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A round egg can be made square
according to how you cut it.

Japanese proverb 1
Introduction

1.1 Problem Setting

Music segmentation in its full generality is the task of dividing musical audio data into
sections, i.e. finding a mapping from time indices to some set of labels that satisfies a
pre-imposed and application-dependent criterion. One might, for instance, think of a
decomposition of a song into natural parts such as chorus, verse, bridge, etc. However,
music segmentation could also mean dividing a song into segments that correspond to
single notes or chords. Finally, a segmentation could also be based on the instrumenta-
tion of a song, i.e. discriminate between parts that feature different instruments.

In most cases, the segmentation we called ‘natural’ would be the ideal result of a music
segmentation method since this kind of segmentation would correspond to the perceived
structure of music. While for popular music the segmentation into chorus, verse, etc.
is evident in most cases, structure gets more complicated in classical music, where even
musicologists can debate over the ‘right’ segmentation of a piece.

To avoid subjectivity, we will focus on pieces with unambiguous structure, i.e. mostly
popular music. As an example, the rock song Rock and Roll Queen by The Subways,
fulfilling the criterion of structural disambiguity, is segmented as follows:

Start time (s) End time (s) Segment label
0 19.7 intro
19.7 47 chorus
47 67 verse
67 95 chorus
95 115 verse
115 129 interlude
129 152.8 chorus
152.8 168.1 ending

Table 1.1: Example natural segmentation of Rock and Roll Queen
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1.1. PROBLEM SETTING
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Figure 1.1: Plots of human segmentations for Rock and Roll Queen, where regions of same color share
the same segment label. (a) natural segmentation (b) segmentation based on perceived timbre (c)
harmonical segmentation based on played chord.

Figure 1.1 shows different human segmentations of a song. As with most pictures in this
thesis, time progresses in seconds along the x-axis. Furthermore, equi-colored regions
correspond to time intervals that share the same segment label. In the first segmentation,
labels correspond to chorus, verse, etc., while the second segmentation takes into account
only the instrumentation of the song. Finally, the third segmentation has been obtained
by considering the sequence of chords played in the song.

Observing that most songs in popular music exhibit a quite clear partition into cho-
rus, verses, etc. that is reflected in timbral, rhythmical and harmonical qualities of the
constituents of this partition, we try to use these features as a foundation on which to
build segmentation methods. In a certain way, these properties provide a way of ap-
proximating the previously mentioned and not properly defined ‘natural segmentations’,
making a computational approach possible in the first place. However, by choosing this
approximation, we make the following assumption to musical structure:

Assumption 1.1 (Homogeneity Assumption). Every segment is characterized by intrin-
sic timbral, rhythmical and/or harmonical properties that are given within the segment,
but don’t occur in other segments.

Of course, methods building on this model assumption are likely to fail on pieces that
don’t fulfill it. For instance, one might think of classical piano music, where timbral
properties will change insignificantly over a piece, rhythm plays only a minor role and
the harmony within a theme can change arbitrarily. The more complex segment structure
of this type of music is based on repetitions rather than intrinsical properties, yielding
the following alternative model assumption:

Assumption 1.2 (Repetition Assumption). Segments are characterized by specific se-
quences of feature characteristics that repeat within a piece. Especially, a completely
inhomogeneous sequence of time frames can be called a segment whenever this sequence
is repeated at least once in the piece.
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1.2. MATHEMATICAL FORMULATION

1.2 Mathematical Formulation

Definition 1.2.1. An audio file A in general is a waveform representation of audio
data with a certain duration T. Neglecting temporal discretization for now, we reduce an
audio file to its temporal domain A = [0, T ) ⊂ R. Imagine this interval as a timeline
of the audio file, as can be seen in Figure 1.2, where A = [0, 16).

Definition 1.2.2. For any audio file, we fix a finite set of labels Y with y ∈ Y being
some string. In our example, we have Y = {A, B}. Since Y is finite, we can always find
a bijection Y → {1, . . . , K} with K ∈ N being the label count.

Definition 1.2.3. A segment S within an audio file A is a pair consisting of a spanned
interval I(S) = [s, t) ⊆ A and some segment label L(S) ∈ Y. In Figure 1.2 the four
segments S1, S2, S3, and S4 are present, e.g. S1 with I(S1) = [0, 4) and L(S1) = A.

Definition 1.2.4. A segmentation S of an audio file A is a set of segments {S1, . . . Sl}
whose spanned intervals partition A, i.e. they are pairwise disjoint and furthermore
I(S1) ∪ . . . ∪ I(Sl) = A. For a given segmentation S, the set of segment boundaries
B(S) is defined as the set of points in time that have two adjacent segments Si and Sj:

B(S) = {x ∈ A | ∃ Si, Sj : I(Si) = [s, x) ∧ I(Sj) = [x, t)}

In our example, B(S) = {4, 8, 11}. Now, we introduce the segmentation function as an
alternative way of describing a segmentation. Note that this definition is equivalent to
the previous one if no subsequent segments in a segmentation share a common label.

Definition 1.2.5. The segmentation function S ′ : A → Y is a total function mapping
from A to labels. Segments are connected sets in which S ′ stays constant, i.e. for every
segment S ∈ S it holds that ∀x ∈ I(S) : S ′(x) = L(S). When identifying A, B with 1,
respectively 2, we get the segmentation function plotted in Figure 1.2.

Definition 1.2.6. For any segmentation S and each label y ∈ Y, the cluster Cy is
defined as the union of the spanned intervals of all segments labeled as y. Formally:

Cy =
⋃

S∈S : L(S)=y

I(S) = {x | S ′(x) = y}

2

3

A B A B
0 2 4 6 8 10 12 14 16

0

1

A B A B
0 4 8 11 16

time (seconds)

la
b

e
l

Figure 1.2: (bottom) example audio file of 16 seconds length with segmentation having Y = {A, B}
(top) corresponding segmentation function S ′ with labels on y-axis.
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1.3. CURRENT AND POSSIBLE APPLICATIONS

1.3 Current and Possible Applications

In general, any application that relies on structural information about music benefits
from music segmentation at least in that it can be used as a pre-processing step for
subsequent algorithms. As it turns out, a vast number of such applications exist, among
which we present only a selection in this section.

Of course, automated segmentations are unlikely to replace their human-annotated coun-
terparts, but in applications involving several thousands of audio files, the personal effort
needed to create a human segmentation for each file is too high, thus creating a need for
automatic music segmentation.

Maybe the most evident application of music segmentation is intra-piece navigation:
Opposed to commonly known media players, where navigation within a piece is possi-
ble only by selecting a time position to play back from, this navigation method allows
for more intuitive navigation features, such as a ‘next chorus’ button or a visual repre-
sentation of the song structure as seen in Figure 1.1 and Figure 1.3. While this could
significantly improve usability of live DJ applications, such as the system described in
[2], musicologists could also benefit from intra-piece navigation since especially classical
recordings often feature very long tracks that lack cue points.

An existing prototype for a music player supporting intra-piece navigation is a system
called SmartMusicKiosk developed by Goto and described in [10]. Furthermore, we im-
plemented MultiStructure, a simple plugin within the SyncPlayer framework, described
in [5], allowing for intra-piece navigation according to multiple segmentations. A screen-
shot of this plugin can be seen in the right part of Figure 1.3, showing it during playback
of a simple audio file that has been segmented by a human in the first row and by an
algorithm in the second row. Clicking on the colored rectangles allows for jumping to
the corresponding segment during playback.

Figure 1.3: Intra-piece navigation systems: (left) SmartMusicKiosk implemented on a tablet PC,
reproduced from [10], (right) SyncPlayer with MultiStructure plugin showing two segmentations.

Based on segmentation, one can also solve the task of music summarization, where
one tries to extract a small excerpt from a piece that represents the whole piece well,
which for popular music often equals to chorus detection. The latter is of great use for
online music stores where databases consisting of millions of songs need to be processed
automatically to provide preview clips.
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1.3. CURRENT AND POSSIBLE APPLICATIONS

While homogeneity-based music segmentation is an interesting problem on its own, its
practical importance will be rather found in the pre-processing steps of music information
retrieval applications, since the output of a successful segmentation will consist of seg-
ments that are intrinsically homogeneous. Subsequent information retrieval algorithms
can then process each segment under this assertion.

For instance, homogeneity-based music segmentation can be used to improve compar-
ison of different songs. Consider an example song A consisting of several segments
S1, S2, . . . Sn in a certain order and another song B that consists of exactly the same
segments, but in a different order. Human listeners would immediately recognize B as
a remix of A and therefore assign high similarity to this pair of songs. However, when
considering DTW-based approaches for comparison, these songs would be judged very
dissimilar as there is no possibility of aligning the songs with a high match. When de-
composing both songs according to homogeneous parts and comparing these parts, the
correspondence between the individual parts can be recognized.

Building upon this segment-level dissimilarity of songs, music segmentation could find a
possible application in DJ assistance tools. If the similarity values of segments of a
large set of songs are known, one could automatically compute a sequence of songs such
that each song ending matches the intro of the subsequent song, yielding a seamless mix
of songs in a playlist, as visualized in Figure 1.4. In this idealized playlist consisting of
three songs, transitions, as depicted by red arrows, occur only between segments that
have high similarity, indicated by equal colors.

Figure 1.4: Seamless mixing in DJ applications: transitions (red arrows) between songs occur only
between similar intro and ending parts (same color).

When considering harmonical qualities of the audio file, homogeneity-based music seg-
mentation corresponds to chord detection, i.e. the homogeneous clusters in such a
segmentation will correspond to parts of the music that have roughly the same harmonic
content. By comparing this content to a previously determined set of chord templates,
the clusters can even be labelled according to the prevailing chord.

Furthermore, homogeneity-based music segmentation can be used as a preprocessing
step for repetition-based segmentation in order to reduce an audio file to a sequence
of segment labels. Considering again harmonical properties, a song could for instance be
reduced to a sequence of chords, reducing the amount of data needed to be stored in a
database intended for music information retrieval and speeding up retrieval tasks based
on brute-force operations on self-similarity matrices.

7



1.4. RELATED WORK

1.4 Related Work

Being a very fundamental problem behind many questions in music information retrieval,
music segmentation has received early attention by researchers in this field. Generally,
solution strategies can be divided into repetition-based and homogeneity-based methods
according to the model assumption chosen. In the literature, these methods are often
equivalently called sequence-based, respectively state-based methods.

Furthermore, some authors discriminate between music segmentation and music struc-
ture analysis by defining music segmentation as the task of finding only boundaries be-
tween segments, whereas music structure analysis is defined according to our definition
of music segmentation in Section 1.1.

A precursor of music segmentation, as presented in [4] by Cooper and Foote, focussed
on automatic music summarization as described in the previous subsection. Here, a
fixed-length subinterval of a song with maximal average similarity to the rest of the song
is extracted out of the self-similarity matrix S of the song, which was introduced by the
same authors in [7]. The average similarity score for a segment is computed as the mean
value of the submatrix S(I, :). In Figure 1.5, we see a self-similarity matrix to the left
and three average similarity scores sl(x) for intervals of different lengths l = 10, 20, 30
starting at x. The maximum of each curve represents the optimal excerpt start. Since
this approach can only identify segments of fixed length that repeat sufficiently often
within a song, we can classify it a repetition-based approach.

Figure 1.5: Music summarization, as reproduced from [4]: (left) Self-similarity matrix for MFCCs on
The Magical Mystery Tour, (right) average similarity of intervals of length 10 (dashed line), 20 (solid
line) and 30 (dotted line) seconds to the rest of this song.

In their paper [8], the same authors introduced the novelty-based approach to music
segmentation we will encounter in Chapter 5.2. Here, the homogeneity assumption is
used to produce an intermediate segmentation which is then in turn segmented by the
repetition assumption. In this method, homogeneity-based segmentation is used as a
preprocessing step for repetition-based music structure analysis.
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1.4. RELATED WORK

In [9], that appeared in the same year, Goodwin and Laroche use linear discriminant
analysis (LDA) to project features into an a priori learned feature subspace. For such a
projected feature sequence, they compute boundaries by means of dynamic programming
under the homogeneity assumption. As they note, the LDA feature mapping can be con-
sidered a way of introducing a priori information into the dissimilarity measure between
features. However, as they don’t provide evaluation results, it can’t be concluded that
learning a feature subspace provides an improvement to music segmentation.

Building upon previous papers, Levy and Sandler introduce an approach to music seg-
mentation in [13] that builds on Hidden Markov Models. In their paper, they assume
that timbre in musical audio files is generated by a Gaussian mixture model, i.e. ev-
ery segment has a characteristic set of states, each generating a Gaussian distribution
of feature vectors. A musical audio file can then be regarded as having an underlying
sequence of states that generates the feature sequence we can observe. Assuming the
Markov property of the state transitions, meaning that the probability of every state
transition depends only on the current state and on no previous history, this feature
generation model can be viewed as a HMM. By training a HMM with a fixed number of
states to the feature sequence and decoding this sequence with the trained HMM, the
most probable sequence of timbre states can be computed, as we did in Figure 1.6 for
the first 95 seconds of the song Rock and Roll Queen.

HMM state path
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Figure 1.6: (top) Human segmentation for the first 95 seconds of Rock and Roll Queen, (bottom)
sequence of HMM states decoded from a 40-state HMM trained on timbre features.

However, this sequence doesn’t yet represent the final segmentation. Instead, the local
distribution of states for every point in the feature sequence is computed by a local
histogram. To obtain this, the sequence of states is smoothed with a window of fixed
length and the resulting sequence of distributions is clustered by an algorithm that
resembles the EM-algorithm, which can be again thought of as a generalization of the
K-means algorithm. In general, the approach can be therefore seen as a homogeneity-
based method.
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1.5. ORGANIZATION OF THESIS

1.5 Organization of Thesis

Inspired by our modularized implementation of the methods presented in this thesis, we
follow the path of an input audio file through a music segmentation algorithm, i.e. we
start at the tail of the leftmost arrow in Figure 1.7, proceeding through the segmentation
pipeline, until finally ending up as a segmentation.

audio
file

feature
extraction

feature
sequence clustering

algorithms segmentationf extraction algorithms

feature
evaluation

overall
evaluation

Figure 1.7: Schematic illustration of modularized music segmentation as considered in this thesis

The different stages we pass along this way, depicted as colored boxes, correspond to
chapters and the ordering of chapters corresponds to the ordering of the boxes in x-
direction. The part concerning clustering algorithms receives special attention and there-
fore two chapters, as it constitutes a main part of this thesis. The following list gives a
rough overview of the contents of each chapter:

• In Chapter 2, we explore the problem of feature extraction, i.e. we are given
an audio signal and try to find a representation of this signal that allows for
music segmentation by modelling musical properties that could be subject to the
homogeneity assumption.

• In Chapter 3, we discuss methods for feature evaluation. These methods will
help us in the process of deciding which features to choose for subsequent use.

• In Chapter 4, time-ignoring clustering algorithms are introduced. These
algorithms try to find clusters in the feature data but neglect temporal information
contained in the feature sequence.

• Building upon the algorithms described in the previous chapter, Chapter 5 deals
with time-dependent clustering, where temporal information is used to improve
music segmentation.

• In Chapter 6, we present detailed evaluation results for a selected set of audio
files and interpret the results of different algorithms on this set while also presenting
musical interpretations for the results.

• Finally, Chapter 7 contains the conclusions and hints to future work.
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1.6 Contribution

The main contribution of this thesis lies in the modular structure used to tackle the
problem of music segmentation. This modularization enables for comparison of differ-
ent algorithms on different feature types and especially demonstrates the performance
influence of refinements on feature and/or algorithm design.

This modular framework for music segmentation was implemented in the prototyping
language MATLAB, yielding a possibility of processing large sets of input songs auto-
matically and therefore enabling us to perform evaluation on typical musical audio data.
Furthermore, many ideas for segmentation algorithms and improvements to already given
algorithms can be implemented quickly in this framework.

Furthermore, we introduce the notion of feature evaluation in Chapter 3, which in some
sense puts the cart before the horse, since instead of measuring the quality of a segmen-
tation result when using an algorithm that is given a feature sequence, we rather try
to measure the extent of feature separation within a feature sequence when segmented
according to a reference segmentation. This approach yields two algorithm-independent
evaluation scores each having their benefits and drawbacks.

By using agglomerative clustering as a segmentation algorithm, we explore the possi-
bilities of hierarchical segmentations in homogeneity-based clustering. Agglomerative
clustering algorithms yield dendrograms, i.e. tree-like graphical representations of the
hierarchical structure that can be found in an audio file. However, this clustering method
depends heavily on the cluster dissimilarity function chosen and further work is needed
to construct more meaningful dissimilarity functions, especially with respect to musical
interpretations of cluster dissimilarity.

Building upon standard agglomerative clustering, we introduce time-dependency in ag-
glomerative clustering by restricting the possible choices for merging different clusters
and by manipulating the input to agglomerative clustering. The resulting clustering
algorithm is then sped up by means of dynamic programming, yielding a simple yet
efficient segmentation algorithm.

Furthermore, we introduce a new method for computing novelty functions and show that
it has a sound statistical interpretation. Though theoretically not equivalent, we show
that the results obtained by this method are comparable to another novelty detection
method proposed in [8].

Last but not least, we present detailed evaluation results for a selected set of musi-
cal audio files, yielding indicators for the practical utility of our methods and musical
interpretations for the results obtained with different algorithms on different features.
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Colors, like features, follow
the changes of the emotions.

Pablo Picasso 2
Feature Extraction

2.1 Introduction

2.1.1 Musical Motivation

The process of transforming an audio file into a more meaningful representation that
facilitates subsequent processing by measuring musical properties is referred to as feature
extraction. Within the music segmentation framework, we consider three feature types
to incorporate musical information that allows for homogeneity-based segmentation:
timbre, tempo and chroma features.

Recalling the homogeneity assumption defined in Section 1.1, we consider an audio file
to fulfill this assumption with respect to a musical property, such as timbre, if both of
the following requirements hold:

• The characteristics of this property, that should vary over an audio file, allow for
discriminating different true segments

• The characteristics of the property have low variance within a true segment

The timbre of a sound, also called tone color, is a musical variable denoting the tonal
qualities a sound features in its frequency spectrum apart from its pitch, i.e. the loudness
distribution of harmonics. Accordingly, two tones of different pitch can still share the
same timbre. However, two tones played by different instruments, e.g. by a piano and
an electric guitar, don’t share the same timbre. In the context of music segmentation,
we will give only rough approximations to timbre and can therefore reduce the timbre of
a sound to the instrumentation of this sound. The musical motivation for using timbre
features is also given by the fact that musical structure often correlates with instrumen-
tation in popular songs, as our detailed evaluation in Chapter 6 will show along some
examples from different genres. Therefore, in popular music different instrumentations
will likely correspond to different segment types and furthermore the instrumentation
within segments is likely to stay constant.

13



2.1. INTRODUCTION

As the musical definition of rhythm is very complex and incorporates different temporal
scales featuring different types of rhythms, we consider only tempo features. The tempo
of a sound is the frequency a beat or some regular rhythmical pulse occurs in this sound.
For popular music, we don’t expect tempo features to provide useful information as the
tempo within such songs often stays constant over different segment types. For classical
music, we expect tempo features to yield better results than timbre features, as musical
form in classical music often correlates with tempo indications.

