
The clustering technique presented in chapter 4 computes a hierarchical structural

overview of a musical piece. For a complete evaluation of these structures, manual
annotations reflecting several levels of abstraction are necessary. This could also
alleviate some of last-mentioned problems. However, manually annotating a number
of musical pieces to the minutest detail would mean an enormous effort.
Often, annotations would either end up micro-sectioning a piece if finer musical

variations are respected, or multiple alternative hierarchical structures would need
to be accepted, and annotated, of course.
Nevertheless, many common variations mentioned at the beginning of this section

may easily be computed from simple annotations reflecting only a single hierarchical
level. Annotations available from other sources almost always are of this form too,
as most applications only require a coarse structural overview.
For these reasons, the evaluation method used in this thesis is based on simple

annotations, and common annotation variations need to be computed automatically
during the evaluation process. Furthermore, the annotated sections reflect structur-
ing schemes that are commonly found in literature on music analysis, and generally
represent clearly comprehensible structural elements. Musical variations that are
not sufficiently long to form independent sections are ignored, so that an annotated
section generally captures between 10 to 30 seconds of music. To further simplify
the annotation and evaluation process, alternative section labels, as suggested in
[25], are not employed. To this end, sections are regarded being musically similar,
if and only if their section labels are identical except for any numerical characters.
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(a) intro verse verse chorus verse verse chorus

(b) intro verse chorus verse chorus

(c) intro vc vc

(d) intro verse verse chorus verse instru chorus

Figure 5.1: Visualisation of alternative annotations for “Should I Stay or Should I
Go” by The Clash. (a) Annotation from table 5.1 where “verse_instru”
is interpreted as a regular verse section. (b) Concatenation of two con-
secutive verse sections. (c) Concatenation of two verses and a chorus.
(d) Alternative label for the instrumental interpretation of the last verse.

Due to these simplifications, slightly inferior results may be obtained as computed
hierarchical structures may reflect details not available in annotations. Still, a sat-
isfying approximation of the grouping structure of a musical piece should be able
to explain the previously mentioned annotation variants to a large extent. In turn,
this creates the opportunity to easily re-use the annotations that were produced for
this thesis in other applications, as well as re-using third party annotations in this
evaluation. Consequently, a performance comparison with other music structure
analysis systems should be easier.
In order to produce manual annotations for this thesis, the freely available audio

editor Audacity1 was employed. Here, text marker tracks offer the possibility to
define and label musical sections. This annotation may then be exported to a text
file. Most other popular audio editors should offer similar capabilities. For example,
Wavesurfer2 was used to create the test data set annotations in [17]. In order
to make the annotation text files available to the music structure analysis system,
corresponding import and export functions were developed in Matlab.

5.2 Test Data Sets

In music retrieval, an evaluation test data set consists of a number of digitally
recorded musical pieces along with corresponding annotations. Due to the fact that
most commercially released music may not be shared freely, there is no music re-
trieval test data set that has become as established as similar sets like for example
TREC3 in the text retrieval domain. At most, plain annotations are made avail-
able to the public and the respective audio recordings have to be tracked down
individually by each researcher.
Here, the challenge is to obtain the exact version which is demanded by the

annotation. One of the major disadvantages is, for example, that an audio track
1Audacity audio editor http://audacity.sourceforge.net
2WaveSurfer audio editor http://www.speech.kth.se/wavesurfer/
3Text REtrieval Conference (TREC) http://trec.nist.gov
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that was ripped from a CD using different equipment mostly exhibits a variable
amount of silence at its beginning [13].
In an attempt to relieve this situation the Japanese National Institute of Ad-

vanced Industrial Science and Technology (AIST) has built the RWC (Real World
Computing) Music Database4, which is probably the best known test data set for
music retrieval. It consists of six collections including, among others, several pieces
of popular, jazz, and classical music. Each piece of music is available as a digital
audio recording along with a corresponding MIDI version and a lyrics text file if
applicable. However, this database is only accessible after purchasing a research
license. Therefore, evaluation results which are based on this database are not very
helpful for people that are not directly involved into this research domain. Addi-
tionally, the popular music collection is strongly targeted towards Japanese popular
music. Regarding this thesis, the most prevalent disadvantage is that further anno-
tations as announced in [13] are not yet available, and that they will merely feature
annotations of chorus sections.
An alternative may be the MPEG-7 test set developed by Geoffroy Peeters [26],

which already provides a large collection of pop song annotations. However, this
collection also suffers from the fact that it is exclusively targeted towards commercial
music which cannot be shared along with the annotations. A further alternative
overlooked in research until today might be the steadily growing amount of music
released under a Creative Commons license5. As the smallest common denominator
all available incarnations of this license allow the free distribution of the licensed
work. The largest source of Creative Commons licensed music today is the Internet
Archive6 listing over 10.000 releases of so-called netlabels, that is, record labels that
distribute their music primarily over the Internet. Because of its free nature, it
is the rare exception that commercial music is made available under this license.
Nonetheless, the amount of commercial quality netlabel music is steadily growing
as the netlabel scene tries to establish itself as an alternative to traditional record
labels. Data sets that are based on this license might therefore become a viable
alternative as they circumvent the above mentioned problems.
The performance evaluation in this thesis is based on two test data sets. The

Synchronisation data set contains 56 pieces of classical as well as pop and jazz
music and was previously used in [22]. The annotations for this data set were created
by the author of this thesis following the principles outlined in section 5.1.
Furthermore, another 60 musical pieces constitute the Pop data set which is based

on the annotations used in [17]7 incorporating 14 songs of the above-mentioned
MPEG-7 test suite. While, generally adhering to the established annotation prin-
ciples, this data set suffers from some inconveniences. First, there is no explicit
definition available regarding the similarity of section labels. For example, it is not
clear whether sections labelled with “verse”, “verse_instru”, “verse1” or, “verse2”

4RWC Music Database http://staff.aist.go.jp/m.goto/RWC-MDB/
5Creative Commons http://creativecommons.org
6Internet Archive http://www.archive.org
7Pop data set annotations http://www.elec.qmul.ac.uk/digitalmusic/downloads/#segment
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Table 5.2: Statistics about the number of musical pieces and their annotated struc-
ture in both employed test data sets. The last three columns show the av-
erage number of annotated clusters per musical piece, the average number
of segments in a cluster and the average length of an annotated segment
(in seconds).

Data set Pieces Clusters Segments Length

Pop 60 2.90 3.14 17.36
Synchronisation 56 2.11 3.21 25.33

all should be expected to be musically similar. Furthermore, the analysis system
described in the respective paper identifies sections on the basis of changing states so
that it is not guaranteed that direct repetitions of a similar sections are annotated
separately (cf. the chorus sections given in table 5.1). Nonetheless, the original
annotations are used as is which possibly induces slightly worse evaluation results.
Table 5.2 provides some general statistics on the employed test data sets. The

individual musical pieces contained in both sets are listed in appendix A and B.

5.3 Performance Measures

In order to compare computed analysis results to manual annotations, some kind of
performance measure has to be employed. This measure needs to quantify the quality
of the approximation of the annotated structure that is provided by the computed
results. As the automatic music structure analysis system described in this thesis is
based on repetitions, only repeated sections in a piece of music may be expected to be
identified. Therefore, it is only measured how well annotated repeating sections are
explained by the computed results. Here, for every set of annotated similar sections,
a corresponding set of computed similar sections is identified, and its approximation
performance is measured.
In music structure analysis, three different measures of goodness are widely used.