The last musical property we consider, the chroma of a sound, finally abstracts from
timbre and tempo in order to consider a sound to be a set of pitches. In this definition,
pitches are considered only modulo octave equivalence, meaning that C1 and C2 are
equivalent with respect to chroma. In general, we don’t expect chroma features to
provide useful information for homogeneity-based clustering, except for very simple songs
featuring a correlation between harmonies and segment labels. However, this correlation
would imply the existence of large parts without any harmonical changes, which is very
unlikely even in popular music.

2.1.2 Remarks on Feature Sequences

From the computational perspective, feature extraction methods compute feature se-
quences X = (x1, . . . , xN ) from audio files, where each feature vector xi is a row
vector in a feature space X , which in our case can be interpreted as R

d for some
dimension d. Considered as a matrix, a feature sequence is an l × d matrix with time
progressing within columns and feature vector dimensions progressing within rows. We
also allow to consider a feature sequence as a set of feature vectors in our notation.

Note that X is a finite sequence of N vectors, whereas the temporal domain of an
associated audio file A = [0, T ) is a time interval. This is explained by the fact that
feature extraction also consists of temporal discretization, i.e. the domain is divided into
N intervals for which a feature point is computed each.

Every feature vector xi ∈ X carries information extracted from a small interval Wi ⊂ A
with a certain window length w that is assumed to be constant. In general, the ensemble
of all intervals Wi is no partition of A, since we allow subsequent subintervals to share a
common interval, the overlap interval Oi = Wi∩Wi+1 �= ∅ of length o, again assumed to
be constant for all i. Building upon these definitions that apply to all feature extraction
methods we are going to introduce in this chapter, we also define the feature rate
f = N

T of a feature sequence X of length N for an audio file A = [0, T ) as the ratio of
the number of features in X to the length of the audio file. Furthermore, we define the
overlap ratio as the ratio o

w of the overlap length to the window length.

Since this will facilitate notation later on, we also introduce the notion of a discrete
audio file. In this definition we set the domain of an audio file to a finite set of N indices
in order to clarify the correspondence between feature sequences and audio files.

14



2.1. INTRODUCTION

Definition 2.1.1. A discrete audio file A′ is defined as A′ = {1, . . . , N} ⊂ N. This
definition is similar to Definition 1.2.1, where audio files were introduced that featured
intervals as their temporal domains. To facilitate notation, we will denote A′ by [1 : N ].

Given the feature rate f , we can map time indices from a feature sequence X of length
N and time indices from a discrete audio file A′ = [1 : N ], to these of a continuous
counterpart A by considering the injective mapping dc : [1 : N ] → [0, T ) defined as

dc(i) = i − 1
f

= (i − 1) T

N

The converse mapping cd : [0, T ) → [1 : N ] is defined as

cd(t) = 
f · t� + 1 =
⌊

N

T
t

⌋
+ 1

Note that due to the existence of these mappings, discrete audio files and continuous
audio files are almost equivalent. In subsequent sections, we will therefore use the
discrete formulation whenever we consider time progressing in time indices, which we
also call frames. The continuous formulation will be used whenever time is considered
to progress in seconds, e.g. in plots or in human reference segmentations.

All other definitions in Section 1.2, i.e. the notions of segments, segmentations, segmen-
tation functions, and clusters, carry over to this discrete setting when considering the
following two changes:

• The spanned interval of a segment S is a discrete grid of values I(S) = [s : t].

• The set of segment boundaries of a segmentation S is the following set:
B(S) = {x ∈ A | ∃ Si, Sj : I(Si) = [s : x − 1] ∧ I(Sj) = [x : t]}

15



2.2. NAIVE SPECTRUM FEATURES

2.2 Naive Spectrum Features

First of all, we introduce naive spectrum features. These simple spectrum-based features
serve as a baseline against which we will compare more advanced features. Though
rudimentarily, they already allow for measuring timbral properties within a time window
and illustrate the basic ideas common to the more interesting features. In the MPEG7
standard, a similar feature is known as AudioSpectrumEnvelope, described in [3], where
also an enhancement of this feature, the AudioSpectrumProjection is presented. We will
return to this feature in Section 2.3.

In order to compute naive spectrum features from an audio signal, one first needs to
compute a spectrogram of the signal, i.e. a sequence of Fourier spectral vectors indicating
the evolution of the frequency distribution over an audio file. This can be done easily
with a discrete short-time Fourier transform (STFT) that computes the spectrum within
small windows which we choose to be Hann windows of length 50 ms with an overlap value
of 1

4 . We discard the phase information provided by the STFT. For further information
on spectrograms and Fourier transforms, we point to [14].

Motivated by the observation that human perception of pitch follows a logarithmic law,
the spectrogram is now processed by an exponential re-binning of the frequency axis,
transforming the previously linear axis into a log-frequency axis. The central frequency
ci and the bandwidth wi of each bin are computed as follows:

ci = 80 · 2
i−1
12 Hz wi = ci · 2

1
12

For signals with a sample rate of 22 KHz, this yields a log-spectrogram with 85 log-
frequency coefficients, starting at 80 Hz and ranging up to the Nyquist frequency of 11
KHz. The y-axis of this log-spectrogram roughly approximates perceived pitch.

In a second step, the amplitude values in the log-spectrogram are also mapped to a loga-
rithmic scale in order to approximate the equally logarithmic perception of loudness. We
choose the following mapping, where xmax denotes the maximum of all log-spectrogram
values over the whole signal:

x �→ log
(

1 + 10 · x

xmax

)

Figure 2.1 shows the intermediary results of the extraction process for naive spectrum
features on the song Rock and Roll Queen. The spectrogram obtained after the rescaling
described in the previous paragraph can be seen in the first subplot.

Now, the log-spectrogram is convolved with a Hann window of size s along the frequency
axis. This convolution smoothes the features along this axis and condenses the energy
of frequencies in a frequency bin of width s to one single weighted average. We choose

s = 2
⌊85

12

⌋
= 14
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Figure 2.1: Feature extraction steps for Rock and Roll Queen: (a) spectrogram with log-scaled
frequency axis and amplitude, (b) spectrogram smoothed with Hann window along y-axis, (c) 12-
dimensional feature sequence after binning

in order to smooth the log-spectrogram in such a way that each y-unit is influenced by
approximately 1

12 of all log-frequency coefficients in the spectrogram.

From the resulting smoothed log-spectrogram, as plotted in the second subplot of Figure
2.1, we now choose 12 rows corresponding to frequency bins in such a way that the first
and last bin have center frequencies of 80 Hz, respectively 6834 Hz, and the difference
between center log-frequencies of any two consecutive rows is constant. Then, we discard
the remaining rows to obtain a condensed log-spectrogram for 12 frequency bins that have
equal distance on the log-frequency scale, which implies that the ratio between the centers
of two subsequent frequency bins is constant. The resulting condensed spectrogram can
now be considered as a sequence of 12-dimensional feature vectors, each describing a
roughly binned spectrum of the signal in a window of about 50 ms length. The concrete
number of rows (12) is chosen in order to facilitate comparison of naive spectrum features
to other features.

The result of this feature extraction is plotted in the third subplot of Figure 2.1 along
with white segment boundaries taken from the human annotation. As we notice, the
features yield a clear distinction between chorus, intro and verse segments. In total,
naive spectrum features condense the whole spectrum into 12 bins in order to give a
rough estimate of the evolution of timbral qualities over time.
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2.3 MFCC Features

In this section, we will present the Mel Frequency Cepstrum and the resulting feature, the
Mel Frequency Cepstrum Coefficients (MFCCs), a more sophisticated way of measuring
musical timbre that was developed in the context of speech processing.

To obtain MFCC features, an STFT of the audio signal, as described in the previous
section, is computed first, with amplitudes again being rescaled logarithmically. Then,
components of the resulting spectral vectors are binned according to the mel scale, a
psychoacoustic model for perceived pitch. This is achieved by using a set of 40 frequency
bins whose frequency responses are plotted in Figure 2.2. The result of this spectral
binning is a sequence of 40-dimensional spectral vectors.
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Figure 2.2: Filter responses for each mel frequency band, plotted s.t. each color corresponds to one
band. Note that the x-axis is scaled logarithmically. Figure produced with [15].

The basic idea underlying MFCC features is that, after this preprocessing step, the
resulting spectral vectors can be represented in another basis. By projecting the spectral
vectors into a lower-dimensional basis that has a useful interpretation in terms of signal
processing, we hope to extract timbral properties of the music.

This idea is also common to the AudioSpectrumProjection features described in [3]. Here,
a feature sequence consisting of d′-dimensional AudioSpectrumEnvelope feature vectors
is transformed by principal compenent analysis (PCA): First, a d-dimensional linear
subspace of Rd is computed that minimizes the mean approximation error to the origi-
nal vectors when projected into this subspace. Then, AudioSpectrumProjection feature
vectors are computed as projections of the original feature vectors onto this subspace.
As in general d < d′, the projection step can be considered as a data compression step.

While this interpretation in terms of data reduction is valid for AudioSpectrumProjection
features, the basis transformation performed in the computation of MFCC features is
motivated by a common model of human speech assuming that speech is the result of a
filtering process involving a carrier signal produced in the vocal tract which is convolved
with a filter function arising in the mouth. Following common practice, we transfer the
speech processing motivation for MFCC features to the music processing setting, however
noting that the behaviour of MFCC features in the presence of multiple instruments is
unclear.
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2.3. MFCC FEATURES

Furthermore, we note that in the model assumption underlying MFCC features, both
filter and carrier signal can vary over time, but they are assumed to be constant within
a single STFT window. Convolution with the filter in the time domain corresponds
to a multiplication with the Fourier-transformed filter in the frequency domain given
by the STFT. Therefore, each spectral vector can be considered as the componentwise
multiplication of a spectral vector obtained from the carrier signal and a spectral vector
corresponding to the Fourier transformation of the convolution kernel. Furthermore, as
we take a component-wise logarithm, the multiplication is transformed to an addition.

Now, we are ready to give the interpretation of the basis change performed in the com-
putation of MFCC features. By the Fourier transform and the subsequent application
of the logarithm on the spectral vectors, we have transformed the filter application to
a simple vector addition. In order to separate the carrier signal from the filter, we now
have to decompose the spectral vectors, each of which can be regarded as a sum of a
carrier and a filter component, into their single components, as we are interested only
in the filter component.
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Figure 2.3: 40 DCT basis vectors, plotted as columns arranged along x-axis, s.t. the gray value at
(i, j) indicates the weight that is assigned to the i-th mel band by the j-th DCT vector. Figure produced
with [15].

At this point, the discrete cosine transform (DCT) is applied in order to provide exactly
this kind of decorrelation. The DCT is taken on the spectral vectors and represents
every vector as a linear combination of DCT basis vectors, as given by Figure 2.3, where
every column corresponds to a DCT basis vector. Note that the first DCT basis vectors
vary slowly over the frequency domain, whereas the last vectors feature high-frequent
changes. By representing the spectral vectors in this basis, the spectrum is decomposed
into 40 cosine basis vectors with increasing frequency. Now, we assume that the carrier
signal is found in the higher coefficients, as it features overtones that are not present
in the filter signal, and overtones create a comb-like pattern in the spectrum which is
found in the higher DCT basis vectors.

Finally, by discarding the upper coefficients of the DCT-transformed spectral vectors,
as motivated above, along with the first coefficient corresponding to the average value of
features, we obtain 12-dimensional MFCC features. The implementation of the feature
extraction process is based on the MA Toolbox, cf. [15]. Feature sequences for MFCCs
can be seen in Chapter 6.
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2.4 Tempo Features

Apart from timbral qualities, music also has rhythmical properties arising from the fact
that music contains impulses, such as note onsets, played in a temporal succession.
Furthermore, in most music a steady pace of impulses of different intensities can be
found: the beat. For instance, a sequence of equidistant impulses in which every fourth
impulse is louder than the other impulses has the famous 4/4 beat. The nontrivial task
of determining the correct beat of music is referred to as beat tracking.

While more complex rhythmical structures than the beat exist, we restrict ourselves to
the tempo, an even simpler concept. We choose this simplification due to robustness
concerns that arise when considering complex rhythmical structures. For this, we neglect
the rhythmical accentuation induced by different intensities of the impulses and only
consider the temporal distance between impulses, yielding a period length T , whose
inverse 1

T describes the frequency of impulses and is measured in beats per minute
(BPM).

In order to compute tempo features, an audio file first has to be scanned for note onsets.
Following the explanation in [11], we do this by first computing the STFT, yielding the
same starting point as plotted in the first subplot of Figure 2.1 in Section 2.2, i.e. a
sequence of spectral column vectors that can also be considered as a set of amplitude
row vectors (signals) for every frequency bin.
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Figure 2.4: Tempo features for a click track with increasing click frequency: (a) onset signal for click
track, (b) Fourier-based tempogram, (c) cyclic Fourier-based tempogram, (d) autocorrelation-based
tempogram, (e) cyclic autocorrelation-based tempogram. Reproduced from [11]

20



2.4. TEMPO FEATURES

Now, for every frequency bin, a novelty measure is introduced that measures the amount
of change in the amplitude signal corresponding to this frequency bin. This novelty
measure is computed by taking the discrete derivative of the amplitude signal, yielding
high values at onsets, i.e. points in time with strong amplitude increases. By summing
the positive parts of these novelty measures over all frequencies, the novelty measures are
condensed into a single onset signal that is supposed to be high at note onsets. Subplot
(a) of Figure 2.4 shows an onset signal for an audio file consisting of clicks whose distance
decreases linearly over time. One could theoretically identify peaks in onset signals to
get a binary notion of onsets, but following [11], we proceed with two other approaches.

By computing the STFT of the onset signal in windows of a significantly higher length
than in the previous application of the STFT, periodicity patterns in the onset signal
can be revealed. For the onset signal in the first subplot of Figure 2.4, we obtain the
spectrogram plotted in subplot (b). We notice that harmonics of the beat frequency also
produce peaks in the STFT. This is a natural effect caused by the fact that, if a sine
wave with frequency f has peaks coinciding with the peaks in the onset signal, a sine
wave of frequency k · f for k ∈ N also has this property. We would like to suppress this
effect in order to reduce ambiguity in tempo features.

Before doing so, we first present another method of extracting periodicity information
from the onset signal which employs the local autocorrelation of signals obtained by
convolving subsignals in windows of about 6 seconds length with temporally shifted
copies. More precisely, an onset signal s(x) is convolved with the shifted signal s(x −
t), where t indicates a temporal offset, and the signals are restricted to the window
mentioned above. Due to this kind of convolution, T -periodic signals will exhibit high
autocorrelation for t ≈ T . By considering f = 1

t , period lengths can be transformed
to beat frequencies. The autocorrelation values for the click track introduced in Figure
2.4 are plotted in subplot (d). A similar tempo confusion as described above arises,
as autocorrelation-based features also feature peaks in the subharmonics of f , i.e. the
frequencies 1

k ·f for k ∈ N, due to the fact that any T -periodic signal is also k ·T -periodic,
which will cause high autocorrelation values at these multiples of T . Again, we wish to
reduce this effect.

To this goal, a postprocessing step is proposed in [11] that enables grouping of harmonics
corresponding to the same underlying beat frequency. First, the beat frequency axis is
rescaled logarithmically, yielding a constant distance of c on this axis between all fre-
quencies f1, f2 that have f1 = cf2. Then, the beat frequencies are binned in a way similar
to the binning in chroma features, as described in the next section, by expanding the
notion of octave equivalence to beat frequencies: Arbitrary beat frequencies f1, f2 are
octave equivalent if f1 = 2kf2, and every set of frequencies with pairwise octave equiva-
lent constituents, e.g. {. . . , 220, 440, 880, . . .} is condensed to a single bin by adding up
the tempo features along the rows corresponding to frequencies in this set.

The resulting cyclic Fourier-based and autocorrelation-based tempo features are finally
plotted in subplots C, respectively E of Figure 2.4.

21



2.5. CHROMA FEATURES

2.5 Chroma Features

Chroma features measure the harmonic content of a musical audio file, i.e. the signal
energy in subbands consisting of frequencies corresponding to musical pitch classes. This
yields a sequence of 12-dimensional chroma feature vectors such that every dimension
corresponds to a pitch class in the equal-tempered scale. Again, we give only a brief
overview and refer to [14] for a more detailed exposition.

Compared to naive spectrum features, chroma features are similar in the sense that they
measure the energy of an audio signal in certain frequency bins. However, while for
naive spectrum features, the bins were chosen to give rough indicators for timbre, the
bins chosen for chroma features capture musical pitch, therefore creating a big difference
between these feature types.

In order to extract chroma features, a set of 120 filters is introduced that extract from
an audio file the subbands corresponding to musical pitch, with filter i corresponding
to note i in the numbering specified by the MIDI standard. The center frequency fi of
each pitch is computed by

fi = 2
i−69

12 · 440

Plugging in the pitch A4, which has number 69 in the MIDI standard, cf. [14], we get
the expected f69 = 440. For A3 with MIDI number 57, we have f57 = 220. Note that
the ratio of the two frequencies equals 2, since they span an octave, making them octave
equivalent.

The audio signal is filtered with the 120 filters each, yielding 120 subband signals. For
every subband, the short-time mean squared power is computed by squaring the subband
signal and then convolving it with a rectangular window of length w. This process
yields 120 subband energy signals that are now condensed into 12 signals by adding up
all signals corresponding to the same note modulo octave equivalence, i.e. the signal
corresponding to the note C is the sum of the subband energy signals corresponding to
C0, C1, C2, . . ., C9. Finally, the 12 signals can be interpreted as a feature sequence of
12-dimensional chroma vectors, as plotted for several songs in Section 6.1.

This information in general won’t be useful for homogeneity-based clustering, since even
very simple pop songs feature an alternation of at least 2 chords in most segments, as we
will see in Subsection 6.1.1. However, chroma features can be used to demonstrate the use
of music segmentation as a preprocessing step by clustering not towards a segmentation
representing the musical form but rather towards a chord-level segmentation in which
segments correspond to intervals without harmonical changes. Furthermore, since most
segment boundaries feature a harmonical change, a homogeneity-based segmentation
approach on chroma features is likely to find most of the true segment boundaries, but
also many false boundaries.
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3
Feature Evaluation Methods

We now try to measure the quality of features, i.e. their utility in a subsequent clustering
step. Note that we are not striving for a feature evaluation step that could be used to
select features during execution of a segmentation algorithm. Instead, we are trying to
identify promising features in the ‘design phase’ of our segmentation algorithm. In this
phase, we are given a human reference segmentation for every audio file along with a
sequence of features that we wish to evaluate against the human reference.

audio feature
feature
sequence clustering

file extraction
g

algorithms segmentation

feature
evaluation

overall
evaluation

Figure 3.1: Feature evaluation approaches and their position and input specification in the modularized
framework proposed in this thesis, marked with green

One approach to this problem could consist of a so-called wrapper method, i.e. fixing some
clustering algorithm as a reference algorithm and then comparing the performance of
this algorithm when fed with data from different features computed from the same song:
This way, we would obtain a natural algorithm-dependent feature score that directly
allows for practical interpretations.

This approach has the major advantage of producing practical scores that also account
for the possible transformations towards a more suitable representation for clustering a
feature set might undergo in the clustering step. We will discuss this method in Chapter
6. In this chapter, we instead focus on algorithm-independent feature evaluation methods
that don’t rely on clustering algorithms and we present two different approaches for this
kind of feature evaluation: The first method relates the quality of a feature sequence
to distance-related properties. The second method tries to establish a notion of feature
ambiguity in order to compare different feature types with respect to their unambiguity.
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3.1 Dissimilarity-based Evaluation

Remembering our model assumption, we try to translate the notion of intra-cluster
similarity and inter-cluster dissimilarity into mathematical notation. Since we want to
formalize the notion of (dis-)similarity, we require a dissimilarity measure d : X × X →
R

+ that maps each pair of feature vectors to a non-negative number. Our approach is
based on the following two scores inspired by the objective function minimized by the
K-means algorithm.

• Homogeneity within clusters: In the candidate feature sequence, every part
corresponding to one true segment should exhibit small pairwise dissimilarities
between points. We average these dissimilarity values into the intra-cluster dis-
similarity Dintra

k :
Dintra

k = 1
|Ck|2

∑
i,j∈Ck

d(xi, xj)

• Separation of clusters: Feature sets corresponding to different segments should
be separated, i.e. the average dissimilarity between vectors from Ck to Cl should
be large. This quantity will be called inter-cluster dissimilarity Dinter

k,l :

Dinter
k,l = 1

|Ck|·|Cl|
∑

i∈Ck

∑
j∈Cl

d(xi, xj)

According to these scores, a feature sequence follows the human segmentation if Dintra
k

is low for every label k ∈ Y, and Dinter
k,l is high for every pair of labels (k, l) ∈ Y2. To

allow for comparison across different pieces, we condense the values:

Dintra = 1
K

K∑
k=1

Dintra
k and Dinter = 2

K(K − 1)

K∑
k=1

K∑
l=k+1

Dinter
k,l

It is important to note that both Dinter and Dintra depend completely on the choice
of d(·, ·). We can therefore evaluate not only the features, but also the dissimilarity
measure chosen on the features, which could prove especially useful when considering
manipulated dissimilarity measures in Section 5.3. For now, we choose the following
dissimilarity measures for evaluation:

• Cosine dissimilarity: d(xi, xj) = 1 − xT
i xj

|xi|·|xj |

• Euclidean distance: d(xi, xj) =
√

(xi − xj)T (xi − xj)

Finally, we condense Dinter and Dintra into one single value D = Dinter/Dintra that
measures the ratio between inter- and intra-cluster dissimilarity. Higher D means better
homogeneity and separation of features under the evaluated dissimilarity measure.
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3.1.1 Examples for Dissimilarity-Based Evaluation

As a first example, consider the toy data set depicted in the left part of Figure 3.2 that
shows 100 two-dimensional feature vectors, 50 each drawn from two bivariate Gaussian
distributions G1 = N ((−2, 0)T , I) and G2 = N ((2, 0)T , I). Feature vectors depicted in
red are drawn from G1, blue vectors are drawn from G2. In the reference segmentation
underlying this example, equi-colored points are assigned to the same cluster. This data
set represents a state of feature separation that we wish to find in promising feature
sets. Consequently, the dissimilarity-based feature score D should have a large value.
Note that for all examples in this subsection, we set the dissimilarity measure to the
Euclidean distance.

A

D

B

C

Figure 3.2: (left) Feature set drawn from Gaussians with unit variance and mean distance 4, (right)
self-dissimilarity matrix with diagonal blocks A, D and off-diagonal blocks B, C.

In order to get a better intuitive understanding of dissimilarity-based feature evaluation,
the self-dissimilarity matrix of the feature set is plotted in the right part of Figure 3.2.
For this, the feature set has been ordered to a sequence in such a way that every red
vector precedes all blue vectors. The color value at the point (i, j) in this plot encodes
the dissimilarity value d(xi, xj).

The values Dintra
red = 1.8 and Dintra

blue = 1.75 can be interpreted as the mean values of
the squares A and D in the right part of Figure 3.2. Similarly, Dinter

red,blue = 3.89 can be
interpreted as the mean value of the off-diagonal square B, which equals to that of square
C, since these squares are transposes of each other due to the symmetry of dissimilarity
measures. Furthermore, visual inspection of the dissimilarity matrix clearly shows a
block-like structure. Consequently, the value for Dintra is low compared to the value of
Dinter, yielding the desired high ratio D = 2.18.

For the second example depicted in Figure 3.3, 50 feature vectors have been drawn from
two Gaussians G1 = N ((−1, 0)T , I) and G2 = N ((1, 0)T , I) each, halving the distance
between means compared to Figure 3.2. While Dintra doesn’t change significantly com-
pared to the previous setting since the variances of the Gaussians we sample from didn’t
change, Dinter = 2.48 is lower due to the smaller distance between means. Therefore,
D decreases to 1.44, yielding the expectedly low feature separation value. Furthermore,
we barely recognize a block-structure in the dissimilarity matrix.
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A

D

B

C

Figure 3.3: (left) Feature set drawn from Gaussians with unit variance and mean distance 2, (right)
self-dissimilarity matrix with diagonal blocks A, D and off-diagonal blocks B, C.

While the value D is able to measure feature separation appropriately for simple settings,
its performance can drop significantly in some malicious scenarios. For instance, consider
the data set in Figure 3.4, this time drawn from Gaussians G1 = N ((0, 0)T , diag(2, 1))
and G2 = N ((2, 0)T , diag(0.1, 0.1)). We notice that the blue points corresponding to G2
overlap with the red points drawn from G1, and we would therefore intuitively assign a
low feature separation value to this data set.

However, Dintra = 1.6 is relatively low, since it is the average of a high Dintra
red = 3.03 and

a very low Dintra
blue = 0.17. Furthermore, Dinter = 2.84 is high, since there are many red

points with high distance to blue points as the red cluster is intrinsicially inhomogeneous.
This yields a final value of D = 1.77 which doesn’t reflect the fact that the set of blue
points is contained within the set of red points. Again, the results can be confirmed
visually: Squares A and D have very high, resp. very low mean values. Furthermore,
squares B and C exhibit almost constant values along one axis due to the fact that the
distances from any red point to all blue points are almost equal.

A

D

B

C

Figure 3.4: (left) Feature set drawn from Gaussians with high variance (red) and tiny variance (blue)
such that the blue sample is contained in the red sample, (right) self-dissimilarity matrix with diagonal
blocks A, D and off-diagonal blocks B, C.
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3.1.2 Discussion of Properties

The ratio D has the useful property of being invariant with respect to global rescalings
of the features for dissimilarity measures d satisfying d(c ·xi, c ·xj) = c ·d(xi, xj) since the
multiplication of all feature vectors by a constant c can be factored out of d(c · xi, c · xj),
yielding c · Dintra

k and c · Dinter
k,l . In the subsequent summation, c can be factored out

again, yielding in total:

D = c · Dinter

c · Dintra
= Dinter

Dintra

Since cosine dissimilarity is already invariant to global rescalings, the invariance of D
to these transformations doesn’t add any benefits. However, when using the Euclidean
distance, which is linear in the way described above, the previously described invariance
allows for evaluation of different feature types whose normalization method can also
differ. This property might seem trivial, but in a later subsection, we will encounter
another evaluation score that suffers from lacking such an invariance.

The condensing of different values to one single average value however imposes a signifi-
cant problem to a quantitative comparison of different scores computed by the described
dissimilarity-based approach. While one could think of more elaborate ways of averag-
ing the K, respectively

(K
2

)
values needed to compute Dinter, respectively Dintra, any

such method also increases the complexity of the feature evaluation method and renders
intuitive interpretations of the score more difficult.

However, we try to consider at least one such alternative by setting:

Dintra
max = max

k∈Y
Dintra

k

Building on this maximal intra-dissimilarity, we define, analogously to D, the value
Dmax = Dinter/Dintra

max . In this score, we compare the average inter-dissimilarity to the
maximal (the worst) intra-dissimilarity, hoping that unwanted effects as described in the
third example of the preceding subsection are cancelled. For a comparison of D and
Dmax, we refer to the detailed evaluation in Chapter 6.

In conclusion, the main advantage of the dissimilarity-based score lies in the fact that it
can evaluate different dissimilarity measures and in fact doesn’t depend on the features
themselves, but rather on the dissimilarity values computed for pairs of features, which
will be central for algorithms in subsequent chapters. Furthermore, as we will see later,
most clustering algorithms try to optimize clustering objectives that incorporate concepts
similar to the notion of intra- and inter-cluster dissimilarity. Therefore, dissimilarity-
based feature evaluation scores can provide indicators to the performance of arbitrary
clustering algorithms in retrieving the human segmentation from a feature sequence.
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3.2 Classification-Based Evaluation

In this subsection, we establish a reformulation of the segmentation problem into a
classification problem in order to use concepts inspired by machine learning for feature
evaluation. More precisely, we estimate the certitude of the best possible classifier, the
Bayes classifier, on our data set and then use this value as a notion of feature quality.
However, in order to evaluate the classifier, one needs to assume that features are drawn
from a known distribution. Since we are not given such a distribution, we estimate it.
Roughly speaking, the certitude value then measures the amount of ‘peak-likeness’ of
such a distribution.

As will turn out, classification-based feature scores also have a geometrical interpretation
that is able to cope with pathological examples such as the one discussed in Subsection
3.1.2, where overlapping features received an unjustifiedly high feature evaluation score.
After having introduced some necessary definitions in the next two subsections, this
geometrical interpretation will be made more explicit.

3.2.1 Basics from Machine Learning

We first introduce some notions inspired by statistical learning, yielding a probabilistic
interpretation for the feature evaluation score to be introduced:

Definition 3.2.1. To start, a classifier f : X → Y is a function mapping points from
a feature space X , like in our case R

d, to a set of labels Y := {1, . . . , K}.

Definition 3.2.2. The conditional distribution of labels P (Y | X) is a probability
distribution over the random variables X and Y that range over X and Y respectively.
Figuratively, the conditional distribution assigns an array of label probabilities to every
feature point. We call the tuple (X , Y, P ) a classification problem.

Definition 3.2.3. The Bayes classifier f∗ is an optimal classifier that knows the full
conditional distribution and assigns to each feature point the most probable label:

f∗(x) = arg max
y∈Y

P (Y = y | X = x)

Definition 3.2.4. For a classification problem, the certitude function Cf : X → [0, 1]
describes the unambiguity of f∗. At any point x ∈ X , Cf (x) is defined as follows:

Cf (x) = max
y∈Y

P (Y = y | X = x)

Note that Cf (x) ≥ 1
K , i.e. for each classification problem the certitude has a lower

bound depending on the number of labels which can always be attained by a uniform
distribution on the labels. This inhibits comparison of certitude values across different
classification problems, creating a need for:
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3.2. CLASSIFICATION-BASED EVALUATION

Definition 3.2.5. We define the normalized certitude function C0
f (x) by subtracting

the lower bound and rescaling the result to [0, 1]:

C0
f (x) = K

K − 1(Cf (x) − 1
K

)

Up to now, the certitude functions we introduced assumed that the Bayes classifier always
outputs the correct label with respect to a human segmentation. In the label-dependent
certitude function, we drop this assumption and instead consider the probability of the
correct label given a feature vector under the conditional distribution:

Definition 3.2.6. The label-dependent certitude function Cl : X → [0, 1] denotes
the probability of the label assigned by a human segmentation function S ′ :

Cl(x) = P (Y = S ′(x) | X = x)

An interesting fact about the certitude function, the normalized and the label-dependent
certitude function is the possibilty of plotting their value as a curve when ordering the
feature vectors according to the feature sequence. This plot then yields an indicator for
the ambiguity of features over the domain of a piece. To allow for better comparison
across audio files, we finally condense the certitude function into its expected value.

Definition 3.2.7. The expected certitude Cf is defined as Cf := EX [Cf (X)], and
analogously the expected normalized certitude and expected label-dependent cer-
titude are defined as C0

f := EX [C0
f (X)] and Cl := EX [Cl(X)].

Given a conditional distribution estimated from the feature sequence of a piece, we em-
ploy C0

f , with EX taken over the feature sequence only, as a feature evaluation score. The
higher C0

f , the more time frames have one single label with high conditional probability.
For small C0

f , the feature sequence yields a random classifier.

Remember that for the (normalized) certitude value, it does not matter whether the
Bayes classifier labeled the feature point xi correctly. Here, we measure only the cer-
titude, regardless of a possible misclassification. In the label-dependent certitude value
however, only the conditional probability of the label assigned by the human segmen-
tation counts towards the feature evaluation score. We will analyze both values with
respect to a set of example audio files in Chapter 6.

Generally, the possibility of plotting the certitude functions over the domain of an audio
file, as can be seen in the following example and at the end of Subsection 3.2.2, is an
advantage of classification-based evaluation compared to dissimilarity-based evaluation.
However, feature vectors need to be embedded in an Euclidean space, as will turn out
in Subsection 3.2.2.
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Figure 3.5: Simple two-class classification problem with complete information on the one-dimensional
feature space [0, 1], discussed in detail in Example 3.2.1

Example 3.2.1. Consider as an example the two-class classification problem depicted
in Figure 3.5: X = [0, 1], Y = {1, 2}, corresponding to green and blue, the distribution
of X is considered to be uniform on [0, 1], and the following conditional distribution
indicates the label probabilities for every x ∈ X :

P (Y = 1 | X = x) = 1 − x and P (Y = 2 | X = x) = x

The Bayes classifier f∗ on this problem is just f∗(x) = 1x>0.5 + 1. This function is
plotted as a colored stripe onto the x-axis.

The lower bound on Cf is 1
K = 0.5 and corresponds to the red line. The certitude function

is drawn with thick lines above the red lower bound. Note that Cf (0) = Cf (1) = 1 and
Cf reaches the lower bound at 0.5. The expected certitude Cf is:

Cf = EX [Cf (X)] =
1∫

0

Cf (x) · P (x) dx = 2
0.5∫
0

1 − x dx = 0.75

From this value we get the expected normalized certitude in the following way, exploiting
linearity of the expected value:

C0
f = K

K − 1(Cf − 1
K

) = 0.5

Note the shaded area limited by the certitude function and the red lower bound and note
that C0

f is the ratio of the shaded area to the area of the red rectangle. Since the Bayes
classifier is consistent with the human segmentation on this feature set, the certitude
function agrees with the label-dependent certitude function, yielding Cl = Cf = 0.75.
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3.2.2 Density Estimation

Given some independently drawn and identically distributed samples x1, . . . xN , in our
case feature vectors xi ∈ X , drawn from an unknown underlying distribution D, the
task of inferring this unknown distribution is called density estimation. Approaches to
this problem can be divided into the class of parametric methods, where one tries to fit
the parameters of some parameterized class of distributions, such as Gaussians, to the
data, and that of non-parametric methods. Since we have no assumptions in our feature
distribution, we choose the latter.

More precisely, we use kernel density estimation. This means introducing a basis density
function Bi for every xi in the feature sequence1 (X), which in our case will be that of
an isotropic Gaussian centered at the sample point: Bi ∼ N (xi, σ2I). The estimated
density Dest is then just the pointwise average over all basis densities:

Dest = 1
N

N∑
i=1

Bi

Therefore, each sample point x increases the estimated density within a small region
around it. This region will be called the influence region of x from now on. The choice
of the size of this region, i.e. the choice of σ2 plays a major role for kernel estimation,
as illustrated in the following figure, where only the right image resembles the Gaussian
distribution the samples were drawn from.
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Figure 3.6: Influence of different kernel sizes in kernel density estimation: (a) samples drawn from
N ((0, 0)T , 1.5I), (b) estimated density Dest with σ2 = 0.3, (c) Dest with σ2 = 1.

For normalized features, we will consider three values for σ2: 0.05, 0.1 and 0.2. We now
try to estimate the unknown conditional distribution P (Y | X = x) from the previous
subsection for every x in the feature sequence (X). As our label set is finite and has K
elements, we can do this by estimating all probabilites P (Y = y | X = x). Furthermore,
we assume that all labels have the same prior probabilty P (Y = y) = 1

K . This allows
for the derivation on the next page:

1In this subsection, we denote a feature sequence by (X) in order to prevent confusion with X
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P (Y = y | X = x) = P (X = x | Y = y)P (Y = y)
P (X = x)

=
P (X = x | Y = y) 1

K∑K
i=1 P (X = x | Y = i) 1

K

= P (X = x | Y = y)∑K
i=1 P (X = x | Y = i)

In the first step, we used Bayes’ rule. Then, we expanded the marginal probability
according to the law of total probability, using the fixed label prior. In the third step,
we reduced the fraction, yielding that P (Y = y | X = x) is equal to the probability of
x under the label y divided by the sum of the probabilities of x under all labels.

The class-conditional density p(X | Y = y) needs to be estimated: For every y ∈ Y, we
determine it by density estimation, restricted to samples from the cluster Cy, i.e. we
estimate the distribution of feature vectors labelled as y in the reference segmentation.
From this, we can also get the marginal P (X = x) by marginalizing over Y , as can be
seen in the denominator of the last fraction. Now, remember that our certitude feature
score depends only on xi ∈ (X). We therefore evaluate P (Y | X = xi) only for xi ∈ (X),
not for the whole feature space X .

The results of density estimation together with the notion of a certitude function lead to
the following interpretation: Consider some feature vector x having the label y. A set I
of feature vectors, which might be a singleton set consisting only of x, can be found s.t.
every vector x′ ∈ I lies within the influence region of x, i.e. within a region where its
Gaussian kernel function attains a value significantly larger than 0. Now, depending on
the label of x′, say y′, this feature vector will increase the value of P (Y = y′ | X = x). If
the influence region contains mostly points of one single label, say y′′, this will create a
peaked distribution for P (Y | X = x), therefore also yielding a high certitude value for x.
If even y′′ = S ′(x), i.e. the label y′′ matches the label for x in the human segmentation,
the label-dependent certitude function also attains a high value.

Note that the choice of σ2 in the density estimation part also allows for measuring the
robustness of features against additive Gaussian noise with variance σ2: In the limit
of σ2 → 0, every (noiseless) feature vector attributes a Dirac distribution to the total
estimated density, placing all probabilty mass exactly on the feature vector and yielding
maximal certitude. For higher σ2, the mass is spread over a larger space through noise,
therefore decreasing the certitude. Consequently, if the certitude drops only at high
kernel sizes, the evaluated features are good at discriminating between true segments
even in the presence of strong noise. For naive spectrum and chroma features, this noise
can even be interpreted as Gaussian noise added to every frequency band.

However, the strong dependence of the classifier-based evaluation score on the kernel
size used for density estimation suggests a score that makes this dependence explicit.
One might for instance think of considering as evaluation result not only the certitudes
evaluated for three fixed kernel sizes but rather a song-dependent function describing
the correlation between kernel size and certitude. The area under this curve could then
indicate the stability of features with respect to noise more accurately. However, in
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a practical setting, this area again has to be approximated by finite sums. Since the
evaluation of the estimated density can be costly, we rather restrict the evaluation to
three values for σ2.

The figure shows two conditional distributions estimated from MFCC features that have
been extracted from the Highway Song. Along the x-axis time progresses, while column
i represents the distribution P (Y | X = xi) for xi being the i-th feature vector in
(X). Note that increasing σ2 shifts each column of the conditional distribution towards
a uniform distribution, therefore decreasing the certitude. In particular, the limit of
σ2 → 0 will lead to a certitude of 1, as already pointed out. To get more meaningful
results, we will evaluate features with respect to three choices of σ2 in Chapter 6.