First, musical structure may be evaluated on the basis of label sequences obtained
from computed and annotated structures (see for example [6], [18], and [27]). Here,
repeated similar sections are mapped to similar labels, and an edit distance is used
to express the difference between both resulting label sequences. For example, an
annotated label sequence of ABAB and a computed structure of ABBAB would
lead to an edit distance of 1, because of an extra insertion of B in the second
sequence. In order to use this method, a common level of abstraction must be found
which allows a meaningful mapping between computed and annotated sections. In
this thesis, this is especially critical, as a computed hierarchical structure must be
compared to simple annotations (cf. section 5.1). As a further disadvantage it is
not possible to quantify the approximation quality of computed sections solely on
the basis of the edit distance.
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Boundary measures are often used additionally in order to circumvent the last-
mentioned problem. In its simplest form, statistics on distances between computed
sections’ end points and closest annotated end points are produced. In a more so-
phisticated approach, only those end points of matching sections that were identified
during the edit distance calculation are compared. It should be obvious that both
measures on their own generally do not allow a meaningful conclusion about the
performance of a music structure analysis system.
A performance measure that is rather popular in information retrieval is the F-

measure [32]. It is defined as the harmonic mean of precision and recall rate, where
the precision rate may be seen as a measure for the exactness, and the recall rate
as a measure for the completeness of the computed result. F-measure performance
evaluations of music structure analysis systems were employed, for example, in [12],
[31], and [18].
In its most basic form it may be used to measure the quality of the approximation

of an annotated section αa by a computed section αc. Here, similar to section 2.4,
segment α = [s : t] denotes a sequence of indices in the feature sequence of an
analysed piece of music. In accordance with the definitions given in chapter 4,

Start(α) := s (5.1)
End(α) := t (5.2)

Length(α) := t− s (5.3)

will be used in the following. Then, for an annotated section αa and a computed
section αc, precision and recall rates are defined as

Precision(αa, αc) := Length(αa ∩ αc)
Length(αc)

(5.4)

and

Recall(αa, αc) := Length(αa ∩ αc)
Length(αa)

, (5.5)

respectively. Here, the intersection αa∩αc is said to be the correctly detected segment
in the computed result. Finally, the F-measure is defined by

F-Measure := 2 ·Recall ·Precision
Recall + Precision . (5.6)

The presented concepts may be easily generalised to annotated and computed sim-
ilarity clusters, that is sets of similar segments (cf. section 2.4). In this case, some
kind of map between both sets of segments must be available, in order to decompose
the evaluation into a corresponding set of segment evaluations.
A carefully chosen F-measure evaluation is capable of combining aspects of exact-

ness and structural completeness found in both measures that were first introduced.
Consequently, the performance evaluation in this thesis is based on this concept.
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5.4 Performance Evaluation Procedure

In general, there is more structure inherent in a musical piece than is evident from
a provided ground truth. In particular, this applies to the performance evaluation
introduced in this chapter. The hierarchical structural overview that is computed
by the clustering algorithm described in chapter 4 is meant to reveal the underly-
ing musical structure to a large extent. Nevertheless, only simple annotations were
established for the test data sets. In general, evaluating the quality of every com-
puted cluster will therefore be unrealistic. However, as explained in section 5.1,
computed clusters should be able to describe the provided manual annotations to a
large extent.
The aim of this performance evaluation is to find the best matching set of com-

puted clusters for every annotated cluster of a musical piece and to calculate an
F-measure for this constellation. On this basis, it is possible to obtain an overall
F-measure for a musical piece and for a whole data set of musical pieces.
As outlined at the end of section 5.3, the F-measure is computed on the basis of

similarity cluster segments. However, the input for the evaluation is a computed
valid cluster set as defined in section 4.1 and a manual annotation given as tabular
data similar to the example in table 5.1. A suitable transformation of a computed
cluster into a corresponding similarity cluster was already presented in section 4.1.
The transformation of a given annotation is also quite simple. The provided time
values are converted into corresponding feature indices, and the segments that con-
stitute a similarity cluster are identified on the basis of the section labels. Here, two
labels are said to denote similar sections if they are equal except for any numerical
characters.
The evaluation procedure is outlined in algorithm 5.1 on page 71. Similar to

the clustering algorithms that were presented in chapter 4, it is based on the plane
sweep paradigm. Thus, the terms and definitions that were introduced there also
apply in this case. The input of the algorithm are the sets V and W of computed
and annotated clusters, respectively. Here, the most conspicuous difference to the
original clustering algorithms is that the involved comparisons are solely based on
similarity cluster segments. Therefore, the implementation does not depend on the
rather complex cluster element data structure.
The results of the evaluation procedure are the two maps BestApproximation

and F-Measure. For a given annotated cluster A, BestApproximation(A) spec-
ifies the set of computed clusters that best match A, and F-Measure(A) gives the
corresponding F-measure. Here, the best matching set of computed clusters is the
set that maximises the F-measure.
To this end, for two similarity clusters A and C, precision and recall rate are

defined as

Precision(A, C) := Length(A ∩ C)
Length(C)

(5.7)
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and
Recall(A, C) := Length(A ∩ C)

Length(A)
, (5.8)

respectively. In this case, for an arbitrary similarity cluster C,

Length(C) :=
∑
α∈C

Length(α) (5.9)

yields a reasonable result, as the segments in the computed clusters and annotated
clusters are all disjoint. The first assertion follows directly from equation (4.10),
and the second holds due to the fact that only simple annotations are used.
This leaves the question, how Length(A∩C) should be defined. In other words, it

has to be specified what correctly detected means given the two similarity clusters A
and C. Of course, this definition should be based on the segments that are contained
in A and C. To this end,

Length(A ∩ C) :=
∑
αa∈A

∑
αc∈C

Length(αa ∩ αc)

would be the simplest solution. However, in this case, similarity cluster C does not
really need to approximate A to yield a high F-measure. For example, a single
segment αc ∈ C could have a non-empty intersection with multiple segments in A.
As the annotation of a musical piece should be reflected by the computed analysis
result, the segmentation given by cluster C should be at least as detailed as the one
given by A. Therefore, in the outlined example, only the intersection with a single
annotated segment should be included in the F-measure calculation. Intuitively, the
annotated segment that has the maximum intersection with αc is the segment that
is approximated by αc. This leads to the following equation

Length(A ∩ C) :=
∑
αc∈C

max
αa∈A

(Length(αa ∩ αc)) . (5.10)

From equation (5.10) follows that

F-Measure(A, C) > 0⇔ ∃αa ∈ A ∃αc ∈ C : αa ∩ αc 6= ∅. (5.11)

In a naive approach, each αa ∈ A needs to be compared to every computed seg-
ment in order to determine the computed cluster C maximising F-Measure(A, C).
In algorithm 5.1, the sweep iteration is used to solve this problem more efficiently.
To this end, a map H : {α ∈ C : C ∈ V} × W → {α ∈ A : A ∈ W} is iteratively

constructed that yields

H(αc,A) :=

argmax
αa∈A

(Length(αa ∩ αc)) ∃αa ∈ A : Length(αa ∩ αc) > 0

ε otherwise
(5.12)

after the sweep. In the given algorithms, H actually contains a second component
that holds the length of the respective intersection.
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Algorithm 5.1 F-measure evaluation
Require: A set of computed clusters V = {C1, . . . , CL} and a set of annotated

clusters W = {A1, . . . ,AL}.
Ensure: BestApproximation : W → P(V),F-Measure : W × {W} → [0, 1]

which give the best matching set of computed clusters for every annotated cluster
and the corresponding F-measure.

1: (E ,Sa,Sc,H, I)← InitEvaluation(V,W)
2:
3: for all e ∈ E do . Sweep
4: αcur ← segment associated with e
5:
6: switch type of e and αcur
7:
8: case Start of a computed cluster segment
9: for all α ∈ Sa do

10: A ← cluster associated with α
11: H(αcur,A)← (α,Length(α ∩ αcur))
12: I(A)← I(A) ∪ {cluster associated with αcur}
13: end for
14: Sc ← Sc ∪ {αcur}
15: end case
16:
17: case Start of an annotated cluster segment
18: A ← cluster associated with αcur
19: for all α ∈ Sc do
20: if H2(α,A) < Length(α ∩ αcur) then . second component
21: H(α,A)← (αcur,Length(α ∩ αcur))
22: I(A)← I(A) ∪ {cluster associated with α}
23: end if
24: end for
25: Sa ← Sa ∪ {αcur}
26: end case
27:
28: case End of a computed cluster segment
29: Sc ← Sc \ {αcur}
30: end case
31:
32: case End of an annotated cluster segment
33: Sa ← Sa \ {αcur}
34: end case
35:
36: end switch
37: end for
38:
39: (F-Measure,BestApproximation)← Evaluate(H, I)
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Algorithm 5.2 InitEvaluation(V,W)
1: E ← sorted set of Start and End events for segments in V,W
2: Sa ← Sc ← {}
3:
4: H : {α ∈ C : C ∈ V} ×W → ε ∪ {α ∈ A : A ∈ W} × N0 with
∀(α,A) ∈ {α ∈ C : C ∈ V} ×W : H(α,A)← (ε, 0)

5:
6: I :W →P(V) with ∀A ∈ W : I(A)← ∅
7:
8: return (E ,Sa,Sc,H, I)

Furthermore, a map I : W →P(V) is constructed that specifies for every anno-
tated cluster A the candidates for the best matching computed cluster using

I(A) := {C ∈ V : F-Measure(A, C) > 0} .