The curves in the second and fourth subplot are the certitude function and the label-
dependent certitude function computed for the estimated conditional distribution each.
In general, the certitude function is just the column-wise maximum over the conditional
distribution. Note that, due to boundary effects, as described in Section 5.1, both
functions attain low values at segment boundaries. Furthermore, we notice that only
some segments still exhibit high certitude values after the increase of kernel size, e.g.
the verse part starting at 20 seconds and peaks at 65 and 163 seconds.
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Figure 3.7: Density estimation on smoothed (kernel size 3 sec.) MFCC features computed for Highway
Song: (a) Conditional distribution estimated with σ2 = 0.05, plotted in such a way that the color value
at (i, j) represents P (Y = i | X = xj). (b) Red: certitude function for conditional distribution in (a),
green: label-dependent certitude function. (c) Conditional distribution for σ2 = 0.2, (d) as for (b), but
with conditional distribution (c).
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It is absurd to divide people into good and bad.
People are either charming or tedious.

Oscar Wilde 4
Time-Ignoring Clustering

In this chapter, we focus on the reformulation of music segmentation in terms of cluster-
ing, i.e. we search for a partition of a feature sequence and its audio file into clusters such
that the dissimilarity of feature vectors within clusters is minimized, while dissimilarity
between clusters is maximized. Actually, we encountered main principles of clustering
methods for the first time when introducing dissimilarity-based evaluation in Chapter
3.1, where we especially defined the values Dintra and Dinter in order to measure the
extent to which the homogeneity assumption was given in a file.

In the setting of this chapter, we are given the feature sequence to a file which we try
to segment automatically in such a way that the result resembles the human reference
segmentation associated with the file. Of course, this task is futile if the human seg-
mentation did not follow any rules. At this point, the homogeneity assumption has to
be used in order to presume that the song structure is reflected in the distribution of
homogeneous regions within the feature sequence.

Since clustering methods allow for identification of homogeneous regions under some
(dis-)similarity measure, we can use them for music segmentation under the homogene-
ity assumption. The definition of a homogeneous region however is part of the chosen
clustering method since it is determined by the clustering goal the algorithm tries to
optimize. It is worth mentioning that most of the goals featured in known clustering
methods lead to NP-complete optimization problems that need to be relaxed or approx-
imated.

To create baseline algorithms, we ignore temporal properties like the order of the feature
sequence and rather speak of a feature set within this chapter. Accordingly, this feature
set can also be viewed as a set of feature points in R

d, allowing for a geometrical in-
terpretation of clustering. However, this interpretation fails when considering arbitrary
dissimilarity measures, since these in general lack a geometric interpretation.

Note that the ordering of the feature points given by the feature sequence would allow
to recreate a temporal path through this cloud of feature vectors. As we neglect the
feature sequence, such a path can’t be created in time-ignoring clustering.
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4.1 K-Means Clustering

In K-means (or minimum sum-of-squares) clustering, feature vectors are assigned to
clusters C1 . . . CK , each of them having a cluster centroid μk defined as the unweighted
average of all vectors assigned to this cluster. The centroid can be regarded as a pro-
totype vector indicating the expected feature vector within a cluster. Note that the
number of clusters K is part of the input, meaning that the algorithm does not have to
infer this value itself.

The goal of K-means clustering now is to find an assignment of feature vectors to clusters
(and therefore to cluster centroids) that minimizes the sum of squared distances from ev-
ery feature vector to its assigned cluster centroid. The objective value of a segmentation
S is formalized as follows:

obj(S) =
∑

Ck∈S

∑
xi∈Ck

||xi − μk||2

While this objective function looks rather simple on first sight, it leads to an infeasible
combinatorial optimization problem: At least since [1], it is known that finding an
optimal segmentation with respect to the above defined obj is NP-hard for K ≥ 2 if
the feature vectors are drawn from R

d for arbitrary d. An exponential-time algorithm
is known whose runtime behaves like O(ndK) where n is the number of feature vectors,
therefore running in polynomial time for fixed d and K. However, even this ‘polynomial’
algorithm is of no use in our setting, where d ≈ 12 and 5 ≤ K ≤ 10 in most of the cases.

We therefore have to resort to heuristic algorithms for K-means clustering, among which
the best known is the K-means algorithm. This simple algorithm uses the idea of boot-
strapping in order to iteratively refine an initially random segmentation until possibly
converging to an optimal segmentation (cf. [17]) and works as follows:

1. Randomly select K vectors from the feature set X as centroids μ1 . . . μK . Option-
ally, an explicit set of initial centroids can be specified manually.

2. Assign each feature vector to its nearest centroid, yielding the following clusters:

Ck ← {xj | k = arg min
l

||xj − μl|| }

3. Recompute the cluster centroids with respect to the new clusters:

μk ← 1
|Ck|

∑
xi∈Ck

xi

4. Repeat steps 2 and 3 until after some iteration, no point is assigned to another
cluster than it was assigned to before the iteration. In this case, the algorithm has
converged. If after a fixed number of iterations, no convergence occured, report
failure. At this point, one could restart the algorithm.
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Certainly, this algorithm is not guaranteed to converge to the optimal solution. For
general sets of feature vectors, its performance is influenced heavily by the choice of the
initial centroids. In order to cope with this dependence on the initial guess, some more
refined strategies are proposed in several implementations, among which we mention the
following:

• Instead of selecting the initial centroids randomly out of the set of feature vectors,
rather uniformly select a small subset X ′ ⊂ X of the set of feature vectors and
then run the K-means algorithm on X ′, with initial centroids drawn uniformly out
of X ′. The centroids determined by this first run can then serve as initial centroids
for a subsequent execution of the K-means algorithm on the whole set of feature
vectors X.

• Run the K-means algorithm on a fixed number of randomly sampled initial centroid
sets, possibly chosen by the previously described refined sampling method, yielding
many segmentations. Then output the best segmentation with respect to obj.

In our MATLAB implementation of the music segmentation framework we use the func-
tion kmeans in the Matlab Statistics Toolbox as an implementation of the K-means al-
gorithm. For our application, we run the K-means algorithm on 100 different initial
centroid sets, each set being determined by the first strategy, where we randomly choose
a subset containing 10% of the feature set. The evaluation results with respect to several
choices of K are presented in Chapter 6.
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4.2 Agglomerative Clustering

While in K-Means clustering, features were clustered in order to minimize the sum of
squared distances to cluster centroids, in agglomerative clustering a hierarchical idea is
applied to the clustering problem. Hierarchical algorithms in general start with a triv-
ial segmentation of a feature set, e.g. the segmentation consisting of only one cluster
or the segmentation that assigns every feature vector its own singleton cluster. Then,
these algorithms iteratively refine a current segmentation by joining similar or splitting
intrisically dissimilar clusters until reaching the other trivial segmentation. Agglomera-
tive clustering algorithms choose the first way, divisive ones choose the second.

Since the result of transforming a trivial segmentation to another trivial segmentation
is highly uninteresting for practical purposes, several possibilities allow for obtaining
practical segmentation results out of the transformation process, cf. [6]:

• The hierarchical algorithm can stop when a fixed number of clusters K has been
obtained in the current segmentation. This parameter must be part of the input.

• At some point in the transformation process of an agglomerative clustering algo-
rithm, the most similar pair of clusters that can be joined can be more dissimilar
than some threshold t. Depending on the choice of t, this could be a good point
to stop the algorithm. Again, t is part of the input.

4.2.1 Cluster Dissimilarities

A central notion that remained unclear in this short introduction to hierarchical cluster-
ing was the notion of cluster dissimilarity. The cluster dissimilarity D(Ci, Cj) between
two clusters Ci and Cj can be defined in several ways, always presuming a dissimilarity
measure d for features, as required in Section 3.1:

• The average linkage value Davg between clusters is the mean dissimilarity between
all pairs of feature vectors that have exactly one element in each cluster. Formally,
Davg(Ci, Cj) = 1

|Ci|·|Cj |
∑

k∈Ci

∑
l∈Cj

d(xk, xl)

• The single linkage value Ds between clusters is the minimal dissimilarity between
all pairs of feature vectors that have exactly one element in each cluster. Formally,
Ds(Ci, Cj) = min

k∈Ci

min
l∈Cj

d(xk, xl)

• The complete linkage value Dc between clusters is the maximal dissimilarity be-
tween all pairs of feature vectors that have exactly one element in each cluster.
Dc(Ci, Cj) = max

k∈Ci

max
l∈Cj

d(xk, xl)
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Figure 4.1: From dissimilarity matrices to cluster-dissimilarities: (a) cosine self-dissimilarity matrix
for Rock and Roll Queen, (b) cosine self-dissimilarity matrix for Highway Song, (c) pairwise average
linkage values for segments in human segmentation for (a), (d) average linkage values for (b).

Both single and complete linkage values suffer from outliers in features, meaning that
some malicious pair of feature vectors can dominate the linkage value for two clusters
which then doesn’t depend on the remaining pairs of feature vectors in these clusters.
The average linkage value however is robust against such outliers, due to the fact that
every pair of feature vectors can contribute only a fraction of 1

|Ci|·|Cj | to the mean value.

Recall the definition of a self-dissimilarity matrix H: H(i, j) = d(xi, xj). In order to
get a better visual understanding of the average linkage value, in Figure 4.1 the self-
dissimilarity matrices of two audio files and the corresponding average linkage values
computed for the segments in the human reference segmentations are plotted. Every
submatrix H(I(Si), I(Sj)) of H, where Si and Sj are segments in a human reference
segmentation, is replaced by a constant submatrix of the same dimensions. This sub-
matrix contains only the value Davg(I(Si), I(Sj)) which is equal to the mean value of
H(I(Si), I(Sj)), yielding the matrices of average linkage values plotted in (c) and (d).

Therefore, the matrices in (c) and (d) show the average linkage values between different
segments. For instance, the first, fifth and seventh segment in the song Rock and Roll
Queen have high dissimilarity to all other segments with respect to average linkage.
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4.2.2 Clustering Algorithm

The pseudocode for an agglomerative clustering algorithm is printed below: This al-
gorithm is given the following input: an N × N self-dissimilarity matrix H, a cluster
dissimilarity measure, in our case the average linkage Davg, and a threshold value t.
Note that the algorithm doesn’t depend on the feature sequence itself, but rather on H.

The algorithm stores an array A of already computed cluster dissimilarities, speeding
up computation. A result set R of clusters will contain the result of the algorithm after
all iterations. This set R can be transformed to a segmentation S by decomposing each
cluster into temporally connected intervals and assigning these intervals a common label.

In step 1, the algorithm starts by setting R to the trivial set of clusters that consists
only of singleton sets. Then, in step 2, it computes the average linkage between all such
clusters, which can be directly read off the self-dissimilarity matrix H since all clusters
are singletons at this point. At this stage, average linkage values correspond directly to
feature dissimilarity values.

In every iteration of step 3, the two clusters with minimal cluster dissimilarity to each
other are located by using the matrix A of already computed cluster dissimilarities.
Then, the algorithm checks whether this dissimilarity value is below the threshold t.
Note that in every iteration of the loop in step 3, new clusters Ca and Cb are searched
for. If no such pair of clusters can be found, the algorithm stops and has found the set of
clusters R. If the threshold value was chosen too high and during execution R consists
of only one cluster, the algorithm also stops since it cannot find two different clusters.

The merging of clusters in step 4 consists of replacing Ca by the union Ca ∪ Cb. Fur-
thermore, the row and the column corresponding to Cb are deleted from A. In step 5,
the values for A are finally updated by replacing the row and column corresponding to
Ca with the new average linkage values to all other clusters.

1. Given an audio file B = [1 : N ], set Ci = {i} for all i ∈ B and R ← {C1, . . . , CN }.

2. For all i, j ∈ 1, . . . , N , set A(Ci, Cj) ← H(i, j).

3. While A(Ca, Cb) < t for Ca �= Cb that minimize A(Ca, Cb), repeat 4 and 5:

4. Set Ca ← Ca ∪ Cb, delete Cb from R and the corresp. row and col. from A.

5. For all Ci ∈ R, set A(Ca, Ci) ← Davg(Ca, Ci).
Then, for all Ci ∈ R, set A(Ci, Ca) ← A(Ca, Ci).

This algorithm already saves some computation time compared to a naive implementa-
tion by storing cluster-dissimilarity values computed in step 5 in the array A. However,
this still is not optimal since O(N) average linkage values are recomputed from scratch
in every iteration. This overhead will be reduced in Subsection 5.3.2.
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4.2. AGGLOMERATIVE CLUSTERING

4.2.3 Dendrograms

Finally, the results of agglomerative clustering can be visualized by means of a plotting
technique called dendrogram, cf. [12]. The dendrogram corresponding to an execution
of agglomerative clustering on a set of feature vectors is a binary tree in which nodes
correspond to cluster merging events that occur during the execution of the algorithm.

A dendrogram has a leaf for every singleton cluster obtained from the trivial initial seg-
mentation in the agglomerative clustering algorithm. Inner nodes correspond to clusters
merged by the algorithm, i.e. the two children Ca, Cb of an inner node Cc are merged to
Cc during the execution. Furthermore, Cc is assigned its own height which corresponds
to the value Davg(Ca, Cb). This way, homogeneous clusters can be found at the bottom
of a dendrogram and more inhomogeneous clusters are found in higher parts.

In Figure 4.2, a dendrogram is plotted together with three segmentations that have
been obtained by agglomerative clustering with threshold values 0.05, 0.15 and 0.25.
Note that the segmentations feature smaller segments as the threshold value decreases.
Dendrograms as well as the exact implementation of agglomerative clustering were given
by dendrogram and linkage from the Matlab Statistics Toolbox.
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Figure 4.2: Example segmentation of Rock and Roll Queen with agglomerative clustering: (a) den-
drogram with visual aids (feature sequence is permuted in order to avoid crossing lines, merging events
occuring below some threshold are omitted) and black horizontal lines indicating cutoff thresholds. (b)
Segmentation obtained by cutting the dendrogram at the threshold value 0.25 (c) as for (b), but with
threshold value 0.15, (d) as for (c), but with threshold value 0.05.
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Yeah, it should’ve been forever
It all seems to make so much sense
But after a while
You realize time flies

Porcupine Tree - Time flies 5
Time-Dependent Clustering

The clustering algorithms previously described ignore time, which is reflected in the
order of the feature sequence. Therefore, the resulting segmentations were sensitive
to frequent segment changes, which in the worst case can lead to completely useless
segmentations, as will turn out Chapter 6. The tendency of time-ignoring clustering
to find more segment boundaries than necessary is caused by the fact that e.g. in a
pop song, a time-ignoring clustering algorithm would rather merge a short theme to its
repetition at another position in the song than extend the cluster corresponding to the
theme to span adjacent themes.

In this section we introduce some methods that allow for time-dependent clustering,
i.e. clustering that does not depend solely on the feature set, but rather incorporates
temporal information that can be extracted from the feature sequence. These ideas
should prevent the problem described above.

Among the methods described in this chapter we first introduce a feature-level manipula-
tion of the feature sequence that accentuates homogeneity within clusters. This method
can be used as a preprocessing step for all segmentation methods.

The second method does not try to find homogeneous regions. Instead, it looks for small
time intervals with extreme inhomogeneity, hoping that these intervals correspond to
segment boundaries. Here, temporal context is introduced only by means of a temporal
window that selects a short connected subinterval out of the whole feature sequence.

Within the last two methods, we modify agglomerative clustering in a way such that
temporal information is part of the input. First, we manipulate the self-dissimilarity
matrices that are part of the input to agglomerative clustering such that the dissimilarity
of feature vectors also depends on the temporal distance they have to each other in
the feature sequence. In a second approach, we modify the agglomerative clustering
algorithm to only merge clusters that are temporally adjacent.
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5.1. FEATURE SMOOTHING

5.1 Feature Smoothing

5.1.1 Increasing Homogeneity by Smoothing

In order to enhance temporal coherence in a feature sequence X = (x1, . . . , xN ), we use
feature smoothing. In this approach every feature vector xi is replaced by a weighted
mean computed within a small temporal subinterval of radius w around xi. The weights
within the interval are given by a window function W . This yields the smoothed feature
sequence X ′ = (x′

1, . . . , x′
N ) that is computed as follows:

x′
i =

w∑
k=−w

W (k) · xi+k

When replacing features with the local weighted mean, variation of feature vectors de-
creases in small scales. This effect is caused by the weighted averaging above, which can
be equivalently interpreted as a row-wise convolution of X with a one-dimensional win-
dow function W . For Gaussian windows, this convolution corresponds to a blurring or
low-pass filtering of the feature components, decreasing the magnitude of high-frequent
variation and therefore increasing homogeneity within segments.

Furthermore, smoothing allows dealing with repeating patterns shorter than the smooth-
ing length that in general prevent a segment from being homogeneous. Consider the fol-
lowing feature sequence depicted in Figure 5.1. This sequence is a concatenation of two
segments S1, S2 that each in turn consist of a repeating alternation of feature vectors.
For S1, these vectors are the canonical basis vectors e1, e2, e3, while for S2, these vectors
are f1 = (1, 0, 1)T , f2 = (1, 1, 0)T and f3 = (0, 1, 1)T . Abusing regular expressions for
describing the sequences, S1 can be denoted by ((e1)5(e2)5(e3)5)10, and analogously, S2
corresponds to ((f1)5(f2)5(f3)5)10. Note that time-ignoring clustering algorithms should
find six clusters that each contain only one distinct feature vector, creating an abun-
dance of segments with length of 5 frames. However, when smoothing the features with
a Gaussian kernel of size w = 40 frames, as plotted in the second subplot, the local
alternation is blurred out, creating homogeneous regions in S1 and S2.

time (frames)

Figure 5.1: Feature smoothing transforms small-scale repetitive structure to homogeneity structure:
(top) repetitive feature sequence consisting of two segments (b) smoothed feature sequence (smoothing
kernel of 40 frames), fulfilling the homogeneity assumption.
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5.1. FEATURE SMOOTHING

5.1.2 Effects at Segment Boundaries

Due to the convolution applied in feature smoothing, segment boundaries that appeared
clearly in the unsmoothed feature sequence are blurred, making it harder to estimate the
exact segment boundary and introducing a boundary region of length about 2w between
two homogeneous segments S1, S2 consisting of linear combinations of feature vectors
found at the boundary regions of S1 and S2.

Consider as an example the feature sequence depicted in Figure 5.2. Here, all feature
vectors in S1 have the coordinates xa = (1, 0)T , while all vectors in S2 have coordinates
xb = (0, 1)T , as one can see in the first subplot. When smoothing with a Gaussian
window of radius w = 25, as in the second subplot, the parts of S1 and S2 that have
temporal distance larger than 25 frames from the segment boundary are not changed
since all values in the support of this window are constant. However, the subsequence
consisting of indices [26 : 75] is subject to Gaussian blur.

In the third subplot, every feature point xi is described as a convex combination of xa

and xb, yielding xi = λ1xa + λ2xb. The coefficients λ1,λ2 are just the entries xi(1) and
xi(2) and are plotted in blue, resp. green. Note the crossfade-like behaviour of the two
curves in the section [26 : 75], showing the change in the proportions of λ1 and λ2. For
x50, we have λ1 = λ2 = 0.5, making this point the average of xa and xb.

A problem induced by feature smoothing is that agglomerative clustering tends to place
all feature vectors in temporal proximity of a segment boundary into singleton clusters,
since these vectors aren’t part of a homogeneous region, as we saw in the previous
example. While this imposes a problem to clustering, we will soon see another method
that is able to exploit exactly these inhomogeneous regions for boundary detection.