Both these maps and the necessary sweep data structures are initialised in the
function InitEvaluation which is given in algorithm 5.2.
In the sweep iteration in algorithm 5.1, different Start and End events are used

for annotated and computed segments, and segments are active between their re-
spective events. Also, two distinct status structures Sa and Sc are utilised to store
annotated and computed segments that are active. On the basis of this, all inter-
sections may be easily identified in the Start events.
At the start of a computed segment α, only a single annotated segment may be

active. This one is used to create the first real entry for α in H (cf. line 11). If
further annotated segments start while α is active, H is updated in accordance with
equation (5.12) (cf. line 20ff.). Here, the second component of H is used in order
to determine whether an update is necessary. Finally, the construction of I in both
these events is a trivial task.
The function Evaluate which is presented in algorithm 5.3 computes for every

annotated cluster the best matching set of computed clusters and the corresponding
F-measure. This calculation is based on the previously obtained maps H and I.
With respect to this, it has to be explained why a number of computed clusters

should be accepted as an approximation of a single annotated cluster.
Frequently, the computed clusters represent a more fragmented structure than

the one that is given by the annotation. In general, incomplete extracted paths
or inconsistencies in the extracted paths produce this effect. This may lead to a
number of clusters that gain a high precision rate with respect to the same annotated
cluster. On the one hand, several computed clusters may encode different parts of
an annotated cluster, and, on the other hand, there may be clusters with many short
segments of which some are contained in a cluster with fewer, but longer segments.
Consequently, it would not be reasonable to accept only a single computed cluster

as the calculated approximation of an annotated cluster.
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Algorithm 5.3 Evaluate(H, I)
1: call ← dall ← 0 . overall measures
2:
3: for all A ∈ W do
4:
5: for all U ∈P ( I(A) ) do
6: c← d← 0 . measures per annoted cluster
7:
8: for all α ∈ C : C ∈ U do
9: if ∀C′ ∈ U \ {C} ∀α′ ∈ C′ : α′ ∩ α 6= α then

10: c← c+ Length(α)
11: d← d+H(α,A)
12: end if
13: end for
14:
15: f ← CalculateFMeasure(Length(A), c, d)
16:
17: if f > F-Measure(A) then
18: F-Measure(A)← f
19: Computed(A)← c
20: Detected(A)← d
21: BestApproximation(A)← U
22: end if
23: end for
24:
25: call ← call + Computed(A)
26: dall ← dall + Detected(A)
27: end for
28:
29: F-Measure(W)← CalculateFMeasure(Length(W), call, dall)
30:
31: return (F-Measure,BestApproximation)

Algorithm 5.4 CalculateFMeasure(a, c, d)
Require: Length of annotated (a), computed (c), and correctly detected (d) seg-

ments.
Ensure: F-Measure for given values.

1: p← d / c
2: r ← d / a
3: return 2rp / (r + p)
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Therefore, all combinations of computed clusters in I(A) are regarded as best
approximation candidates for the annotated cluster A (cf. line 5). Here, the notation
P ( I(A) ) is used to denote the power set of I(A).
However, it is not a good idea to calculate the F-measure on the basis of all the

segments that are contained in a candidate set of clusters. For example, a segment
that is covered by a longer segment of another cluster in the same candidate set
would yield a too high recall rate. Therefore, a computed segment is only included
in the F-measure calculation if this is not the case (cf. line 9).
The test for the containment relation should, of course, not be completely per-

formed at this point as this would be a rather inefficient solution. For example, in
the implementation of the outlined algorithm, the containment relations are already
determined during the sweep iteration.
Consequently, this evaluation procedure computes the most meaningful approxi-

mation of a given annotated cluster by computed clusters, and the approximation
quality is provided on the basis of the F-measure. Additionally, the lengths of the
evaluated computed segments and of their correctly detected parts are summed up
separately over all annotated clusters in order to compute the overall F-measure for
the musical piece (cf. line 25ff.). The F-measure for a complete data set of musical
pieces may be obtained in a similar fashion.
In many publications, a further structural variation is allowed in the computed

results. As the analysis system described in this thesis depends solely on repetitions,
it is possible that repeating sequences of sections are not correctly recognised. This
corresponds to the situation illustrated in figure 5.1. Without employing further
analysis techniques, it is generally not possible to compute the annotated structure
given in figure 5.1(a). Given correctly extracted repetitions, it is more likely that a
structure corresponding to figure 5.1(c) will be computed.
That is why a second evaluation procedure was developed where certain combina-

tions of annotated clusters are allowed to replace the original clusters. To this end,
the set W is replaced by sets of the form

U ⊂P(W) : ∀A ∈ W ∃1A′ ∈ U : A ∈ A′, (5.13)

where,
∀A′ ∈ U ∃C ∈ V ∃αc ∈ C ∀A ∈ A′ ∃αa ∈ A : αa ∩ αc 6= ∅. (5.14)

The union of segments contained in the annotated clusters of A′ ∈ U is treated as
a single annotated cluster. On the basis of this, the previously described evaluation
is performed for each possible annotation variant U , and the variant yielding the
highest overall F-measure is taken as the evaluation result.
The difference between both evaluation procedures is illustrated on an exem-

plary basis in figure 5.2. Here, an annotated structure of A1B1A2B2 is given, and
segments corresponding to A1B1 and A2B2 constitute the only computed cluster
(figure 5.2(a)).
The first evaluation procedure rates the annotated clusters A = {A1, A2} and
B = {B1, B2} separately, yielding a low precision rate for the computed segments
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A1 B1 A2 B2

(a)

A1 A2

B1 B2

(b)

A1 B1 A2 B2

(c)

Figure 5.2: Evaluation procedures. (a) The top row contains the annotated structure
and the bottom row two segments of a computed cluster. (b) First eval-
uation procedure: The computed cluster is seen to approximate each
annotated cluster individually. (c) Second evaluation procedure: Ap-
proximation of an annotation variant by the computed cluster.

in both cases (figure 5.2(b)). In the second evaluation procedure, the combined
annotated cluster C = {A1, A2, B1, B2} is a possible annotation variant, as there is
a computed segment that has a non-empty intersection with segments in A and B.
In this case, a perfect F-measure is obtained, as for every computed segment the
correctly detected portions in A and B are taken into account (figure 5.2(c)).
While the first described evaluation procedure often leads to unjustifiably low F-

measure values, especially in the case of simply structured pop music, the second
procedure may cause too positive results in some marginal cases where the analysis
system completely fails to compute a meaningful result.
If the previously depicted example had been annotated as A1B1B2A2, the com-

puted cluster would still yield the same evaluation result, while according to the
annotation A1B1 clearly should not be regarded as being similar to B2A2. The
reason for this deficiency is that the originally annotated segments are evaluated
independently in the combined annotated cluster C = {A1, A2, B1, B2}. Because of
this, they are also allowed to appear in arbitrary order in the computed segments. In
reality, this failure should not occur that often, as in this case, differently annotated
musical sections need to be identified as being musically similar nonetheless by the
analysis system.
A possible alternative evaluation procedure might employ the split and roll-up pro-

cess described in [25]. This process is capable of creating structurally corresponding
representations of simple, non-hierarchical annotations and computed results which
allow a direct comparison.
Here, the annotated and computed segments are first split and re-labelled to a

common time-base. Then, consecutive segments in both resulting sequences that
have equivalent labels are conflated again into larger segments leading to the sim-
plest possible common structural representation of both sequences. The F-measure
evaluation is then performed on the basis of this representation.
The main challenge in implementing this process is the necessary adaption to a

hierarchical computed structure. Every abstraction level present in the computed
hierarchy would need to be evaluated on its own, as only a single section label
per instant of time is allowed in the final representation. This also complicates
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Figure 5.3: Visualisation of the results from the (a) first and (b) second evaluation
procedure for “With A Little Help From My Friends” by The Beatles.
Rows that depict annotated clusters (light grey ) are directly followed
by rows of the computed clusters (darker grey ) that constitute the
identified best matching constellation. An overall F-measure of (a) 0.71
and (b) 0.97 was obtained, respectively. As all annotated sections were
correctly identified except for repeating sequences of sections that could
not be separated, an F-measure of 0.97 seems to be reasonable.

the evaluation of combinations of computed clusters that may be easily achieved
using the previously described evaluation procedures. Therefore, a split and roll-up
evaluation procedure was not implemented for this thesis, as the necessary effort did
not seem to justify the prospective improvement in the evaluation precision.

5.5 Results

This sections outlines the performance evaluation results that were obtained for the
two data sets introduced in section 5.2. The aim was to investigate two aspects,
namely the applicability of the music structure analysis system to a broader selec-
tion of musical pieces, and the effects of the methodologies that were introduced in
chapter 3.
To this end, an analysis of both data sets of musical pieces was performed for all

useful combinations of the developed methodologies. The analysis results were then
rated on the basis of the two performance evaluation procedures that were described
in section 5.4.
This yielded precision and recall rates, along with a corresponding F-measure

for each musical piece, as well as over the entire number of pieces in the Pop and
Synchronisation data set, respectively.
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5.5 Results

The analysis of each musical piece was performed with feature resolutions of 1Hz
and 2Hz, and with the combination of 1 and 2Hz on the basis of the multiresolu-
tion approach introduced in section 3.3. Additionally, the path end improvement
(section 3.4) as well as the automatic threshold selection method (section 3.5) were
optionally employed. The obtained paths were then transformed into a hierarchical
structure using the clustering approach that was presented in chapter 4. As clus-
tering parameters (specified in number of features) Tid = 2, Tlen = 6 and Tid = 3,
Tlen = 12 were used for feature resolutions 1Hz and 2Hz, respectively. Therefore,
only those extracted musical sections having a length of at least 6 seconds were
allowed in the results.
Overall values for both data sets are given in table 5.3 for nearly all combina-

tions of these techniques. Further results for the analysis resolution of 1Hz were
omitted as their effect on the analysis is comparable to the situation at a feature
resolution of 2Hz. Moreover, it was decided that a comparison of the clustering ap-
proach from chapter 4 with the original clustering approach of the analysis system
(section 2.4) is not particularly useful on the basis of this evaluation, as the results
obtained using both methods are too different with respect to their expressiveness
and comprehensibility.
With regard to both evaluation procedures, it is visible that the second evaluation

procedure leads to significantly higher precision rates which was to be expected given
the fact that it evaluates more possible mappings between annotated and computed
clusters. As stated in section 5.4, this increase is mostly seen to be substantiated.
The different outcome of both procedures is depicted in figure 5.3 that gives both
evaluation results for a musical piece from the Pop data set. As a similar behaviour
was visible for many other musical pieces, the second evaluation method was chosen
for a further analysis. Moreover, the increase in the precision rate is always lower for
the Synchronisation data set. This is due to the fact that it contains numerous
classical pieces whose musical structure is often more complex than is the case for
pop music.
Unfortunately, the results do not differ significantly between the employed analysis

techniques. Therefore, it is not possible to make a substantiated statement about
the advancements featured by the techniques described in chapter 3. One reason for
this is surely that the data sets were not explicitly developed with respect to this
aim, that is, the musical pieces as well as their annotations do not seem to cover
problematic cases where the newly developed techniques can show their potential.
Furthermore, as mentioned at the end of section 5.2, a number of the employed
annotations do not exactly represent the underlying musical structure which may
cause further random effects on the evaluation measures.
Nonetheless, the obtained results at least support the assumption that the three

techniques developed in chapter 3 by themselves do not have negative effects on the
analysis results. In fact, the combination of a feature resolution of 2Hz and the
automatic threshold selection method gained best results for both data sets.
With respect to the overall performance and the applicability to a broader range

of musical pieces, the results are of an acceptable quality.
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5 Evaluation

Table 5.3: Overall evaluation results for each data set and a selected number of
analysis configurations. Recall (R) and precision (P) rate as well as the
corresponding F-measure (F) are provided on the basis of both outlined
evaluation procedures. For the analysis system, selected combinations of a
feature resolution of 1Hz (1) and 2Hz (2), and the path end improvement
(E) as well as the threshold selection method (T) could be chosen. In the
case of multiple analysis resolutions, the multiresolution approach was
employed.

Evaluation 1 Evaluation 2

Data 1 2 T E R P F R P F

P
op

x 0.71 0.40 0.51 0.74 0.74 0.74
x 0.68 0.47 0.55 0.71 0.76 0.73
x x 0.68 0.50 0.57 0.71 0.83 0.77
x x 0.70 0.45 0.55 0.73 0.77 0.75
x x x 0.71 0.50 0.58 0.73 0.82 0.77

x x 0.69 0.43 0.53 0.75 0.72 0.74
x x x 0.69 0.46 0.55 0.72 0.82 0.76
x x x 0.68 0.43 0.53 0.71 0.78 0.74
x x x x 0.69 0.46 0.55 0.72 0.77 0.74

Sy
nc

hr
on

is
at

io
n

x 0.74 0.56 0.64 0.75 0.86 0.80
x 0.73 0.68 0.70 0.75 0.89 0.81
x x 0.74 0.66 0.70 0.76 0.89 0.82
x x 0.75 0.65 0.70 0.76 0.89 0.82
x x x 0.72 0.62 0.67 0.73 0.85 0.79

x x 0.75 0.63 0.68 0.76 0.89 0.82
x x x 0.73 0.64 0.68 0.75 0.87 0.80
x x x 0.75 0.63 0.68 0.76 0.88 0.82
x x x x 0.73 0.59 0.65 0.74 0.84 0.79
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Figure 5.4: Precision and recall rate for each musical piece in the (a) Pop and (b)
Synchronisation data set obtained from the second evaluation. The
three tested configurations are: 1Hz (top), 2Hz with automatic thresh-
old selection (middle), and the multiresolution approach with 1 and 2Hz
(bottom). As a reference point, an F-measure value of 0.75 is given as a
solid line.
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5 Evaluation

In music structure analysis research, an F-measure of 0.75 is often regarded as
a lower bound for correctly identified musical structures [12, 25]. Although the
evaluation procedure outlined in this chapter is special in some aspects, an empirical
analysis of the evaluation results confirmed that this value is a reasonable choice.
To this end, the overall values for both data sets support the above-mentioned
statement.
The individual results obtained for the musical pieces are depicted in figure 5.4

for three of the tested analysis configurations. Additionally, the exact values may
be retrieved from the tables given in appendices A and B. As is easily visible, the
results differ severely. In fact, F-measures covering the complete range from 0 to
1 were obtained. The first, rather unusual case happened if the path extraction
thresholds were set too rigidly for the musical material. In this case, the automatic
threshold selection method presented in section 3.3 clearly showed its strengths. An
F-measure close to 1 was often obtained for classical music. Pieces of pop music
that employ clear patterns of changing harmonies and whose annotations preferably
consist of longer sections also obtained very high F-measures. Among others, this
was often the case for The Beatles.
Some selected evaluation results are provided in figure 5.5. Note that the given

figures are probably not didactically ideal as the represented mapping from computed
clusters to annotated clusters is based on the first evaluation procedure while the
annotated F-measure is obtained from the second evaluation procedure. The reason
for this is that the given figures are generally easier to comprehend than those
obtained by the second evaluation procedure.
The examples by Prince and Abbey Lincoln are representative for musical pieces

where too many or too few paths were extracted. Here, the second case at least
represents a viable improvement with respect to the analysis using the pre-selected
path extraction thresholds where not a single path was extracted. The Björk and the
second Brahms example also suffer somewhat from a too tolerant path extraction.
But in this case, it is hard even for most human listeners to decide whether two
musical sections should be considered similar or not. In this case, slightly more rigid
thresholds could also have had a more negative effect.
Finally, in order to illustrate that no superior analysis combination could be de-

duced from this evaluation, two figures are given where analysis results obtained
using 2Hz and the automatic threshold selection method are contrasted to the
results obtained using the multiresolution approach with 1 and 2Hz. Figure 5.6
illustrates an example where the first method outperformed the multiresolution ap-
proach, whereas figure 5.7 depicts an example of the contrary case. Both examples
are representative for the most extreme differences that were obtained using the var-
ious analysis combinations. In contrast to this, most musical pieces did not exhibit
significant evaluation performance differences throughout the employed analysis con-
figurations.
Finally, the number of musical pieces combined with the number of varying test