(a)

(b)

(c)

time (frames)

Figure 5.2: Smoothing of segment boundaries: (a) simple two-dimensional feature sequence consisting
of feature vectors e1 and e2, (b) feature sequence smoothed with kernel size w = 25 frames, (c) plots of
coefficients for smoothed feature sequence represented as convex combination of xa and xb
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5.2. NOVELTY DETECTION

5.2 Novelty Detection

While feature smoothing presents a simple way of increasing the temporal coherence
of a feature sequence, its main drawback lies in its tendency to level differences across
segment boundaries in case the smoothing kernel is chosen too large.

Therefore, novelty functions that indicate segment boundaries might be of great use
when combined with feature smoothing. A novelty function for an audio file A is a
function nov : A → R

+ that attains low values within segments and high values in the
local neighborhood of a segment boundary.

5.2.1 Previous Novelty Functions

Such a measure has been discussed in [8], where novelty functions are computed by cor-
relation of a checkerboard kernel shifted along the diagonal of the self-similarity matrix
associated with a feature sequence. In this section, we present an alternative way for ob-
taining novelty functions which is based on statistical properties of the feature sequence.
This approach yields results similar to the novelty functions in [8] and can therefore
provide a statistical interpretation of this correlation-based novelty detection method.

First, we recapitulate the implicit definition of the novelty functions introduced in [8].
Here, a Gaussian checkerboard kernel KG of radius L is defined similarly to:

KG(x, y) = 1{|x|≤L,|y|≤L} · sgn(x) · sgn(y) · 1
2πσ2 e− x2+y2

2σ2

This kernel is non-zero only in the square [−L, L]2, where it attains positive values only
for (x, y) with sgn(x) = sgn(y), and negative values elsewhere. The truncation of the
checkerboard kernel is done for performance reasons.

After choosing σ, KG is correlated along the main diagonal of the self-similarity matrix
S ∈ R

N×N to obtain the novelty function fGC (GC stands for Gaussian Checkerboard):

fGC(i) =
i+L∑

k=i−L

i+L∑
l=i−L

S(k, l)K(k − i, l − i)

Consider the checkerboard kernel as an (2L+1)×(2L+1) matrix divided into four L×L
blocks. Negative values can be found in the blocks off the main diagonal, positive values
are located in the blocks containing the main diagonal. When this kernel is shifted along
the main diagonal of S, as in the sum above, structures that resemble this kernel will
yield a high value for fGC . However, any such occurrence of a checkerboard kernel in
the self-similarity matrix is likely to be a boundary since it describes a submatrix of the
similarity matrix in which two homogeneous regions are adjacent (high similarity in the
blocks containing the main diagonal), but have high inter-dissimilarity (low similarity in
the blocks off the main diagonal).
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Figure 5.3: (left) Self-similarity matrix on MFCC features for Wild Honey, (right) plot of novelty
function fGC . Reproduced from [8].

Figure 5.3, reproduced from the original paper [8], shows a novelty function for MFCC
features computed on the song Wild Honey. One immediately notices block-like struc-
tures in the self-similarity matrix (left). Furthermore, as the kernel moving along the
main diagonal of the matrix hits a corner between two such blocks, it creates a peak in
the novelty curve plotted to the right-hand side.

In order to facilitate comparison to our approach, we now modify the previous definition,
choosing a box checkerboard kernel instead of the Gaussian checkerboard kernel. Such
a kernel KB of radius L is just the following piecewise constant function:

KB(x, y) = 1{|x|≤L,|y|≤L} · sgn(x) · sgn(y) · 1
(2L + 1)2

Correlating this kernel in the same way as defined above for KG, but this time on the
dissimilarity matrix, yields fBC (BC for Box Checkerboard).

In order to provide a more detailed comparison, we also introduce the novelty functions
fGF and fBF , with abbreviations standing for Gaussian Flat, respectively Box Flat.
These functions are obtained by correlating the (dis-)similarity matrix in exactly the
same way as above, but with a non-checkerboard Gaussian, respectively box kernel, i.e.
every occurence of K(x, y) is replaced by |K(x, y)|, neutralizing the checkerboard-like
sign changes.

While the flat kernels seem to bring with them a significant deterioration of the quality
of novelty functions, even these kernels have an interpretation under the homogeneity
assumption: As segments have low intrinsic dissimilarity, the correlation with a flat box
kernel will yield low values within segments. When the kernel hits a boundary, a higher
correlation can be observed as half of the submatrix to correlate against contains high
dissimilarity values. Note that the flat kernel would also detect high novelty at points
within segments that have high dissimilarity to all of their local temporal neighborhood.
However, feature smoothing helps in reducing these dissimilarity values.
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5.2.2 Local Statistics

We define local statistics, i.e. the local mean μw[i] ∈ R
d and the local covariance

matrix Covw[i] ∈ R
d×d with window size w ∈ N for a feature point xi ∈ X as follows:

μw[i] = 1
2w + 1

i+w∑
k=i−w

xk

Covw[i] = 1
2w + 1

i+w∑
k=i−w

(xk − μw[i])(xk − μw[i])T

As defined, local statistics yield values for each point xi in the feature sequence that
depend only on the feature points in a subinterval Wi = [i − w : i + w] centered around
i. They have the following properties:

• The local mean is the empirical mean of the multivariate probability distribution
that generates the feature points in Wi.

• The local covariance matrix is symmetric, positive semidefinite and measures the
covariance between feature coordinates in Wi.

Covw[i] can be diagonalized by means of an eigenvalue decomposition, yielding eigenval-
ues λ1 ≥ . . . ≥ λd and associated eigenvectors v1, . . . , vd. For a covariance matrix, this
corresponds to a principal component analysis:

The eigenvector v1 corresponding to the largest eigenvalue λ1 indicates the first princi-
pal axis of the windowed feature set Wi, meaning that a projection of the feature points
in Wi onto the subspace spanned by v1 maximizes the variance λ1 along this projection
with respect to all possible choices of spanning vectors. The same holds for v2 when
restricted to be orthogonal to v1. This way, we obtain an orthonormal basis of Rd for
every feature point xi. Now, the first eigenvector/value pair (v1, λ1) associated to xi has
two interesting properties that help us in detecting segment boundaries:

1. Under the homogeneity assumption, all variances along principal axes and espe-
cially λ1 should be small when Wi ⊂ I(S) for some segment S, since homogeneity
limits the variation of features within I(S). This situation is depicted in the left
part of Figure 5.4,

2. When i is a time index with distance w to a segment boundary between segments
S1 and S2, Wi is no longer homogeneous and reaches its maximal inhomogeneity
when i is exactly on the segment boundary. Assuming that the distance between S1
and S2 is significantly larger than the intra-cluster distances of S1 and S2, the first
principal axis will point to the direction of highest variance, cf. Figure 5.4, which
equals to the direction of the line segment between the centroids of Wi ∩ I(S1) and
Wi ∩ I(S2) whose length depends on λ1.
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Figure 5.4: (left) PCA for Gaussian samples with low variance (red, blue lines correspond to first,
second eigenvector, scaled according to corresponding eigenvalue), (right) PCA for samples drawn from
two Gaussians with low variance each and high distance between means. Lengths are not to scale.

Now, we can plot the value λ1[i] over time and call the resulting novelty function fCF

(where CF stands for Covariance First Eigenvector). This can be done in linear time.
However, the runtime of an eigendecomposition of a (2w +1)× (2w +1) matrix is hidden
in the asymptotic notation. For better performance, we upper bound the first eigenvalue
by the sum of all eigenvalues, which is equal to the trace of the local covariance matrix
and therefore easy to compute:

2w+1∑
k=1

λk = tr(Λ) = tr(QΛQT ) = tr(Covw[i])

Here, Λ corresponds to a diagonal matrix with Λi,i = λi. In the second equation, we
used the invariance of the trace under multiplication with orthogonal matrices. For the
third equation, we consider the eigendecomposition of Covw[i]. Finally, we define the
novelty function fCT (i) = tr(Covw[i]) (where CT stands for Covariance Trace).

5.2.3 Segmentation with Novelty Functions

In a straightforward way, a novelty function f can be used as a means to segment an
audio file: Just compute the local maxima of f over the audio file and set these points
in time as potential boundaries. However, the computation of these maxima is not easy
in the presence of noise.

While more sophisticated approaches for detecting peaks in novelty functions exist, we
restrict ourselves to a simple one: For a given novelty function f and a threshold value
c ∈ R, the set Nc(f) of points in time with high novelty is defined.

Nc(f) = {x ∈ A | f(x) ≥ c}
Let us consider the set of points where the sign of the discrete derivative f ′ changes in
a subinterval of radius t from a positive to a negative sign, and intersect this set with
Nc(f). This way, we obtain the set of boundaries B:

B = Nc(f) ∩ {x ∈ A | (∀y ∈ [x − t : x] : f ′(y) ≥ 0) ∧ (∀y ∈ [x + 1 : x + t] : f ′(y) ≤ 0)}
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5.2.4 Evaluation of Novelty Functions

As required, a novelty function should attain high values near segment boundaries in
the human segmentation. Furthermore, the values at points in time that don’t belong to
a segment boundary should be low. While this informal definition of the requirements
to a novelty function could be transformed to a formal evaluation score by introducing
a measure that measures the peak-likeness of the novelty function in the proximity of
boundaries in a human segmentation, we rather reformulate the boundary detection task
as a two-class classification problem and choose other scores originating from machine
learning, as we will reuse these scores in Chapter 6.

By thresholding the novelty function, possible candidates for segment boundaries have
been extracted from the function in the last subsection, yielding a candidate segmen-
tation SA. Interpreting the boundary detection task as a classification problem in the
sense that the ensemble of novelty function and segmentation method is considered as
a classifier for the label set ‘boundary’ or ‘no boundary’ over the audio file, we can use
standard measures from machine learning for evaluation, always comparing the bound-
ary set of a candidate segmentation SA against that of a reference segmentation SH

produced by a human.

time
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Figure 5.5: (top) Example reference segmentation with black boundaries provided by human, (bot-
tom) candidate segmentation with tolerance regions in light green. Occurences of true negatives (TN),
three kinds of (green) true positives (TP), two kinds of (red) false positives (FP) and false negatives
(FN) are indicated by vertical lines.

In this evaluation setting, as shown in Figure 5.5, where a human reference segmentation
is compared with a candidate segmentation below, at most one of the following situations
can occur at a given point in time x:

• x ∈ B(SA) and x ∈ B(SH), rendering x a true positive, like the green line TP1.

• x ∈ B(SA) and x /∈ B(SH), rendering x a false positive, like the red line FP1.

• x /∈ B(SA) and x ∈ B(SH), rendering x a false negative, like the ‘line’ FN .

• x /∈ B(SA) and x /∈ B(SH), rendering x a true negative, like the ‘line’ TN .

Up to now, the set of true positives is the set TP = B(SH) ∩ B(SA). However, as we
don’t want to discard unexact candidate boundaries in immediate temporal proximity
to a reference boundary, we relax the notion of a true positive by introducing a tolerance
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region of ±3 seconds around each reference segment boundary. In Figure 5.5 tolerance
regions are shown in light green. We consider a candidate boundary a true positive if it
lies within such a tolerance region, like the green lines TP2 and TP3 in this figure. In
every tolerance region, at most one true positive can be found, all other positives are
considered as false positives, like the red line FP2. False negatives and true negatives
are not counted as the number of non-boundary points is much higher than the number
of positives, since boundaries are distributed sparsely over an audio file. Now, the recall
value R (also referred to as true positive rate), the precision value P , and the F-
measure F are defined as follows.

R = |TP |
|B(SH)| P = |TP |

|B(SA)| F = 2 P · R

P + R

For every novelty measure and each song in a test set described in Chapter 6, we com-
puted the threshold value that yields a segmentation maximizing the F-measure. This
maximal F-measure is listed in the left part of Table 5.1. In this evaluation we fixed the
kernel sizes for novelty kernels to 3 seconds.

Furthermore, we can also compare two different novelty functions f1, f2 directly by just
averaging their L1-distance over the audio file A = [0, T ), yielding the denominator in
the following fraction. To ensure comparability, we divide this value by the average
novelty in both novelty curves. In total, D(f1, f2) now measures the average L1-distance
between f1 and f2 divided by the mean novelty, where the mean is taken over f1 and f2:

D(f1, f2) = 1
2 ·

∫
A

|f1(x) − f2(x)| dx

∫
A

f1(x) dx +
∫
A

f2(x) dx

SongID fCT fCF fGC fGF fBC fBF

RockAndRollQueen 0.53 0.57 0.57 0.62 0.57 0.53
HighwaySong 0.77 0.74 0.67 0.72 0.73 0.77
ThatsWhatIGet 0.63 0.70 0.64 0.67 0.70 0.63
RWC-G-M01-tr01 0.48 0.49 0.43 0.41 0.42 0.48
Brahms 0.29 0.30 0.31 0.30 0.30 0.29
Gaynor 0.67 0.62 0.64 0.67 0.62 0.67
RM-C003 0.32 0.26 0.31 0.26 0.34 0.32
JazzSuite 0.47 0.59 0.59 0.59 0.63 0.47
Beatles 0.52 0.60 0.25 0.25 0.37 0.59
ZagerEvans 0.57 0.45 0.48 0.48 0.44 0.57
Average 0.53 0.53 0.49 0.50 0.51 0.53

D(fCT , fCF ) D(fGC , fGF ) D(fBC , fBF )
0.22 0.59 0.53
0.15 0.59 0.53
0.19 0.63 0.60
0.24 0.63 0.58
0.23 0.62 0.57
0.30 0.64 0.63
0.23 0.63 0.59
0.16 0.63 0.56
0.30 0.70 0.73
0.23 0.61 0.58
0.23 0.63 0.59

Table 5.1: left: F-Measures for optimal segmentations on novelty functions computed
from 10 test audio files, right: pairwise comparison on audio files according to D(f1, f2)
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However, as substantial problems arise when the compared functions feature different
normalizations, we compare only novelty functions that differ in the last letter of their
denoting symbol, i.e. we compare only functions derived from checkerboard kernels to
their non-checkerboard counterparts. Furthermore, we compare fCT to fCF . The results
are given in the right part of Table 5.1.

In this table, we notice that the average F-measure over the set of test songs is numer-
ically equal for the novelty functions fCT and fCF , suggesting that a novelty function
based on the local covariance matrix can indeed use the trace as well as the first eigen-
value. Furthermore, the novelty curves in subplot (d) of Figure 5.6 on the next page are
almost identical, yielding low values of the distance functional D(fCT , fCF ). Therefore,
fCT and fCF can be regarded as very similar.

When comparing Gaussian checkerboard kernels with box checkerboard kernels accord-
ing to the F-measure, we conclude that the actual shape of the convolution kernel doesn’t
play a significant role, as the average F-measures over the test set are nearly equal. We
also notice that fGC and fBC , i.e. the blue curves of subplots B and C of Figure 5.6
look very similar, as do the red curves corresponding to fGF and fBF .

Finally, we compare checkerboard kernels against non-checkerboard (flat) kernels. Again,
we notice that, with respect to the F-measure, novelty functions computed from checker-
board kernels almost do not differ from the non-checkerboard counterparts, yielding also
similar average values for the F-measure. However, the distance functional between such
pairs of functions always attains higher values than D(fCT , fCF ). This observation is
also reflected in a visual inspection of the red and blue curves in subplots B and C of
Figure 5.6. Note especially that the novelty functions derived from checkerboard kernels
are less smooth than their non-checkerboard counterparts.
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Figure 5.6: Evaluation of novelty functions on Highway Song with kernel size fixed to 3 seconds: (a)
cosine self-dissimilarity matrix computed for (b), (b) MFCC feature sequence on song, (c) blue: fGC

(Gaussian Checkerboard), red: fGF (Gaussian Flat), (d) blue: fBC (Box Checkerboard), red: fBF (Box
Flat), (e) blue: fCT (Covariance Trace), red: fCF (Covariance First Eigenvalue). Black vertical lines
correspond to boundaries in the reference segmentation.
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5.3 Time-Dependent Agglomerative Clustering

Since the main idea of the approach to time-dependent clustering described in the pre-
vious subsection consists of splitting the audio file at time frames that exhibit a high
novelty score, this clustering approach can be considered a divisive method. In the
following we try to employ the opposite of divisive clustering, namely agglomerative
clustering, as described in Chapter 4.2, in a time-dependent setting.

5.3.1 Self-Similarity Manipulation

First, one could process the self-(dis-)similarity matrix by manipulation of blocks near
the main diagonal, which corresponds to manipulating the self-similarity of whole time
intervals. This can be used in order to increase self-similarity within previously deter-
mined intervals and decrease similarities to other parts of the song.
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Figure 5.7: (left) Normalized novelty curve for Highway Song, (right) self-dissimilarity matrix Dnov

computed from the novelty curve.

One could for instance use the novelty function as described in the previous subsection
in order to generate a self-dissimilarity matrix Dnov that depends completely on a nor-
malized novelty function nov : [0 : T ] → [0, 1] that has been rescaled to attain values
only in [0, 1]. For each interval I = [s : t] with small nov(x) for all x ∈ I, the submatrix
Dnov(I, I) then has low self-dissimilarity. Furthermore, if nov reaches peaks near s and
t, the submatrix Dnov(I, I) is part of a block-like structure surrounded by regions of
higher dissimilarity, as visualized in Figure 5.7.

The conversion from a novelty function to a self-dissimilarity matrix can be achieved
by setting the dissimilarity of two feature vectors at positions s, t to the area under the
novelty curve in the interval [s : t]. In the discrete setting, this is formalized as follows,
with p being an exponent that allows for attenuating low novelty values and accentuating
high values:

Dnov(i, j) =
i−1∑
k=j

nov(k)p +
j∑

k=i+1
nov(k)p
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Figure 5.8: (a) Self-dissimilarity matrix Dfeat computed on feature sequence, (b) dissimilarity matrix
Dnov derived from novelty curve, (c) combined matrix Dcom with double weight for Dnov.

Theoretically, the matrix Dnov could be used for agglomerative clustering on a novelty
function. However, this approach is unsatisfying since we could also directly use the
novelty function in order to compute a segmentation.

Instead, the self-dissimilarity matrix Dnov obtained by the conversion from a novelty
function according to the formula above can be combined with a self-dissimilarity matrix
Dfeat obtained by comparing feature vectors with respect to a dissimilarity measure in
the usual way. Formally, this corresponds to a pointwise convex combination of Dnov

and Dfeat with weight factors αnov and αfeat, yielding Dcom:

Dcom(i, j) = αnovDnov(i, j) + αfeatDfeat(i, j)

An example for a combined self-dissimilarity matrix can be seen in Figure 5.8, where
Dnov corresponds to the matrix plotted in Figure 5.7 and Dfeat is computed from MFCC
features on the Highway Song with respect to cosine dissimilarity. Here, the values
αnov = 2 and αfeat = 1 have been chosen to assign double weight to Dnov. As one can
notice in the figure, the dissimilarity between intervals that have high temporal distance
grows in the number of peaks of the novelty function spanned by the temporal distance.

The combined self-dissimilarity matrix Dcom can be clustered by the agglomerative clus-
tering algorithm described in Section 4.2. At this point, the previously discussed fact
that this algorithm depends only on the self-dissimilarity matrix turns out to be very
useful since this allows clustering a manipulated self-dissimilarity matrix in the first
place. Compare this e.g. to the situation in the K-means algorithm, where the input
sequence has to consist of features embedded in some vector space allowing for comput-
ing centroids. It is not clear how to transform Dcom and especially Dnov back to such a
vector representation.