configurations show that the complete music structure analysis system including the
newly developed methodologies is reliably implemented.
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Figure 5.5: Examples ranging from excellent (top left) to not so good (bottom right)
evaluation results. These results were obtained at 2Hz including the
automatic threshold selection method. “The Look Of Love” by Dusty
Springfield (F-measure 0.97), “Hungarian Dances No, 5 in G minor (Al-
legro)” (0.96) and “Hungarian Dances No, 6 in D major (Vivace)” by
Johannes Brahms as interpreted by Scholz (0.76),“It’s Oh So Quiet”
by Björk (0.73), “You And I” by Abbey Lincoln (0.53), and “Kiss” by
Prince (0.43). 81
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Figure 5.6: Evaluation results for “Wannabe” by the Spice Girls. An F-measure
of (a) 0.84 was obtained using the analysis at 2Hz together with the
automatic threshold selection method, and (b) 0.59 was obtained for the
multiresolution approach with 1Hz and 2Hz. The first analysis method
even revealed the finer substructure inherent in the chorus.
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Figure 5.7: Evaluation results for “Can’t Take My Eyes Off You” by Lauryn Hill. An
F-measure of (a) 0.65 was obtained using the analysis at 2Hz together
with the automatic threshold selection method, and (b) 0.89 was ob-
tained for the multiresolution approach with 1Hz and 2Hz. In this case,
the threshold selection method chose too rigid path extraction thresh-
olds, so that the chorus sections of the piece were only marginally iden-
tified.
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6 Application: Path-Constrained Partial
Music Synchronisation

Digital music collections often contain different versions of a single musical work.
This includes recordings of interpretations by varying artists, different edits of a
single recording, as well as various representation formats such as digital audio,
MIDI, or score material. With respect to music retrieval in general and browsing
applications in particular, one important task is to find a temporal alignment of
semantically corresponding events in two versions of the same underlying musical
piece. In particular, audio synchronisation, where this task is constrained to digital
audio recordings, has seen a lot of research in recent years [21].
Although current synchronisation techniques are capable of coping with significant

variations regarding tempo, dynamics, or instrumentation, they mostly rely on the
assumption that the two recordings to synchronise exhibit the same global structure.
However, in real-world scenarios, structural differences are not that uncommon. A
pop song, for example, is generally released in structurally different versions which
are meant to serve the varying needs of radio stations, dance clubs, or home listeners.
In classical music, different conductors often vary the number of repetitions, and
solo parts may contain significant interpretative differences. Consequently, audio
synchronisation techniques should also be robust towards this end.
In this chapter, a combined approach to audio synchronisation is presented which

incorporates further knowledge obtained through structural analysis in order to cir-
cumvent the above-mentioned constraint. This technique, called path-constrained
partial music synchronisation, was first introduced in [22].
Most approaches to audio synchronisation share a great number of analogies with

audio structure analysis algorithms. With respect to this, section 6.1 first presents
a general approach to audio synchronisation and introduces the compound struc-
tural analysis of two audio recordings. On this basis, a so-called path-constrained
similarity matrix for two audio recordings is developed which incorporates various
structural information (section 6.2). This matrix together with a procedure to ex-
tract partial matches which is presented in section 6.3 encompasses the main result
of this chapter. Furthermore, section 6.4 presents a methodology which may be
used to evaluate the performance of this approach together with corresponding re-
sults which were obtained for one of the test sets that was introduced in chapter 5.
Finally, section 6.5 gives a summary of what has been achieved in this chapter,
together with possible future developments in this field.
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6 Application: Path-Constrained Partial Music Synchronisation

6.1 Analogies with Audio Structure Analysis

The most common approach to time-align two digital audio recordings is known as
dynamic time warping (DTW). Similar to audio structure analysis, this technique
employs a transformation of the audio signals into audio feature sequences, a similar-
ity measure to compare these sequences, and an algorithm to extract an alignment
path from a similarity matrix (cf. chapter 2).
In contrast to audio structure analysis, here the similarity measure is used to

compare features from the sequence V := (v1, v2, . . . , vN ) with features from the
sequence W := (w1, w2, . . . , wM ), corresponding to both audio recordings, respec-
tively. In general, the employed measure expresses real similarity, as for example

c(v, w) := 〈v, w〉 (6.1)

for (v, w) ∈ V ×W , which may also be seen as a score value (cf. equation (2.2)). This
results in an (N ×M) similarity matrix, which is defined by S(n,m) := c(vn, vm),
(n,m) ∈ [1 : N ] × [1 : M ]. The aim of classical DTW is to extract a single path
which starts at matrix entry (1, 1), ends at (N,M), and adheres to a step-size
constraint with ∆ := {(1, 0), (0, 1), (1, 1)}. To this end, dynamic programming is
used to compute a corresponding score maximising path. The temporal relation
between feature indices in both sequences which is induced by the obtained path,
then, is seen as the final alignment result. Furthermore, most of the enhancement
approaches introduced in chapters 2 and 3 may be applied to improve the result.
Figure 6.1 depicts two alignment results that were obtained on the basis of a

classical DTW approach. Both alignments are not satisfying as the DTW method
is based on the assumption that the audio recordings do not exhibit structural
differences.
The analysis of structural commonalities and differences between two audio signals

may be easily modelled as a special case of the general music structure analysis of a
single musical piece. To this end, a compound or joint audio structure analysis may
be obtained by treating the concatenation of both feature sequences V and W as a
representation of a single musical piece. Now, if both audio recordings exhibit an
identical musical structure, the resulting structural overview should consist of two
possibly temporally distorted copies of the same structure.

6.2 Path-Constrained Similarity Matrix

In order to obtain an acceptable audio synchronisation between structurally dif-
ferent recordings, a similarity matrix is needed that allows the computation of a
time-alignment which is constrained to semantically meaningful sections. In sub-
stance, this is achieved by incorporating information obtained from a compound
structural analysis as well as information of an ordinary path extraction into the
normal similarity matrix S.

84



6.2 Path-Constrained Similarity Matrix
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Figure 6.1: Classical DTW alignment of (a) a studio take (vertical) and the single
version (horizontal) of “Hey Jude” by The Beatles and (b) a Chailly
and Yablonsky interpretation of “Waltz 2” from “Suite for Variety Stage
Orchestra” by Dimitri Shostakovich. The audio recordings were modified
in order to highlight the synchronisation problems that may occur in case
of structural differences. The obtained alignment is represented as black
path in the corresponding DTW matrices.

Similar to section 3.3, a combination of several similarity matrices is calculated
with the aim of regaining their strengths in the final result while hiding their weak-
nesses. To this end, four similarity matrices are constructed. First, the two similarity
matrices Schroma := 1 − S[w,d] and Senh := 1 − Smin

L are computed with identical
reference parameters w and d, as introduced in section 2.2. Furthermore, paths are
extracted from Senh using the method described in section 2.3, and converted back
into the similarity matrix Spath. Here, all entries corresponding to a path link are
set to 1, and the remaining entries are set to 0. Finally, on the basis of the algo-
rithm described in section 2.4, a global structural overview is constructed from the
set of paths. Then, corresponding to Spath, the obtained similarity clusters are re-
integrated into the similarity matrix Sstruct. Finally, the path-constrained similarity
matrix Spc is calculated as

Spc := 1
6
(Spath + Sstruct) ∗ (Schroma + Senh + 1), (6.2)

where ∗ denotes the point-wise multiplication of matrix entries.
The global structural overview which is incorporated into Sstruct is supposed to

repair those relations which have only been partially extracted as paths. However,
inconsistencies and inaccuracies inherent in the extracted paths may also have nega-
tive effects on the construction of the global structure. Consequently, a combination
of both matrices is used in the factor (Spath + Sstruct), which restricts the non-zero
entries in Spc to entries that are supported by extracted structural aspects.

85
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Figure 6.2: Alignments obtained using the partial matching procedure on the simi-
larity matrix Spc for (a) The Beatles and (b) the Dimitri Shostakovich
example. While the alginment is constrained to musically meaningful
sections it still contains unnecessary jumps in between the repetitions of
sections in both depicted examples.

The combination of Schroma and Senh offers a compromise between the temporal
exactness and the robustness towards musical variations. In fact, (Schroma+Senh+1)
is used, in order to ensure that all entries selected by structural features are non-zero
and weighted by corresponding similarity measures. As the entries of all involved
matrices lie in the range [0, 1], the same applies to the matrix Spc.

6.3 Partial Matching Procedure

The goal of this section is to extract a partial time-alignment between two audio
recordings from the corresponding path-constrained similarity matrix. Here, the
motivation is that if a musical section in one recording does not have a suitable
counterpart in the other recording, it is preferable to have no alignment rather than
having a bad alignment as is typical for classical DTW approaches. Thus, the notion
of a path has to be generalised in order to allow for arbitrarily large gaps. A match
is a path µ = (µ1, . . . , µL) with µl = (nl,ml) ∈ [1 : N ] × [1 : M ], l ∈ [1 : L] which
adheres to a step-size constraint using ∆ := N2. Consequently, both sequences
(n1, . . . , nL) and (m1, . . . ,mL) are required to be strictly monotonic. Furthermore,
a match should align similar and preferably long consecutive segments in the two
given audio recordings. The score of match µ is then defined as

∑L
l=1 Spc(nl,ml).

Similar to DTW, dynamic programming is used to compute a score-maximising
match. To this end, an accumulated similarity matrix D is defined by

D(n,m) := max {D(n,m− 1), D(n− 1,m), D(n− 1,m− 1) + Spc(n,m)} (6.3)
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6.3 Partial Matching Procedure

and D(n, 0) := D(0,m) := 0 for (n,m) ∈ [0 : N ]× [0 : M ]. Here, the maximum score
is given by D(N,M) and an according score-maximising match may be computed
by an ordinary backtracking algorithm.
Here, the path-constrained similarity matrix Spc introduced in section 6.2 plays

an important role as it restricts a match to those matrix entries which correspond
to structural aspects inherent in the musical material. Therefore, a semantically
meaningful match aligning musically similar events may be obtained.
However, the resulting match generally still suffers from fragmentation, that is,

the alignment may jump in between the repetitions of a section in one of the audio
recordings. For example, given the musical sections A1

1B
1 in the first recording,

and A2
1A

2
2B

2 in the second recording, it may be possible that the first half of A1
1 is

aligned to the first half of A2
1, whereas the second half of A1

1 is aligned to the second
half of A2

2. However, it would be more semantically correct to align A1
1 completely

to A2
1 or A2

2.
Figure 6.2 illustrates this procedure on the basis of the two examples given in

figure 6.1. Here, in the Shostakovich example an A section is missing at the start of
the Chailly interpreation (horizontal). The only A section at the start is aligned in
part to the first and second A section in the Yablonsky interpretation.
A cleaning step is used in order to circumvent such fragmentation and to obtain

consecutive runs in the alignment that are as long as possible. To this end, first,
match µ is decomposed into pairwise disjoint path components of maximum length.
Here, two consecutive path links µl = (nl,ml) and µl+1 = (nl+1,ml+1) in µ are
considered to belong to the same path component, if they fulfil

max(nl+1 − nl,ml+1 −ml) ≤ τ (6.4)

for a given threshold τ .
Then, the path component µ1 containing the most path links is successively ex-

tended to the upper right and lower left. To this end, a similarity matrix entry
(n,m) ∈ Spc fulfilling the step-size constraint is sought, for which a corresponding
path link µk = (nk,mk) ∈ µ \ µ1 exists, so that

(|n− nk| ≤ τ ∨ |m−mk| ≤ τ) ∧ Spc(n,m) > ρSpc(nk,mk) (6.5)

for some tolerance threshold ρ ∈ [0, 1]. Here, the first part of the disjunction removes
a possibly unnecessary jump from µ1 to another path component, and the second
part guarantees that the new path link preserves a more or less comparable score.
Path component µ1 is extended iteratively by matrix entries identified in this fashion,
while corresponding path links µk are removed from the original match. If no more
extensions to µ1 are possible, it is removed from the match, and the process is
restarted for the next shorter path component and so on. The set of extended
path components then constitutes the new match µ′. In the implementation of
the described cleaning procedure the parameters are set to τ = 3 and ρ = 0.6,
respectively.
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Figure 6.3: Final alignment result obtained after the cleaning step for (a) The Bea-
tles and (b) the Dimitri Shostakovich example. In both cases musically
similar sections of a maximum possible length are aligned. White dia-
monds indicate the start and end points of musically similar sections.

According to this procedure, the number of path components in the match is
reduced or retained. However, the score of µ′ generally is significantly lower than
that of µ. To compensate for this effect, the positive entries in the similarity matrix
Spc are restricted to connected regions of positive scores that contain at least one
path link of µ′. Here, the connectivity between matrix entries is defined similarly to
equation (6.4). Finally, a match µ′′ is obtained from this matrix using the dynamic
programming approach outlined above. This match represents the final alignment
result.
The final alignments that were obtained for both previously employed examples

are given in figure 6.3.

6.4 Experimental Results
Similar to chapter 5, the evaluation of the developed synchronisation procedure is
based on manually annotated musical pieces. To this end, different interpretations,
mixes, or cover versions of the same underlying musical piece are used as a starting
point. In order to extend the number of possible test cases, structural manipulations
to these original recordings are computed on the basis of the annotations. Here,
insertions and deletions of possibly consecutive musical sections are used that have a
duration of at least 20 seconds. Then, an audio synchronisation between two different
and possibly modified audio recordings is computed by the algorithm outlined in this
chapter.
The audio synchronisation performance is evaluated on the basis of the path com-

ponents inherent in a computed match. To this end, the manual annotations of
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6.5 Final Notes and Future Work

both recordings are utilised in order to determine whether a path component aligns
musically similar sections. Here, a section is said to be part of the match, if more
than half of it is covered by the corresponding projection of the match. Further-
more, as a second criterion, the distance between an end point of a path component
and the similarity matrix entry corresponding to the end of the outermost two mu-
sically similar sections covered by that component is measured with respect to the
maximum norm. Then, a computed match is said to be correct, if all of its path
components solely align musically similar sections. If, additionally, there is no end
point distance that exceeds a given threshold Tbias, the match is said to be strongly
correct.
On the basis of these performance measures, the described synchronisation algo-

rithm was tested on 128 different synchronisation pairs which resulted in 318 path
components [22]. Using Tbias = 3 as the bias threshold, 81% of all matches were
correct, and 44% were even strongly correct. A detailed presentation of the obtained
results together with sonifications of the computed alignments is available online1.

6.5 Final Notes and Future Work

In this chapter a new audio synchronisation technique was introduced, which is
capable of computing a meaningful alignment between two digital audio recordings
even in the presence of global structural differences.
To this end, general music structure analysis is employed to identify musically

similar parts in both audio recordings as well as musical sections that are missing
from one of both recordings. In order to be robust towards a great a amount of
musical variation, a combination of several similarity matrices is computed, the
path-constrained similarity matrix Spc (section 6.2).
Among others, it is based on two matrices that are obtained from a joint structural

analysis of both audio recordings. On the one hand, a matrix representing identified
repetitions which enforces direct musical similarities, and on the other hand a matrix
representing the clustering result of the joint structural analysis which is supposed
to repair similarity relations that are missing from the first matrix.
Furthermore, a flexible time-alignment procedure was developed in order to avoid

bad alignments in the case of global structural differences which is typical for classical
DTW methods. With regard to this, a technique based on dynamic programming
is used to extract a match that aligns similar consecutive segments that are as
long as possible in both audio recordings (section 6.3). One important aspect of
this approach is the restriction of the extracted alignments to those entries in Spc

which correspond to common structural aspects inherent in both musical pieces.
Moreover, a post-processing step is introduced to enforce alignments of possibly
long consecutive segments.