However, our experience shows that this approach does not yield significant improve-
ments to music segmentation, possibly due to the dependence on the weight factors αnov

and αfeat. Therefore, we present another method for modifying agglomerative clustering.
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5.3.2 Time-Restricted Agglomerative Clustering

The second possibility to introduce temporal coherence to agglomerative clustering is a
modification of the hierarchical clustering algorithm itself. While hierarchical clustering
in general merges any two clusters with lowest inter-dissimilarity, we can restrict it to
merge only adjacent clusters, yielding the following algorithm that is described with the
same notation as in Subsection 4.2.2:

1. Given an audio file B = [1 : N ], set Ci = {i} for all i ∈ B and R ← {C1, . . . , CN }.

2. For all i, j ∈ 1, . . . , N , set A(Ci, Cj) ← d(xi, xj).

3. While A(Ca, Ca+1) < t for Ca, Ca+1 that minimize A(Ca, Ca+1), repeat 4 and 5:

4. Set Ca ← Ca ∪ Ca+1, delete Ca+1 from R and the corresp. row and col. from A.

5. For all Ci ∈ R, set A(Ca, Ci) ← 1
|Ca|·|Ci|

∑
k∈Ca

∑
l∈Ci

d(xk, xl).

Then, for all Ci ∈ R, set A(Ci, Ca) ← A(Ca, Ci).

In the first step, a singleton cluster Ci is created for every time index i. The ensemble of
all clusters is denoted by R. The value A(Ci, Cj) denotes the inter-cluster dissimilarity
of clusters Ci and Cj and in step 2, it is initialized to the corresponding value d(xi, xj)
of the feature dissimilarity. Up to this point, this algorithm works in exactly the same
way as agglomerative clustering in Section 4.2.

However, when checking the loop condition in step 3, we restrict the search for the next
pair of clusters that should be merged to adjacent clusters. This way, every cluster
obtained by this clustering method is a connected subinterval of the domain of the input
audio file, opposed to general agglomerative clustering.

In step 4, we merge the pair of adjacent clusters determined in step 3 to one single
cluster and delete the surplus rows and columns from A. This resulting cluster is guar-
anteed to be connected, since it is the union of two adjacent connected clusters. In
step 5, we update the value of A to the new inter-cluster distances from and to Ca. In
our implementation, this step doesn’t involve the double sum described above, which
would lead to an unnecessary computational overhead. Instead, we exploit the fact that
previous inter-cluster distances have already been computed and can be reused for the
computation of the new inter-cluster distances by means of dynamic programming. Our
implemented update steps 4 and 5 look as follows:

4. For all Ci ∈ R: A(Ca, Ci) ← |Ca|A(Ca,Ci)+|Ca+1|A(Ca+1,Ci)
|Ca|+|Ca+1| .

Then, for all Ci ∈ R: A(Ci, Ca) ← A(Ca, Ci).

5. Set Ca ← Ca ∪ Ca+1, delete Ca+1 from R and the corresp. row and col. from A.
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Figure 5.9: Results of time-restricted agglomerative clustering for Highway Song, shown as white
squares in the self-dissimilarity matrix that considered to be homogeneous by the algorithm after: (a)
800 iterations, (b) 900 iterations, (c) 950 iterations, (d) 960 iterations.

An execution of the algorithm is demonstrated in Figure 5.9. Each subfigure shows
the self-dissimilarity matrix of MFCC features on the Highway Song along with the
segmentation obtained by the time-restricted agglomerative clustering algorithm after a
number of iterations. When projecting all white squares to the x- or y-axis, the corner
points correspond to segment boundaries. In this setting we did not specify a threshold
t but instead let the algorithm run until the segmentation consists of one trivial cluster.

As expected, the squares delimit submatrices that feature a low mean dissimilarity value,
which correspond to homogeneous segments in the feature sequence. Note that the
algorithm first creates small clusters before creating larger squares. This behaviour
is due to the fact that feature smoothness implies a low dissimilarity value in direct
proximity of the main diagonal of the dissimilarity matrix. Therefore, clusters will try
to stay within this proximity as long as possible.
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6
Evaluation Results

6.1 Detailed Evaluation

In this section, we present detailed evaluation results for a selected set of 9 test audio files.
While the first songs belong to the genres of popular or rock music, and we therefore
expect good evaluation results, some classical pieces are also part of the test set, on
which we expect our methods to fail.

In this evaluation setup, every song receives a double page: Every left side starts with the
human reference segmentation provided by the author, followed by a batch-generated set
of plots depicting feature sequences computed from the track. This set consists of four
plots corresponding to naive spectrum features, MFCC features, cyclic Fourier-based
tempo features and chroma features. Every feature sequence is computed with a feature
rate of 5 Hz and has been smoothed with a Gaussian kernel of 5 seconds length.

The second half of the left page is devoted to numerical performance results. Each
algorithm presented in the previous chapters is executed with different choices of pa-
rameters on all four feature sequences. Then the precision (P) and recall (R) values
for segment boundary detection are listed, along with the F-measure. Note that in this
setup we evaluate only the boundaries of the segmentation. The highest F-measure in
each column is printed in bold and the algorithm and parameter choice yielding this
optimal segmentation can be read off the very left column. Furthermore, the boundaries
of the optimal segmentation for every feature sequence are plotted in white lines over the
corresponding feature sequence. For the K-means algorithm, we vary the fixed number
K of clusters. To facilitate comparison, we don’t use a threshold value for clustering
dendrograms in agglomerative clustering (Aggl.), but instead cut the dendrogram such
that a fixed number K of clusters remain. Similarly, we specify the number of segments
in time-restricted agglomerative clustering (AgTime). Furthermore, feature evaluation
values, as defined in Chapter 3, are listed in the table at the bottom of every left page.

On the right page of an evaluation double page, we discuss the specific results, point out
interesting facts and set the evaluation data on the left page into a musical context.
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6.1. DETAILED EVALUATION

6.1.1 The Subways - Rock and Roll Queen
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Time (seconds)

Naive MFCC Rhythm Chroma
P R F P R F P R F P R F

K-Means, K = 2 0.00 0.00 0.00 1.00 0.43 0.60 0.22 0.71 0.33 0.17 0.57 0.26
K-Means, K = 3 0.43 0.43 0.43 0.75 0.43 0.55 0.18 0.86 0.29 0.17 0.71 0.27
K-Means, K = 4 0.63 0.71 0.67 0.60 0.43 0.50 0.14 0.86 0.24 0.12 0.71 0.20
K-Means, K = 5 0.23 1.00 0.37 0.71 0.71 0.71 0.13 0.86 0.22 0.13 1.00 0.23
K-Means, K = 6 0.23 1.00 0.37 0.56 0.71 0.63 0.13 1.00 0.24 0.09 0.71 0.16

Aggl., K = 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.57 0.26
Aggl., K = 3 0.00 0.00 0.00 0.50 0.29 0.36 0.13 0.29 0.18 0.11 0.57 0.19
Aggl., K = 4 0.00 0.00 0.00 0.40 0.29 0.33 0.19 0.57 0.29 0.11 0.57 0.18
Aggl., K = 5 0.20 0.14 0.17 0.33 0.29 0.31 0.19 0.57 0.29 0.12 0.71 0.21
Aggl., K = 6 0.43 0.43 0.43 0.25 0.29 0.27 0.17 0.86 0.29 0.09 0.71 0.17

Ag.Time, K = 5 0.00 0.00 0.00 0.50 0.29 0.36 0.00 0.00 0.00 0.75 0.43 0.55
Ag.Time, K = 8 0.43 0.43 0.43 0.43 0.43 0.43 0.14 0.14 0.14 0.57 0.57 0.57
Ag.Time, K = 11 0.50 0.71 0.59 0.30 0.43 0.35 0.20 0.29 0.24 0.40 0.57 0.47
Ag.Time, K = 16 0.40 0.86 0.55 0.33 0.71 0.45 0.27 0.57 0.36 0.27 0.57 0.36
Ag.Time, K = 20 0.32 0.86 0.46 0.26 0.71 0.38 0.26 0.71 0.38 0.21 0.57 0.31

Evaluation of algorithms on all features w.r.t. precision (P), recall (R) and F-measure (F)

Naive MFCC Rhythm Chroma

Dinter, Dintra, D 0.39 0.22 1.76 0.84 0.52 1.60 0.33 0.26 1.28 0.56 0.37 1.52
Dinter, Dintra

max , Dmax 0.39 0.42 0.93 0.84 0.76 1.10 0.33 0.31 1.07 0.56 0.53 1.07

Certitude for
σ = 0.2, 0.05, 0.01 0.25 0.35 0.61 0.39 0.68 0.94 0.22 0.27 0.52 0.32 0.50 0.74
Label-Dep. Cert. for
σ = 0.2, 0.05, 0.01 0.24 0.34 0.60 0.38 0.67 0.93 0.21 0.26 0.51 0.30 0.47 0.72

Dissimilarity-based and classification-based evaluation results
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6.1. DETAILED EVALUATION

The rock song Rock and Roll Queen, performed by The Subways, has a very simple
structure consisting of an introduction part and alternating chorus and verse segments
that are interrupted by an interlude. Altogether, five different segment labels are present
in the human segmentation, listed in order of first occurence:

intro (red), chorus (yellow), verse (green), interlude (cyan) and ending (blue).

This structure is reflected mainly in timbral properties of the song, i.e. during verse
parts, the electric guitar is played muted, while during chorus parts, distortion sets in.
For this particular song, to some extent even harmonical homogeneity is given, since dur-
ing the verse and intro parts only one single chord, namely a Bb-powerchord, is played.
Especially in the intro part, this chord can be seen clearly in the high values for compo-
nents 6 and 11 (note that 11+7 ≡ 6(mod 12)). However, the chorus sections in this song
consist of three alternated chords, namely Eb, Db and Bb, making them inhomogeneous
with respect to Chroma features. As the song features almost no variation in tempo,
the tempo features fail to provide information that might be useful for segmentation.

As one can see in the first and second feature sequence, both naive spectrum features and
MFCC features reflect the timbral structure described above. This visual impression is
also reflected in the feature evaluation scores, with naive spectrum features and MFCC
features yielding optimal values for D.

In particular, the best segmentations with respect to naive spectrum features and MFCC
features don’t differ significantly, except for the boundary at 160 seconds, which is dou-
bled in the segmentation obtained for naive spectrum features. This boundary introduces
a false positive which decreases the precision value for this segmentation compared to
the optimal segmentation for MFCC features. Furthermore, the optimal F-measures for
naive spectrum features and MFCC features don’t differ significantly. Finally, except for
the segmentation based on chroma features, every segmentation detects a false positive
at about 8 seconds where a vocal part sets in.

Interestingly, chroma features succeed in finding some tricky segment boundaries. For
instance, robustness of chroma features under the timbral change at 8 seconds is a wanted
effect in this case and suggests further investigation of possible combinations of features.
Furthermore the segment boundary at 129 seconds, that is hidden in timbral features,
is also recovered in the segmentation on chroma features.
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6.1. DETAILED EVALUATION

6.1.2 System of a Down - Highway Song
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Time (seconds)

Naive MFCC Rhythm Chroma
P R F P R F P R F P R F

K-Means, K = 2 0.50 0.06 0.10 0.88 0.39 0.54 0.38 0.17 0.23 0.34 0.72 0.46
K-Means, K = 3 0.41 0.50 0.45 0.50 0.50 0.50 0.30 0.44 0.36 0.27 0.83 0.41
K-Means, K = 4 0.48 0.56 0.51 0.53 0.56 0.54 0.29 0.67 0.41 0.21 0.83 0.34
K-Means, K = 5 0.52 0.72 0.60 0.52 0.61 0.56 0.35 0.67 0.46 0.21 0.83 0.33
K-Means, K = 6 0.42 0.78 0.55 0.71 0.67 0.69 0.33 0.72 0.45 0.20 0.89 0.33

Aggl., K = 2 0.50 0.06 0.10 0.50 0.06 0.10 0.40 0.11 0.17 0.00 0.00 0.00
Aggl., K = 3 0.25 0.06 0.09 0.83 0.28 0.42 0.43 0.17 0.24 0.14 0.22 0.17
Aggl., K = 4 0.63 0.28 0.38 0.71 0.28 0.40 0.44 0.22 0.30 0.24 0.83 0.37
Aggl., K = 5 0.73 0.44 0.55 0.67 0.56 0.61 0.40 0.22 0.29 0.22 0.83 0.35
Aggl., K = 6 0.62 0.44 0.52 0.65 0.61 0.63 0.33 0.22 0.27 0.22 0.83 0.34

Ag.Time, K = 5 0.25 0.06 0.09 0.75 0.17 0.27 0.75 0.17 0.27 0.00 0.00 0.00
Ag.Time, K = 8 0.14 0.06 0.08 0.86 0.33 0.48 0.57 0.22 0.32 0.00 0.00 0.00
Ag.Time, K = 11 0.40 0.22 0.29 0.90 0.50 0.64 0.50 0.28 0.36 0.20 0.11 0.14
Ag.Time, K = 16 0.47 0.39 0.42 0.73 0.61 0.67 0.47 0.39 0.42 0.20 0.17 0.18
Ag.Time, K = 20 0.42 0.44 0.43 0.58 0.61 0.59 0.47 0.50 0.49 0.26 0.28 0.27

Evaluation of algorithms on all features w.r.t. precision (P), recall (R) and F-measure (F)

Naive MFCC Rhythm Chroma

Dinter, Dintra, D 0.22 0.11 1.99 0.63 0.26 2.40 0.33 0.21 1.58 0.60 0.44 1.37
Dinter, Dintra

max , Dmax 0.22 0.30 0.71 0.63 0.63 1.00 0.33 0.26 1.29 0.60 0.83 0.73

Certitude for
σ = 0.2, 0.05, 0.01 0.11 0.15 0.32 0.20 0.47 0.88 0.11 0.16 0.39 0.15 0.30 0.69
Label-Dep. Cert. for
σ = 0.2, 0.05, 0.01 0.11 0.14 0.29 0.19 0.44 0.86 0.11 0.15 0.38 0.12 0.25 0.66

Dissimilarity-based and classification-based evaluation results
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6.1. DETAILED EVALUATION

The Highway Song, performed by the band System of a Down, belongs to the genre of
Metal and represents the second song in the set of well-tempered songs we are considering
in this evaluation. The increase in the track number comes with an increased complexity
of the human reference segmentation, featuring 10 labels:

intro A (pink), intro B (red), verse A (light green), verse B (dark green), bridge
(dark blue), interlude (light blue), pre-chorus (lime), chorus A (red), chorus B
(dark red) and ending (cyan).

The song features significant changes in timbral and dynamical properties across segment
boundaries. Therefore, the best segmentations are again obtained for timbral features
with F-measures of 0.6 and 0.69. No optimal segmentation recognizes the segment
boundaries between the intro parts. However, at least the boundary at 6 seconds stands
out clearly for the human ear. Note that MFCC, naive, and chroma features capture
this boundary, while rhythm features fail to do so.

Furthermore, the feature evaluation scores indicate that MFCC features are the optimal
features on this song, as given by D = 2.4. Note that, with respect to Dmax, rhythm
features show better results due to the overall homogeneity of this feature sequence in
reference segments, yielding a value of Dintra

max nearly equal Dintra for rhythm features.

Again, we observe that the repetitive structure of the song is represented best in the
Chroma feature sequence. Homogeneous regions in this sequence correspond to chords
played by bass and electric guitar and the sequence of homogeneous regions reflects the
sequence of chords each segment consists of. When clustering according to homogeneity,
this Chroma sequence is of no direct use, as can be seen in the poor F-measure.

Note however, that regardless of the segment number K chosen, segmentations based
on chroma features yield the highest recall values among all feature sequences for this
song. The low F-measure is explained solely by the poor precision values. Now, this
combination of values has a direct musical interpretation: In many cases, a segment
boundary is also characterized by a harmonical change. Therefore, harmonical changes,
which can be detected by chroma-based segmentation methods, are likely to contain
most of the boundaries in the human reference segmentation. The other direction does
not hold: Not every harmonical change implies a segment boundary, as can be seen in
the first verse part consisting of three different chords. Here, every second harmonical
change is recognized as a segment boundary, yielding a precision value of roughly 1/3.
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6.1. DETAILED EVALUATION

6.1.3 Nine Inch Nails - That’s What I Get
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Time (seconds)

Naive MFCC Rhythm Chroma
P R F P R F P R F P R F

K-Means, K = 2 0.42 0.62 0.50 0.62 0.62 0.62 0.36 0.62 0.46 0.22 0.46 0.30
K-Means, K = 3 0.29 0.69 0.41 0.43 0.69 0.53 0.21 0.69 0.33 0.23 0.62 0.33
K-Means, K = 4 0.23 0.69 0.35 0.32 0.69 0.44 0.18 0.62 0.28 0.14 0.54 0.23
K-Means, K = 5 0.18 0.69 0.29 0.26 0.69 0.37 0.15 0.62 0.24 0.15 0.77 0.25
K-Means, K = 6 0.18 0.85 0.30 0.26 0.77 0.38 0.13 0.62 0.22 0.14 0.77 0.24

Aggl., K = 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.45 0.38 0.42
Aggl., K = 3 0.53 0.62 0.57 0.33 0.08 0.13 0.22 0.38 0.28 0.46 0.46 0.46
Aggl., K = 4 0.47 0.69 0.56 0.67 0.62 0.64 0.22 0.38 0.28 0.41 0.54 0.47
Aggl., K = 5 0.47 0.69 0.56 0.50 0.62 0.55 0.23 0.46 0.31 0.41 0.54 0.47
Aggl., K = 6 0.45 0.69 0.55 0.36 0.62 0.46 0.22 0.54 0.31 0.24 0.62 0.34

Ag.Time, K = 5 0.75 0.23 0.35 0.75 0.23 0.35 0.00 0.00 0.00 0.50 0.15 0.24
Ag.Time, K = 8 0.86 0.46 0.60 0.86 0.46 0.60 0.29 0.15 0.20 0.43 0.23 0.30
Ag.Time, K = 11 0.70 0.54 0.61 0.70 0.54 0.61 0.40 0.31 0.35 0.40 0.31 0.35
Ag.Time, K = 16 0.53 0.62 0.57 0.53 0.62 0.57 0.40 0.46 0.43 0.40 0.46 0.43
Ag.Time, K = 20 0.53 0.77 0.63 0.42 0.62 0.50 0.32 0.46 0.37 0.32 0.46 0.37

Evaluation of algorithms on all features w.r.t. precision (P), recall (R) and F-measure (F)

Naive MFCC Rhythm Chroma

Dinter, Dintra, D 0.36 0.17 2.17 0.88 0.47 1.88 0.26 0.18 1.43 0.64 0.32 1.98
Dinter, Dintra

max , Dmax 0.36 0.24 1.51 0.88 0.82 1.08 0.26 0.23 1.16 0.64 0.57 1.13

Certitude for
σ = 0.2, 0.05, 0.01 0.13 0.21 0.45 0.27 0.60 0.92 0.11 0.14 0.30 0.18 0.34 0.66
Label-Dep. Cert. for
σ = 0.2, 0.05, 0.01 0.13 0.20 0.43 0.26 0.58 0.92 0.11 0.13 0.29 0.17 0.32 0.64

Dissimilarity-based and classification-based evaluation results
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6.1. DETAILED EVALUATION

The Industrial song That’s What I Get, performed by the band Nine Inch Nails is an
example for a song featuring very clear segment boundaries, but also extreme dynamical
and timbral variation which can also occur within a segment. The human segmentation
to this song again consists of 10 labels:

intro A (pink), intro B (red), verse A (light green), verse B (dark green), chorus
A (red), interlude (blue), bridge (dark blue), pad solo (lime), chorus B (dark red),
ending (cyan)

In our test playlist, this song is the first one to feature synthesizer sounds, for instance
pads, i.e. ambient background instruments that are mostly created using saw-like wave-
forms subject to bandpass filters that restrict the frequency range of the instrument to
mid-frequencies. For instance, apart from quiet rhythmical sounds, a pad is the only
instrument present in the pad solo part. Furthermore, synthesizers are also used as
rhythmical instruments in this song. These instruments characterized by sharp sounds
featuring many overtones. Apart from drums, including a heavily distorted snare drum
with long reverb, also vocal parts are present in this song, mainly during the verse,
chorus and interlude parts.