1Path-constrained partial music synchronisation results http://www-mmdb.iai.uni-bonn.de/
projects/partialSync
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6 Application: Path-Constrained Partial Music Synchronisation

The performance of the suggested synchronisation technique was evaluated on
a large test data set (section 6.4). The obtained results testify to a good syn-
chronisation performance especially in the presence of global structural variations.
Nonetheless, there are still some aspects in the described system that may need
further development.
One improvement which is directly eminent, is to employ the advancements to gen-

eral music structure analysis that were introduced in chapter 3 and 4. With regard
to this, common structural patterns in audio recordings should be identified more
accurately which should substantially improve the similarity matrix corresponding
to the clustering result of the joint analysis.
Given a suitable music structure analysis system, it may even be possible to pri-

marily base the synchronisation technique on the clustering result of the joint struc-
tural analysis. An approach based on the longest common subsequence problem
(LCS) may be employed to identify a best matching sequence of common musical
sections in two audio recordings. On the basis of this information, simple classical
DTW techniques may be used to also obtain an exact alignment within these struc-
tural components. As a preliminary test, a naive implementation in Matlab showed
promising results with simple audio recordings. In the future, a more sophisticated
implementation may be based on the algorithm outlined in [20].
Finally, it is a remaining task to characterise the musical parts that could not be

aligned, that is, musical sections that are missing in one of the recordings. To this
end, the result of the joint structural analysis may be used. With a similar approach,
it should even be possible to compute an alignment between audio recordings that
employ temporally rearranged global structures.
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7 Summary and Future Work

The topic of this thesis was the automatic structural analysis of music material. The
aim of such an analysis is to automatically deduce structural information inherent
in a musical piece from a corresponding digital audio recording.
The desired type of information may be described as a grouping structure, that

is, a possibly hierarchical subdivision of the musical piece along the time domain
into musical sections such as motifs, phrases, or musical themes.
The foundation of this thesis was an existing audio structure analysis system

which was presented in [23] and [21]. In contrast to most other available systems, it
was able to correctly deal with a broad range of musical variations, for example in
dynamics, timbre, execution of note groups, and tempo progression.
Nonetheless, it lacked some desirable qualities. On the one hand, the analysis

results were highly dependent on the chosen audio feature resolution. On the other
hand, it was often difficult to interpret the finally obtained results because of unre-
solved overlaps between identified musical sections.
With regard to the first point, the aim of this thesis was the development of

a multiresolution approach which allows a structural analysis that simultaneously
incorporates audio features of multiple resolutions. Here, the hope was that this
allows the identification of all possible structural aspects at the same time.
Furthermore, an improvement of the structural quality of the final result was

aspired. To this end, a methodology that is capable of computing an easily compre-
hensible approximation of the hierarchical structure inherent in a musical piece was
the desired result.
One of the cornerstones in the processing of the original analysis system was the

computation of a matrix representing the amount of similarity between any two short
frames of time in the underlying musical piece. During the course of this thesis it
quickly became apparent that this was the key to a multiresolution analysis.
To this end, a methodology was developed that allows the incorporation of struc-

turally relevant information from a lower resolution similarity matrix into a higher
resolution matrix (chapter 3). On the basis of this approach, it was possible to
combine the robustness towards musical variation that is typical for an analysis at a
lower resolution with the exactness inherent in features of a higher resolution. This
effect could also be verified on the basis of experimental results. Furthermore, this
approach can be easily integrated into the original analysis system.
A further weakness in the original system concerned the exactness at the end of

an identified repetition as it was only estimated on the basis of a simple heuristic. A
technique similar to the above-mentioned multiresolution approach was developed
to circumvent this deficiency. This time, information from the similarity matrix of
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the reversed musical piece was incorporated into the matrix that was actually used
for the identification of repetitions. In this case, the obtained exemplary results were
also promising.
Moreover, automatic threshold selection methods were examined in order to allow

an automatic adaption of the parameters that are relevant to the identification of
repetitions in the actual musical piece. This proved to be necessary as the previously
employed set of fixed parameters was not capable of covering all music material.
Experiments indicated that in the cases where the predefined values worked well, the
proposed method achieved comparable results. In most other cases, the automatic
approach yielded much better results.
In this thesis, the main effort went into the improvement of the clustering step

of the analysis system (chapter 4). To this end, a formalisation of the problem
domain was introduced that defines the connection between the desired hierarchical
structural result and the set of identified repetitions of a musical piece. With respect
to this, a clustering approach on the basis of the sweep paradigm was developed that
performs a corresponding transformation into an easily comprehensible, hierarchical
structural overview. This is one of the most important achievements of this thesis
as other analysis systems generally do not offer this feature.
In order to gain more confidence in the performance of the developed methodolo-

gies, an automatic evaluation on a larger data set of musical pieces was performed
(chapter 5). It was based on a ground truth that only reflected a single level of struc-
tural abstraction per musical piece which is typically the case for musical structure
test data sets. Here, a performance evaluation procedure needed to be established
that was capable of judging the quality of a computed hierarchical structure with
respect to this information. Because of these facts, the developed evaluation algo-
rithm needed to be more powerful than would normally be expected, as a suitable
mapping from the simple ground truth to the computed hierarchical structure needs
to be calculated.
For the performance evaluation, two test data sets were employed containing over

100 musical pieces in total. The annotations for the Synchronisation data set
were created by the author of this thesis for the performance evaluation employed in
[22]. As an external resource, the Pop data set was utilised which was established for
another research publication that had a slightly different focus. Unfortunately, the
obtained overall results did not indicate significant improvements for the approaches
introduced in chapter 3. This is mainly due to fact that the employed musical pieces
were not explicitly chosen with respect to this application. Moreover, for some
musical pieces, the ground truth was not as detailed as would have been necessary to
highlight the profits obtained by the above-mentioned improvements. Nonetheless,
the obtained results are very promising, as, besides most classical pieces, a great
number of pieces of pop music were analysed successfully.
As an application of the described audio structure analysis system, an audio syn-

chronisation algorithm was introduced (chapter 6). While, generally, synchronisa-
tion algorithms are built on the assumption that the musical material to be syn-
chronised employs a common structural form, this is often not the case in reality.
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Music structure analysis may be applied to the concatenation of two digital audio
recordings in order to detect common structural patterns. On the basis of this
information, a synchronisation procedure was presented that aligns musically similar
sections while omitting the alignment if one of the recordings misses a section. In
this case, a performance evaluation on the basis of multiple structurally differing
interpretations of a number of musical pieces yielded promising results.
Automatic music structure analysis is a vivid research field. Although the method-

ologies presented in this thesis improve the originally given analysis system with re-
spect to its accuracy as well as the quality of the extracted musical structure, there
are still several possible improvements.
First, many of the described techniques may be improved. With respect to the

the ending of identified repetitions, some experiments showed that the incorporation
of the reversed similarity matrix sometimes has too much influence on the overall
quality of the extracted repetitions. A possible improvement was already outlined
at the end of chapter 3. More effort seems to be necessary to obtain a threshold
selection method that really works universally. Here, the presently favoured method
should at least be justified on a more theoretical level. Furthermore, it may even be
plausible to try a completely new approach to identify repetitions from a similarity
matrix, for example, on the basis of an artificial neural network. Regarding the
developed multiresolution approach, a further improvement may be achieved if the
analysis resolution could be automatically chosen with respect to the underlying
music material. To this end, onset, tempo, and rhythm detection systems may be
employed.
With respect to the proposed clustering approach, improvements are possible in

all fields. On the one hand, the efficiency and accuracy of the system may be greatly
improved, if formalised constraints are more explicitly enforced and if information
that is additionally available like the quality of the path links is exploited. On
the other hand, the complexity of the developed methodology may be discouraging,
so that it should possibly be detached from the task of coping with inconsistencies
inherent in the input data. These inconsistencies could probably already be resolved
in an earlier stage of the analysis system.
Apart from these direct improvements to the developed approaches, the analysis

performance may be greatly enhanced by incorporating information on the basis
of other audio features. This may even allow a characterisation of non-repeating
musical sections or a more detailed characterisation of repeating sequences of musical
sections. Furthermore, the analysis of music that does not exhibit clear harmonic
or melodious patterns which are presently preferred by the analysis system would
surely improve. To this end, onset and timbre features may be employed.
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A Pop Data Set

Table A.1: Musical pieces in the Pop data set. For each piece, the F-measure from
the second evaluation procedure is provided for three tested configura-
tions: 1Hz (denoted as 1 in the column header), 2Hz with automatic
threshold selection (2T), and the multiresolution approach with 1 and
2Hz (12) (cf. chapter 5).