Again, timbre features yield the best segmentations. As the feature sequence computed
for naive spectrum features creates a nearly perfect block-like structure, the best segmen-
tation on this sequence is obtained for time-restricted agglomerative clustering, yielding
the near-optimal F-measure of 0.63, which however is worse than expected. This rela-
tively poor value is explained by the fact that time-restricted agglomerative clustering
exhibits some problems at the segment boundaries at seconds 34, 89 and 192. At these
points in time, the segmentation contains several bounds that should be subsumed to a
single bound. Of course, the recall value doesn’t suffer from this problem and therefore
attains a high value of 0.77, which means that 10 out of 13 bounds have been retrieved
successfully. As naive spectrum features recognize the overtones of the synthesizer set-
ting in at second 17, they succeed in finding this bound, as compared to the other
features.

Note that on this song, naive features and MFCC features yield nearly the same optimal
F-measures. However, due to the boundary confusion described above, we still think
that naive features in fact perform better on this song. This belief is backed up by the
feature evaluation scores D and Dmax, which show optimal values on naive spectrum
features.
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6.1. DETAILED EVALUATION

6.1.4 Gloria Gaynor - I Will Survive
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Time (seconds)

Naive MFCC Rhythm Chroma
P R F P R F P R F P R F

K-Means, K = 2 0.60 0.23 0.33 0.50 0.23 0.32 0.22 0.31 0.26 0.48 0.85 0.61
K-Means, K = 3 0.44 0.92 0.60 0.36 0.77 0.49 0.29 0.54 0.38 0.31 0.92 0.46
K-Means, K = 4 0.41 0.92 0.57 0.37 0.77 0.50 0.28 0.77 0.41 0.21 0.85 0.33
K-Means, K = 5 0.40 0.92 0.56 0.33 0.69 0.45 0.24 0.85 0.37 0.24 0.92 0.38
K-Means, K = 6 0.31 0.92 0.46 0.25 0.85 0.39 0.22 0.77 0.34 0.19 0.92 0.32

Aggl., K = 2 0.67 0.15 0.25 1.00 0.08 0.14 0.50 0.23 0.32 0.50 0.08 0.13
Aggl., K = 3 0.43 0.23 0.30 0.50 0.08 0.13 0.28 0.38 0.32 0.33 0.08 0.13
Aggl., K = 4 0.43 0.23 0.30 0.75 0.23 0.35 0.25 0.38 0.30 0.60 0.23 0.33
Aggl., K = 5 0.50 0.31 0.38 0.67 0.31 0.42 0.28 0.69 0.40 0.33 0.23 0.27
Aggl., K = 6 0.50 0.38 0.43 0.57 0.31 0.40 0.28 0.69 0.40 0.27 0.23 0.25

Ag.Time, K = 5 0.50 0.15 0.24 0.50 0.15 0.24 0.25 0.08 0.12 0.25 0.08 0.12
Ag.Time, K = 8 0.57 0.31 0.40 0.57 0.31 0.40 0.29 0.15 0.20 0.43 0.23 0.30
Ag.Time, K = 11 0.40 0.31 0.35 0.50 0.38 0.43 0.30 0.23 0.26 0.30 0.23 0.26
Ag.Time, K = 16 0.40 0.46 0.43 0.53 0.62 0.57 0.20 0.23 0.21 0.20 0.23 0.21
Ag.Time, K = 20 0.37 0.54 0.44 0.53 0.77 0.63 0.21 0.31 0.25 0.26 0.38 0.31

Evaluation of algorithms on all features w.r.t. precision (P), recall (R) and F-measure (F)

Naive MFCC Rhythm Chroma

Dinter, Dintra, D 0.36 0.20 1.80 0.99 0.45 2.18 0.34 0.19 1.74 0.65 0.43 1.52
Dinter, Dintra

max , Dmax 0.36 0.44 0.82 0.99 0.72 1.37 0.34 0.25 1.37 0.65 0.68 0.95

Certitude for
σ = 0.2, 0.05, 0.01 0.17 0.25 0.46 0.33 0.58 0.86 0.16 0.23 0.44 0.20 0.34 0.68
Label-Dep. Cert. for
σ = 0.2, 0.05, 0.01 0.17 0.24 0.44 0.32 0.54 0.84 0.16 0.21 0.39 0.19 0.31 0.66

Dissimilarity-based and classification-based evaluation results
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6.1. DETAILED EVALUATION

We now consider the famous disco song I Will Survive, performed by Gloria Gaynor.
This song has a simple structure consisting of 7 segment labels, especially featuring only
a single chorus type and a single verse type:

intro A (blue), intro B (pink), verse (green), chorus (yellow), bridge (red), inter-
lude (cyan) and ending (green).

Although the structure of this song is rather simple, it is defined by repetitions. For
instance, the verse part occurs in six instances without significant variation of timbre
or chroma features. In fact, when neglecting lyrical content and voice intonation, even
chorus and verse part can be seen as equal. Except for the interlude and bridge parts,
the chroma feature sequence is a simple repetition of the subsequence given by the first
verse part.

As every such verse part ends with an E major chord, which is succeeded by the A minor
chord of the next occurence of a verse part, chroma features yield optimal recall values
and - surprisingly - also an optimal F-measure of roughly the same value as for timbre
features.

Though rhythm features show the worst results on this song, they can discriminate
between the intro part and the subsequent first verse part. This is shown both by
visual inspection of the feature sequence and the bound in the optimal segmentation at
22 seconds. The main reason for this result is the fact that during the intro part, no
beat is present and therefore, the main beat frequency of about 116 BPM can not be
recognized by the tempo features. In fact, at several other points in time, e.g. about
150-160 seconds, the beat breaks off, yielding noisy tempo features. Apart from these
exceptions, a steady peak is seen in coefficients 3-4, corresponding to the tempo of 116
BPM.

Again, we see that timbre features, especially MFCC features, yield the optimal F-
measures for this song. Furthermore, we notice that the segmentation on MFCC features
could be improved by a post-processing step that eliminates extremely short segments.
These short segments create accumulations of boundaries, as can be seen at second 6
and in the ending part.

In conclusion, the performance is better than expected, as the homogeneity assumption,
the cornerstone of homogeneity-based music segmentation was not expected to be given
in this song. However, MFCC features attain a high value of D. This value agrees with
the fact that MFCC features yield the highest F-measure on this song.
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6.1. DETAILED EVALUATION

6.1.5 The Beatles - Help
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Time (seconds)

Naive MFCC Rhythm Chroma
P R F P R F P R F P R F

K-Means, K = 2 0.00 0.00 0.00 0.09 0.29 0.13 0.29 0.57 0.38 0.30 0.43 0.35
K-Means, K = 3 0.33 0.71 0.45 0.11 0.43 0.18 0.24 0.71 0.36 0.33 1.00 0.50
K-Means, K = 4 0.24 0.71 0.36 0.15 0.86 0.26 0.23 0.86 0.36 0.21 1.00 0.35
K-Means, K = 5 0.24 0.86 0.38 0.14 0.86 0.24 0.22 0.86 0.35 0.18 1.00 0.31
K-Means, K = 6 0.23 0.86 0.36 0.14 0.86 0.24 0.21 0.86 0.34 0.16 1.00 0.27

Aggl., K = 2 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.14 0.22 0.19 0.43 0.26
Aggl., K = 3 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.29 0.36 0.14 0.43 0.21
Aggl., K = 4 0.00 0.00 0.00 0.25 0.14 0.18 0.33 0.71 0.45 0.13 0.43 0.19
Aggl., K = 5 0.00 0.00 0.00 0.30 0.43 0.35 0.24 0.71 0.36 0.12 0.43 0.19
Aggl., K = 6 0.00 0.00 0.00 0.27 0.43 0.33 0.26 0.86 0.40 0.16 0.86 0.27

Ag.Time, K = 5 0.00 0.00 0.00 0.25 0.14 0.18 0.25 0.14 0.18 0.25 0.14 0.18
Ag.Time, K = 8 0.00 0.00 0.00 0.43 0.43 0.43 0.14 0.14 0.14 0.29 0.29 0.29
Ag.Time, K = 11 0.10 0.14 0.12 0.40 0.57 0.47 0.20 0.29 0.24 0.40 0.57 0.47
Ag.Time, K = 16 0.13 0.29 0.18 0.40 0.86 0.55 0.20 0.43 0.27 0.33 0.71 0.45
Ag.Time, K = 20 0.21 0.57 0.31 0.32 0.86 0.46 0.21 0.57 0.31 0.26 0.71 0.38

Evaluation of algorithms on all features w.r.t. precision (P), recall (R) and F-measure (F)

Naive MFCC Rhythm Chroma

Dinter, Dintra, D 0.31 0.22 1.40 0.66 0.49 1.36 0.26 0.19 1.32 0.80 0.59 1.36
Dinter, Dintra

max , Dmax 0.31 0.43 0.73 0.66 0.62 1.06 0.26 0.26 0.97 0.80 0.61 1.31

Certitude for
σ = 0.2, 0.05, 0.01 0.28 0.34 0.49 0.33 0.49 0.88 0.26 0.30 0.49 0.39 0.66 0.95
Label-Dep. Cert. for
σ = 0.2, 0.05, 0.01 0.28 0.33 0.48 0.32 0.49 0.87 0.26 0.28 0.44 0.38 0.65 0.95

Dissimilarity-based and classification-based evaluation results
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6.1. DETAILED EVALUATION

Now, we consider the pop song Help, performed by The Beatles, as another example
for an audio file featuring a simple structure, which in this case consists of only four
different segment labels:

intro (green), verse (cyan), chorus (red), ending (yellow).

Remarkable values can be found in the evaluation scores derived from segmentations on
chroma features: Starting from K = 3, the K-means algorithm yields a recall value of 1,
together with a precision of about one third. This yields an optimal F-measure of 0.5,
which surpasses these of all other but MFCC features. The same reasons as discussed
before explain this effect.

However, an inspection of the optimal segmentation on MFCC features shows that the
relatively poor F-measure of 0.55 is only due to a poor precision value. We confirm this
observation by inspecting the optimal segmentation on MFCC features, as plotted above,
in order to notice that problems arise mainly by doubling of segment boundaries. This
effect is natural, as the transitions between segments in this song often feature a short
vocal solo in high pitch, which is also reflected in the feature sequence for naive spectrum
features that shows coefficients 5-6 featuring higher values in these parts. Transitions of
this kind arise at seconds 8, 47 and 87.

As the optimal segmentation for MFCC features was obtained by time-restricted agglom-
erative clustering, the precision value could be improved significantly by introducing a
model for segment lengths that directly penalizes segments of very short length, as pro-
posed as future work in Section 7.1.

Again, we notice that repetition-based segmentation could also provide good results, as
indicated by clear repetitions in the sequence of chroma features.
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6.1. DETAILED EVALUATION

6.1.6 Zager and Evans - In the Year 2525
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Time (seconds)

Naive MFCC Rhythm Chroma
P R F P R F P R F P R F

K-Means, K = 2 0.14 0.08 0.11 0.13 0.08 0.10 0.25 0.42 0.31 0.00 0.00 0.00
K-Means, K = 3 0.43 0.75 0.55 0.11 0.08 0.10 0.20 0.42 0.27 0.03 0.08 0.05
K-Means, K = 4 0.30 0.83 0.44 0.21 0.75 0.33 0.20 0.67 0.30 0.03 0.08 0.04
K-Means, K = 5 0.29 0.83 0.43 0.21 0.75 0.33 0.22 0.83 0.34 0.13 0.50 0.20
K-Means, K = 6 0.27 0.83 0.41 0.19 0.75 0.31 0.20 0.83 0.33 0.13 0.50 0.20

Aggl., K = 2 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.17 0.29 0.05 0.08 0.06
Aggl., K = 3 0.14 0.08 0.11 0.00 0.00 0.00 0.75 0.25 0.38 0.04 0.08 0.06
Aggl., K = 4 0.13 0.08 0.10 0.00 0.00 0.00 0.29 0.33 0.31 0.03 0.08 0.05
Aggl., K = 5 0.11 0.08 0.10 0.00 0.00 0.00 0.25 0.33 0.29 0.06 0.17 0.08
Aggl., K = 6 0.10 0.08 0.09 0.00 0.00 0.00 0.29 0.42 0.34 0.05 0.17 0.08

Ag.Time, K = 5 0.25 0.08 0.13 0.00 0.00 0.00 0.50 0.17 0.25 0.25 0.08 0.13
Ag.Time, K = 8 0.14 0.08 0.11 0.14 0.08 0.11 0.43 0.25 0.32 0.14 0.08 0.11
Ag.Time, K = 11 0.20 0.17 0.18 0.10 0.08 0.09 0.40 0.33 0.36 0.10 0.08 0.09
Ag.Time, K = 16 0.20 0.25 0.22 0.07 0.08 0.07 0.33 0.42 0.37 0.07 0.08 0.07
Ag.Time, K = 20 0.32 0.50 0.39 0.11 0.17 0.13 0.32 0.50 0.39 0.05 0.08 0.06

Evaluation of algorithms on all features w.r.t. precision (P), recall (R) and F-measure (F)

Naive MFCC Rhythm Chroma

Dinter, Dintra, D 0.41 0.15 2.70 0.62 0.24 2.58 0.31 0.18 1.68 0.85 0.52 1.64
Dinter, Dintra

max , Dmax 0.41 0.37 1.11 0.62 0.48 1.29 0.31 0.30 1.02 0.85 0.77 1.10

Certitude for
σ = 0.2, 0.05, 0.01 0.18 0.24 0.48 0.21 0.32 0.65 0.16 0.20 0.40 0.26 0.59 0.94
Label-Dep. Cert. for
σ = 0.2, 0.05, 0.01 0.17 0.22 0.44 0.19 0.29 0.63 0.15 0.18 0.36 0.23 0.55 0.93

Dissimilarity-based and classification-based evaluation results
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6.1. DETAILED EVALUATION

With the pop song In The Year 2525, performed by the duo Zager and Evans, we again
see a candidate for repetition-based music segmentation. Similar to the previous song,
I Will Survive, we have only one segment type for verse and chorus each. As this verse
part is modulated several times during the song, we consider each modulated version as
a segment of a new type. In total, this amounts to six distinct segment labels:

intro A (yellow), verse A (light green), interlude A (red), verse B (lime green),
interlude B (yellow part in seconds 129-132), verse C (dark green).

Strangely, MFCC features perform significantly worse than naive spectrum features on
this song. While they yield similar recall values on the optimal segmentation, they
suffer from poor precision. Furthermore, visual inspection of the feature sequence shows
a constant peak in the second row of the MFCC feature sequence, suggesting that some
error occured during feature computation. The feature evaluation score D also indicates
that MFCC features should provide better results on this song.

The best segmentation with an F-measure of 0.55 is obtained for naive spectrum features.
MFCC and tempo features yield significantly worse results. A similar result is obtained
for the feature evaluation scores: With a value of 2.70 for D, naive spectrum features
outperform the other features.

An interesting property of the musical structure is reflected in the chroma sequence:
After four harmonically identical repetitions of the verse part, this part is transposed
upwards by a semitone at second 90, then repeated three times, before another upward
transposition by a semitone sets in at second 132. The harmonical transitions can be
spotted in the chroma feature sequence: The transposition by one semitone corresponds
to a cyclic shift of the chroma vector.

Note that even a repetition-based segmentation method would generally fail to detect
this repetition, as it is no exact repetition, but rather a modulated repetition. Some
music segmentation algorithms proposed by other authors, cf. [10], can deal with such
modulated repetitions to some extent.
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6.1. DETAILED EVALUATION

6.1.7 Johannes Brahms - Hungarian Dance No. 5
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Time (seconds)

Naive MFCC Rhythm Chroma
P R F P R F P R F P R F

K-Means, K = 2 0.18 0.38 0.24 0.08 0.13 0.10 0.22 0.50 0.31 0.17 0.38 0.23
K-Means, K = 3 0.15 0.50 0.24 0.08 0.13 0.10 0.17 0.50 0.26 0.20 0.88 0.33
K-Means, K = 4 0.10 0.38 0.15 0.08 0.13 0.10 0.13 0.50 0.20 0.18 0.88 0.30
K-Means, K = 5 0.15 0.75 0.25 0.14 0.50 0.22 0.17 0.88 0.29 0.16 1.00 0.28
K-Means, K = 6 0.19 0.75 0.30 0.23 0.88 0.37 0.17 0.88 0.29 0.13 1.00 0.23

Aggl., K = 2 0.00 0.00 0.00 0.33 0.13 0.18 0.43 0.75 0.55 0.00 0.00 0.00
Aggl., K = 3 0.00 0.00 0.00 0.33 0.13 0.18 0.35 0.75 0.48 0.00 0.00 0.00
Aggl., K = 4 0.00 0.00 0.00 0.25 0.13 0.17 0.23 0.75 0.35 0.00 0.00 0.00
Aggl., K = 5 0.00 0.00 0.00 0.20 0.13 0.15 0.22 0.75 0.34 0.00 0.00 0.00
Aggl., K = 6 0.13 0.38 0.19 0.17 0.13 0.14 0.28 1.00 0.43 0.13 0.50 0.20

Ag.Time, K = 5 0.00 0.00 0.00 0.25 0.13 0.17 0.25 0.13 0.17 0.25 0.13 0.17
Ag.Time, K = 8 0.00 0.00 0.00 0.14 0.13 0.13 0.29 0.25 0.27 0.14 0.13 0.13
Ag.Time, K = 11 0.20 0.25 0.22 0.10 0.13 0.11 0.30 0.38 0.33 0.10 0.13 0.11
Ag.Time, K = 16 0.20 0.38 0.26 0.13 0.25 0.17 0.20 0.38 0.26 0.13 0.25 0.17
Ag.Time, K = 20 0.16 0.38 0.22 0.11 0.25 0.15 0.26 0.63 0.37 0.16 0.38 0.22

Evaluation of algorithms on all features w.r.t. precision (P), recall (R) and F-measure (F)

Naive MFCC Rhythm Chroma

Dinter, Dintra, D 0.39 0.26 1.47 1.18 0.73 1.62 0.31 0.25 1.21 0.77 0.56 1.38
Dinter, Dintra

max , Dmax 0.39 0.44 0.88 1.18 0.95 1.23 0.31 0.30 1.02 0.77 0.75 1.04

Certitude for
σ = 0.2, 0.05, 0.01 0.30 0.38 0.64 0.51 0.79 0.97 0.27 0.31 0.55 0.39 0.72 0.97
Label-Dep. Cert. for
σ = 0.2, 0.05, 0.01 0.29 0.38 0.63 0.49 0.78 0.97 0.26 0.29 0.52 0.38 0.70 0.97

Dissimilarity-based and classification-based evaluation results
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6.1. DETAILED EVALUATION

With the famous Hungarian Dance No. 5, written by Johannes Brahms, of which we
consider a recording conducted by Eugene Ormandy, we start the block of classical music
in our test playlist. Based on the experience that musical structure is significantly more
complex in classical music than in popular music, we expect a significant performance
decrease along with this change of genre. In the human segmentation for this piece, we
distinguish between four different parts:

A (red), B (yellow), C (green) and D (cyan).