F-measure

Artist Title 1 2T 12

a-ha Take On Me 0.87 0.94 0.95
Alanis Morissette Head Over Feet 0.63 0.71 0.60
Alanis Morissette Thank U 0.62 0.52 0.39
Beastie Boys Intergalactic 0.74 0.50 0.69
Björk It’s Oh So Quiet 0.80 0.73 0.88

Black Eyed Peas Cali To New York 0.90 0.77 0.82
Britney Spears ...Baby One More Time 0.55 0.75 0.64
Chicago Old Days 0.96 0.98 0.98
Chumbawamba Tubthumping 0.53 0.65 0.46
Deus Suds And Soda 0.57 0.69 0.67

Eminem Stan 0.78 0.50 0.58
Gloria Gaynor I Will Survive 0.65 0.69 0.84
Madonna Like A Virgin 0.91 0.90 0.89
Michael Jackson Bad 0.80 0.88 0.71
Michael Jackson Black Or White 0.58 0.59 0.67

Nick Drake Northern Sky 0.64 0.74 0.80
Nirvana Smells Like Teen Spirit 0.59 0.82 0.58
Norah Jones Lonestar 0.87 0.90 0.85
Oasis Wonderwall 0.85 0.75 0.68
Portishead Wandering Star 0.78 0.88 0.85

Prince Kiss 0.56 0.43 0.57
R.E.M. Drive 0.66 0.66 0.61
Radiohead Creep 0.76 0.60 0.60
Seal Crazy 0.46 0.53 0.50
Simply Red Stars 0.86 0.91 0.77
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F-measure

Artist Title 1 2T 12

Sinead O’Connor Nothing Compares 2 U 0.69 0.54 0.63
Spice Girls Wannabe 0.77 0.84 0.59
The Clash Should I Stay Or Should I Go 0.61 0.70 0.80
The Cranberries Zombie 0.50 0.60 0.57
The Monkees Words 0.79 0.84 0.96

The Beatles A Day In The Life 0.85 0.89 0.89
The Beatles All I’ve Got To Do 0.79 0.84 0.86
The Beatles All My Loving 0.86 0.96 0.95
The Beatles Anna (Go To Him) 0.91 0.88 0.83
The Beatles Being For The Benefit Of Mr. Kite 0.89 0.92 0.89

The Beatles Devil In Her Heart 0.84 0.84 0.87
The Beatles Don’t Bother Me 0.79 0.88 0.89
The Beatles Fixing A Hole 0.79 0.89 0.97
The Beatles Getting Better 0.66 0.83 0.65
The Beatles Good Morning, Good Morning 0.68 0.84 0.71

The Beatles Hold Me Tight 0.88 0.93 0.89
The Beatles I Saw Her Standing There 0.79 0.89 0.74
The Beatles I Wanna Be Your Man 0.91 0.96 0.81
The Beatles It Won’t Be Long 0.91 0.89 0.94
The Beatles Little Child 0.74 0.64 0.66

The Beatles Lovely Rita 0.00 0.38 0.38
The Beatles Lucy In The Sky With Diamonds 0.89 0.89 0.89
The Beatles Misery 0.85 0.96 0.94
The Beatles Money (That’s What I Want) 0.75 0.66 0.68
The Beatles Not A Second Time 0.97 0.98 0.98

The Beatles Please Mister Postman 0.51 0.69 0.50
The Beatles Roll Over Beethoven 0.66 0.79 0.46
The Beatles Sgt. Pepper’s Lonely Hearts Club Band 0.83 0.89 0.90

The Beatles Sgt. Pepper’s Lonely Hearts Club Band - - -(Reprise)1

The Beatles She’s Leaving Home 0.93 0.91 0.91

The Beatles Till There Was You 0.91 0.93 0.96
The Beatles When I’m Sixty-Four 0.94 0.98 0.98
The Beatles With A Little Help From My Friends 0.92 0.97 0.96
The Beatles Within You Without You 0.79 0.63 0.71
The Beatles You Really Got A Hold On Me 0.82 0.94 0.93

1This musical piece did not contain an annotated cluster.
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B Synchronisation Data Set

Table B.1: Classical musical pieces in the Synchronisation data set. For each
piece, the F-measure from the second evaluation procedure is provided
for three tested configurations: 1Hz (denoted as 1 in the column header),
2Hz with automatic threshold selection (2T), and the multiresolution
approach with 1 and 2Hz (12) (cf. chapter 5).

F-measure

Musical Piece Interpretation 1 2T 12

Ludwig van Beethoven, Piano
Sonata No. 17 “Sturm-Sonate”
(op. 31:2)

Barenboim 0.99 0.99 0.99

Gilels 0.99 0.99 0.99

Pollini 1.00 0.99 0.99

Ludwig van Beethoven, Symphony
No. 5 in C minor (op. 67:1)

Bernstein 0.99 0.96 1.00

Karajan 0.95 0.90 0.90

Kegel 1.00 1.00 1.00

Scherbakov [Liszt Version] 0.93 0.94 0.94

Sawallisch 0.94 0.86 0.99

Johannes Brahms, Hungarian
Dances No. 5 in G minor (Allegro)

Ormandy 0.72 0.89 0.88

Scholz 0.84 0.96 0.88

Johannes Brahms, Hungarian
Dances No. 6 in D major (Vivace)

Bernstein 0.83 0.86 0.83

Scholz 0.78 0.76 0.72

Antonín Dvorák, Symphony No. 9
“From the New World” (op. 95)

Francis 0.97 0.93 0.97

Maazel 0.97 0.82 0.96

Edvard Grieg, Peer Gynt Suite
No. 1 (op. 46)

Beecham 0.55 0.65 0.52

Gunzenhauser 0.55 0.48 0.60

Karajan 0.53 0.53 0.49

Felix Mendelssohn, A Midsummer
Night’s Dream, Wedding March

Levine 0.82 0.86 0.68

Tate 0.75 0.78 0.85
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F-measure

Musical Piece Interpretation 1 2T 12

Dimitri Shostakovich, Suite for
Variety Stage Orchestra, Waltz 2

Chailly 0.92 0.93 0.91

Yablonsky 0.86 0.79 0.71

Antonio Vivaldi, Concerto No. 1,
“La primavera” (Spring) - Allegro
(RV 269, op. 8:1)

Mae 0.42 0.47 0.44

Nishizaki 0.50 0.55 0.74

Perlman 0.36 0.66 0.68

Zukerman 0.43 0.45 0.55
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Table B.2: Popular musical pieces in the Synchronisation data set. For each
piece, the F-measure from the second evaluation procedure is provided
for three tested configurations: 1Hz (denoted as 1 in the column header),
2Hz with automatic threshold selection (2T), and the multiresolution
approach with 1 and 2Hz (12) (cf. chapter 5).

F-measure

Artist Title 1 2T 12

The Beatles Help! 0.89 0.84 0.88
The Beatles Help! [live] 0.74 0.88 0.88
The Beatles Hey Jude 0.75 0.75 0.65
The Beatles Hey Jude [studio run-through] 0.86 0.92 0.94
The Beatles Strawberry Fields Forever 0.78 0.81 0.83

The Beatles Strawberry Fields Forever 0.89 0.83 0.88[Take 1]

The Beatles Strawberry Fields Forever 0.84 0.92 0.97[Take 7 and Edit Piece]
Ben Harper Strawberry Fields Forever 0.74 0.78 0.80
The Beatles Yesterday 0.91 0.91 0.95
The Beatles Yesterday [live] 0.85 0.85 0.85

Paul McCartney Yesterday 0.89 0.88 0.95
Buffalo Springfield For What It’s Worth 0.90 0.70 0.53
Shantel & Sergio Mendes For What It’s Worth 0.31 0.50 0.60& Brasil’ 66
Public Enemy He Got Game 0.63 0.58 0.58
Nena Irgendwie, Irgendwo, Irgendwann 0.78 0.89 0.90

Nena feat. Kim Wilde Anyplace, Anywhere, Anytime 0.88 0.93 0.88
Jan Delay Irgendwie, Irgendwo, Irgendwann 0.92 0.93 0.93
Dusty Springfield The Look Of Love 0.94 0.97 0.97
Diana Krall The Look Of Love [live] 0.56 0.65 0.50
Stevie Wonder You And I 0.61 0.78 0.65

Abbey Lincoln You And I 0.00 0.53 0.00
Gloria Gaynor I Will Survive 0.64 0.80 0.86
Cake I Will Survive 0.76 0.67 0.62
Carl Carlton Everlasting Love 0.67 0.70 0.88
Jamie Cullum Everlasting Love 0.70 0.72 0.74
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F-measure

Artist Title 1 2T 12

Radiohead High & Dry 0.76 0.70 0.79
Jamie Cullum High & Dry [live] 0.74 0.72 0.62
Kylie Minogue Hand On Your Heart 0.39 0.81 0.57
José González Hand On Your Heart 0.92 0.94 0.94
Barry Manilow Can’t Take My Eyes Off You 0.90 0.81 0.91
Lauryn Hill Can’t Take My Eyes Off You 0.58 0.65 0.89
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