First, we notice that the sequence of chroma features shows high variation especially
within segments. An exception to this general observation is found in part C, where
long intervals of about 10 seconds feature roughly constant chroma vectors. As segment
boundaries imply harmonical changes for this piece, we again obtain very good recall val-
ues, however at the expense of poor precision, making homogeneity-based segmentation
on chroma features useless in this case. This is also reflected in the feature evaluation
scores. Again, a repetition-based algorithm on chroma features would probably yield
significantly better results.

Particularly interesting results can be found in the rhythm feature sequence. Note
that this feature sequence yields an optimal F-measure of 0.55 and all other optimal
segmentations produce very poor F-measures around 0.33, making rhythm features the
optimal features for homogeneity-based clustering. Furthermore, visual inspection of
the feature sequence confirms the tempo variations a human spots when listening to this
song. For instance, the segment found in the optimal segmentation at about 20 seconds
is certainly no segment in terms of musical form, but its high tempo stands out clearly,
making it a justified false positive.

Interestingly, as the instrumentation changes at this point, MFCC features also capture
this false positive. As part A is repeated twice, MFCC features also recognize this
boundary twice. Naive spectrum features fail completely to recover this boundary. Apart
from this single segment, comparing the two timbre features, we see that MFCC features
yield superior results for the same algorithm and parameter choice.

We conclude, judging by the optimal F-measures on timbre features, that this song
doesn’t fulfill the homogeneity assumption on timbre features. In fact, we expect
homogeneity-based music segmentation to generally produce poor results on classical
music, as this kind of music often defines its structure by repetitive rather than by ho-
mogeneous parts. However, note that the feature evalation results don’t validate this
assumption by very low values: This effect is caused by the low intra-cluster homogene-
ity of clusters, indicated by high values for Dintra and Dmax

intra which also imply higher
values for Dinter. However, when restricting our view to Dintra and Dmax

intra, we can at
least conclude that intra-cluster homogeneity is not given in this piece.
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6.1. DETAILED EVALUATION

6.1.8 Ludwig van Beethoven - Fifth Symphony, First Movement
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Time (seconds)

Naive MFCC Rhythm Chroma
P R F P R F P R F P R F

K-Means, K = 2 0.17 0.58 0.27 0.10 0.25 0.14 0.19 0.58 0.29 0.09 0.25 0.13
K-Means, K = 3 0.16 0.58 0.25 0.08 0.33 0.13 0.13 0.75 0.22 0.08 0.50 0.14
K-Means, K = 4 0.16 0.83 0.26 0.14 0.75 0.23 0.09 0.67 0.16 0.09 0.58 0.15
K-Means, K = 5 0.10 0.83 0.18 0.13 0.75 0.22 0.09 0.83 0.17 0.08 0.67 0.15
K-Means, K = 6 0.10 1.00 0.19 0.11 0.83 0.19 0.11 1.00 0.20 0.07 0.58 0.13

Aggl., K = 2 0.00 0.00 0.00 0.13 0.33 0.18 0.17 0.08 0.11 0.00 0.00 0.00
Aggl., K = 3 0.00 0.00 0.00 0.11 0.33 0.16 0.13 0.08 0.10 0.00 0.00 0.00
Aggl., K = 4 0.17 0.25 0.20 0.11 0.42 0.18 0.11 0.08 0.10 0.11 0.33 0.17
Aggl., K = 5 0.16 0.25 0.19 0.11 0.42 0.17 0.16 0.58 0.25 0.10 0.33 0.15
Aggl., K = 6 0.16 0.25 0.19 0.10 0.42 0.16 0.15 0.58 0.24 0.09 0.33 0.15

Ag.Time, K = 5 0.00 0.00 0.00 0.25 0.08 0.13 0.25 0.08 0.13 0.00 0.00 0.00
Ag.Time, K = 8 0.00 0.00 0.00 0.14 0.08 0.11 0.14 0.08 0.11 0.00 0.00 0.00
Ag.Time, K = 11 0.00 0.00 0.00 0.10 0.08 0.09 0.10 0.08 0.09 0.00 0.00 0.00
Ag.Time, K = 16 0.13 0.17 0.15 0.13 0.17 0.15 0.07 0.08 0.07 0.00 0.00 0.00
Ag.Time, K = 20 0.16 0.25 0.19 0.11 0.17 0.13 0.05 0.08 0.06 0.05 0.08 0.06

Evaluation of algorithms on all features w.r.t. precision (P), recall (R) and F-measure (F)

Naive MFCC Rhythm Chroma

Dinter, Dintra, D 0.47 0.31 1.50 1.16 0.87 1.33 0.32 0.24 1.34 0.87 0.70 1.24
Dinter, Dintra

max , Dmax 0.47 0.48 0.98 1.16 1.19 0.98 0.32 0.36 0.90 0.87 0.93 0.93

Certitude for
σ = 0.2, 0.05, 0.01 0.15 0.23 0.41 0.29 0.60 0.93 0.13 0.17 0.35 0.20 0.47 0.84
Label-Dep. Cert. for
σ = 0.2, 0.05, 0.01 0.13 0.19 0.35 0.24 0.58 0.92 0.12 0.15 0.30 0.16 0.41 0.82

Dissimilarity-based and classification-based evaluation results
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6.1. DETAILED EVALUATION

With the famous First Movement of the Fifth Symphony written by Beethoven, we
consider a piece that is very likely to cause homogeneity-based segmentation to fail.
First of all, the musical structure in this movement is very complex, as common to
classical music and in particular to symphonies. Even in repetition-based clustering,
problems could arise due to modulation of motives which is common for this kind of
music: For instance, motives and themes can be repeated by different instruments, in
transposed pitch, with rhythmical variations, etc.

When segmenting this movement according to musical form, we obtain the following
labels:

A (red), B (light green), C (dark green), D (bordeaux), E (dark red), F (pink), G
(cyan), H (blue).

As no homogeneity is given within the segments in the human reference segmentation,
both average and maximal intra-cluster dissimilarity values are high for all features.
Note that this implies one of the highest inter-cluster dissimilarity values for MFCC
features among all audio files in the test set, as for every pair of labels, two intrinsically
inhomogeneous clusters are compared, yielding a high inter-dissimilarity value. More
advanced feature evaluation measures should compensate this effect.

As expected, the resulting segmentations are more or less random, which is indicated
by poor F-measures. We just point to the oboe solo starting at 267 seconds that is
captured in the segmentations computed for naive spectrum features and MFCC features.
This (false) segment is nearly the only time interval in this piece that features timbral
homogeneity.

Furthermore, the values for Dintra and Dmax
intra also indicate the lack of homogeneity

in this piece. As pointed out before, the total evaluation score D suffers from the
fact that high intra-cluster dissimilarity also implies an elevated inter-dissimilarity score
Dinter. Nevertheless, we observe that the values for D are among the worst in our whole
evaluation set, reflecting the fact that the optimal F-measures also consist of very low
values.

75



6.1. DETAILED EVALUATION

6.1.9 Shostakovich - Jazz Suite, Second Waltz
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Naive MFCC Rhythm Chroma
P R F P R F P R F P R F

K-Means, K = 2 0.40 0.57 0.47 0.50 0.43 0.46 0.43 0.43 0.43 0.04 0.14 0.06
K-Means, K = 3 0.36 0.57 0.44 0.36 0.57 0.44 0.33 0.43 0.38 0.14 0.57 0.22
K-Means, K = 4 0.33 0.57 0.42 0.29 0.57 0.38 0.21 0.71 0.32 0.15 0.71 0.24
K-Means, K = 5 0.24 0.86 0.38 0.25 0.71 0.37 0.19 0.86 0.31 0.10 0.57 0.17
K-Means, K = 6 0.23 1.00 0.37 0.27 1.00 0.42 0.14 0.71 0.24 0.12 1.00 0.22

Aggl., K = 2 0.40 0.57 0.47 0.50 0.43 0.46 0.00 0.00 0.00 0.00 0.00 0.00
Aggl., K = 3 0.36 0.57 0.44 0.43 0.43 0.43 0.14 0.14 0.14 0.05 0.14 0.07
Aggl., K = 4 0.33 0.57 0.42 0.33 0.43 0.38 0.10 0.14 0.12 0.04 0.14 0.07
Aggl., K = 5 0.27 0.57 0.36 0.30 0.43 0.35 0.20 0.43 0.27 0.11 0.57 0.18
Aggl., K = 6 0.25 0.57 0.35 0.27 0.43 0.33 0.25 0.57 0.35 0.11 0.57 0.18

Ag.Time, K = 5 0.25 0.14 0.18 0.50 0.29 0.36 0.25 0.14 0.18 0.00 0.00 0.00
Ag.Time, K = 8 0.14 0.14 0.14 0.43 0.43 0.43 0.29 0.29 0.29 0.00 0.00 0.00
Ag.Time, K = 11 0.30 0.43 0.35 0.30 0.43 0.35 0.40 0.57 0.47 0.00 0.00 0.00
Ag.Time, K = 16 0.27 0.57 0.36 0.27 0.57 0.36 0.33 0.71 0.45 0.13 0.29 0.18
Ag.Time, K = 20 0.21 0.57 0.31 0.26 0.71 0.38 0.32 0.86 0.46 0.16 0.43 0.23

Evaluation of algorithms on all features w.r.t. precision (P), recall (R) and F-measure (F)

Naive MFCC Rhythm Chroma

Dinter, Dintra, D 0.40 0.23 1.71 1.11 0.71 1.57 0.34 0.24 1.46 0.78 0.50 1.55
Dinter, Dintra

max , Dmax 0.40 0.39 1.02 1.11 1.16 0.96 0.34 0.37 0.93 0.78 0.72 1.08

Certitude for
σ = 0.2, 0.05, 0.01 0.30 0.42 0.62 0.46 0.68 0.92 0.27 0.35 0.60 0.37 0.68 0.97
Label-Dep. Cert. for
σ = 0.2, 0.05, 0.01 0.27 0.33 0.56 0.38 0.63 0.92 0.26 0.30 0.54 0.35 0.65 0.97

Dissimilarity-based and classification-based evaluation results
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6.1. DETAILED EVALUATION

The last classical piece in our test set is the famous Jazz Suite, Second Waltz, written by
Shostakovich and conducted by Yablonsky. Though this piece features a rather simple
structure, we expect no good results for homogeneity-based clustering, as we in general
expect classical music to fulfill the repetition assumption rather than the homogeneity
assumption. Again, the human reference segmentation is based on repetitive structure.
In total, we obtain the following segment labels:

A (red), B (yellow), C (green) and an ending part D (cyan).

Interestingly, the first row in the MFCC feature sequence attains high values exactly
for parts featuring solos played by wind instruments. From seconds 1-20, a clarinet is
playing the famous theme of this waltz, while from seconds 125-140, it is picked up by a
bassoon. This example shows that MFCC features indeed allow for timbre recognition
in the presence of melodic variation. Note especially that in seconds 1-20, dependency
on the fundamental frequency arises only in the higher MFCC rows, i.e. in coefficients
10-14. Recalling Section 2.2, we expect this kind of behaviour.

Apart from this desired property, visual inspection of MFCC features shows that even
some segment boundaries that were not found by the optimal segmentation on MFCC
features can be spotted visually, e.g. the boundaries at 68, 96, 110 and 160 seconds. We
suppose that time-restricted agglomerative clustering would be able to recognize these
boundaries when provided with a better parameter choice, i.e. some K between 9 and
10. Note that the optimal F-measure for time-restricted agglomerative clustering on
MFCC features is in fact likely to be found for K ∈ {9, 10}, as the F-measure increases
for smaller K and decreases for larger K, suggesting that the maximum is found in
between.

Furthermore, the tempo feature sequence captures the tempo changes found in this piece.
Note that two segment-wise almost constant peaks can be found in this sequence, namely
one in the coefficients 6-7 at seconds 1-20, and one in the first three coefficients. This
discriminative effect enables rhythm features to produce optimal F-measures equal to
these of timbre features.
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7
Conclusions

7.1 Summary

The chapters preceding this conclusion introduced music segmentation as a general prob-
lem in order to present and evaluate solution strategies that rely on the assumption that
musical structure can be modeled in terms of the homogeneity assumption. This as-
sumption required an audio file to display similar musical properties within clusters
and dissimilar properties across different clusters, two central requirements we called
intra-cluster similarity and inter-cluster dissimilarity.

By introducing different features and roughly describing their extraction process in Chap-
ter 2, we pointed out several methods to measure musical qualities of an audio file in
terms of a sequence of feature vectors that can be extracted automatically from an audio
signal. In this thesis, we gave an overview over three different musical properties, namely
the timbre, tempo and chroma, and presented naive spectrum features and MFCC fea-
tures as a way to express timbral properties, which we assumed to be best suited for
homogeneity-based music segmentation. As we a priori considered tempo and chroma
properties to be less suited for this goal, we introduced only one feature type for each
property, namely cyclic Fourier-based tempo features and chroma features. Judging by
Chapter 6, homogeneity-induced structure of music was seen mostly in timbre feature
sequences for audio files we a priori assumed to fulfill the homogeneity assumption.

After introducing features, we proposed methods for feature evaluation with respect
to human segmentations in Chapter 3. This idea was intended to give an algorithm-
independent indicator for the extent to which a feature sequence represents a human
segmentation in terms of the homogeneity assumption. Furthermore, it should formalize
the visual results we could observe in Chapter 6.

In order to compute segmentations from feature sequences, we discussed two clustering
algorithms in Chapter 4, namely the K-means algorithm and agglomerative clustering,
that each allow for identifying homogeneous clusters in point clouds derived from a
feature sequence while neglecting its ordering. These algorithms served as baselines
whose main purpose was to compare more complex algorithms to their results.
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7.1. SUMMARY

As we considered time-ignoring clustering approaches not to model the inherent tem-
poral component of music, starting in Section 5.1, we introduced and discussed feature
smoothing and pointed out its unwanted effect at boundaries in a feature sequence. This
effect was then exploited in Section 5.2 to create a covariance-based novelty function that
detects boundaries by searching for maximally inhomogeneous regions in a feature se-
quence, which under the homogeneity assumption correspond to boundary regions. This
novelty function was compared to other functions both with respect to a distance-like
functional on pairs of novelty functions and the quality of the optimal segmentation that
could be derived from novelty functions.

Furthermore, we introduced methods for dealing with the order of feature sequences in
the framework of agglomerative clustering in Section 5.3. In a first method, which we
do not expect to work in practice, a direct manipulation of the self-similarity matrix
that is input to agglomerative clustering was used to create a block-structured similarity
matrix. In this matrix, the positions and sizes of the blocks were determined by a novelty
function. In the second method we introduced, the agglomerative clustering algorithm
was modified to merge only adjacent clusters, which implies that at every point in the
execution of this time-restricted agglomerative clustering algorithm, clusters are intervals
in the domain of the input audio file. This effect distinguished this algorithm from the
time-ignoring clustering algorithms introduced in Chapter 4.

Finally, we evaluated the algorithms on a set of selected songs of varying structural
complexity that partly fulfilled the homogeneity assumption. To this goal, we compared
segmentations found by the algorithms to human segmentations with respect to preci-
sion, recall and F-measures on the boundary sets. For each algorithm, a set of possible
parameter choices was proposed and the choice that resulted in the segmentation maxi-
mizing the F-measure was considered in detail. The optimal F-measures we obtain could
possibly serve as an upper bound to the performance of homogeneity-based segmentation
algorithms with a fixed parameter choice.

Furthermore, we also computed both dissimilarity-based and classification-based feature
evaluation scores for this test set and noticed that in some cases, they indeed correlate
with the F-measures computed from optimal segmentations. However, several problems
could be noticed for dissimilarity-based feature evaluation, including for instance the
problem of summarizing a multitude of values to one single score. Furthermore, we
observed that high intra-cluster dissimilarity in most cases also implies high values for
inter-cluster dissimilarity, therefore deteriorating the final evaluation score. The second
method, classification-based feature evaluation, was based on both a probabilistic and
a geometric interpretation of feature unambiguity, and was used in Section 3.2 in order
to visualize feature ambiguity over an audio file. However, when it comes to a practical
feature evaluation score, two major shortcomings prevented this method from producing
the desired results: dependency on global scaling of the features and the problem of
condensing a whole curve into one value.
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7.2. FUTURE WORK

7.2 Future Work

An interesting track that might be explored in the near future starts with the observation
that the results of homogeneity-based segmentation can be used as a starting point for
repetition-based segmentation. For instance, a feature sequence that has been condensed
to a string-like sequence of chord symbols can be checked very easily for transposed
repetitions of segments.

Furthermore, improvements can also be made to homogeneity-based segmentation itself.
In Chapter 2 of this thesis, we only considered features capturing a single aspect of
music, namely timbre, rhythm or harmony. It might be of great interest to combine
different feature types into one mixed feature that captures all of the three properties
mentioned above. One might for instance concatenate the feature vectors and intro-
duce some weighting for the coordinates or simply create new self-dissimilarity matrices
by computing a convex combination of the self-dissimilarity matrices corresponding to
timbre, rhythm and harmony features. In both cases, the weights could be learned on
training sets consisting of songs of a single genre, yielding optimal choices of weight
factors for different genres of music.

As the central component of agglomerative clustering is the cluster-dissimilarity mea-
sure used to compare different segments, further work should also be invested in the
development of more complex cluster-dissimilarity measures. For instance, the average
linkage value between two segments S1, S2, which is the measure we used in this thesis,
is the mean of all dissimilarities between pairs of feature vectors. In particular, every
point in time in S1 is compared to every point in time in S2, i.e. S1 and S2 are compared
as sets, not as sequences. By computing a DTW-like cost measure for segments, similar
to [16], we could introduce time-dependency into the cluster-dissimilarity measure.

Another possibility to improve cluster-dissimilarity measures could consist of introduc-
ing a segment length regularizer that penalizes segments of untypical lengths, such as
extremely short or extremely long segments. This regularizer could be learned by pro-
cessing a large number of human annotations and estimating the distribution of segment
lengths, possibly again restricted to single music genres. We expect this regularizer to
improve time-restricted agglomerative clustering significantly.

With the aid of such cluster-dissimilarity measures, agglomerative clustering could in
the end possibly serve as a method for repetition-based hierarchical clustering. This
method might be able to create dendrograms capturing musical form on different scales,
i.e. the leaves could correspond to single notes, intermediate levels to motives, themes
and verses, while the root could represent the whole song. Consider for instance a song
featuring a structure of type ’ABCCABCC’. The single letters could be interpreted as
motives, sequences such as ’AB’ or ’CC’ could correspond to themes, etc.
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