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ABSTRACT

Abstract

In this thesis, we introduce the segmentation task typically encountered in multimedia signal
processing. In particular, we focus on music data. Music is a very complex and highly structured
data. The structure in music arises from verses, bridges, refrain and homogeneity in musical
aspects such as tempo, melody, dynamics or timbre. The extraction of musical information
from an audio recording is a challenging task in the field of music information retrieval. The
audio data can be segmented based on the musical aspects. As an example scenario, in this
thesis, we consider the Indian Carnatic music as an interesting case study. We consider the
Carnatic music recording, which consists of three contrasting parts. They are, Alapana, Krithi
and Tani-Avarthanam. The three parts are different concerning to the musical properties. The
Alapana and Krithi parts have a clear notion of melody whereas, the Tani-avarthanam has a
vague notion of melody. Similarly, the Alapana part has no clear notion of tempo whereas, the
other two parts have a clear notion of the tempo.

The main contribution of this thesis is to apply signal processing techniques to design several
novel features aimed towards the automatic segmentation of the three contrasting parts. We use
tempo and melodic properties to design novel features for the segmentation. To this end, we
perform qualitative and quantitative analysis of the novel features for the segmentation task.
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1. INTRODUCTION

Chapter 1

Introduction

1.1 Music Background

Carnatic music is popular in the southern part of India [3], roughly confined to four states of,
Andhra Pradesh, Tamil Nadu, Karnataka and Kerala. Many concerts are performed in large music
festivals conducted in India and abroad. Many of the performances are recorded and uploaded on
audio or video sharing websites such as, YouTube or Sangeethapriya1, a non-commercial service
specialized for the exchange of Indian classical music. However, the uploaded audio material is
often poorly segmented and annotated. Despite the massive amounts of data and its cultural
relevance, only few attempts have been made to develop automated methods for making this
material better accessible for users.

A typical concert may last for about 2 − 3 hours in which various pieces are performed. A
concert typically has 7− 8 pieces. Each piece is performed for roughly about 10− 15 minutes
except for the main piece, which may last for upto 60 minutes. A concert is performed by a
small ensemble of musicians, consisting of a lead artist (a vocalist or a harmonic instrument), a
melodic accompaniment and rhythmic accompaniments (one or more percussive instrumentalist).
In addition, a drone instrument (like Tanpura) is also played throughout a concert to set up the
harmonic base for the music.

The main piece of a concert consists of three contrasting parts, known as Alapana, Krithi and
Tani-Avarthanam [6] as shown in the Figure 1.1. The first part, Alapana is a purely melodic
improvisation of Raga2 accompanied with the harmonic instruments. Raga is considered as
one of the most important aspects of Carnatic music. In the Alapana part, exposition of Raga
takes place with slow improvisation with no rhythm involved in it. In the second part, Krithi,
a lyrical composition is performed by the lead artist in a Raga and Tala3. Tala is a rhythmic
framework. Finally, in the concluding part, Tani-Avarthanam, the percussionist(s) show their
virtuosic skills by further exploring the Tala. Further details on Carnatic music compositions
and musical properties of different parts are discussed in the Chapter 2.

The motivation of this thesis is not to aim at perfect segmentation of the main piece but to

1http://www.sangeethapriya.org
2Raga is one of the melodic modes used in Indian classical music and is also known as Ragam
3Tala is a repeating rhythmic phrase rendered on a percussive instrument

3 Master Thesis, Venkatesh Kulkarni
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1. INTRODUCTION

Alapana Krithi Tani-Avarthanam

Melody present

Rhythm present

Melody absent

Rhythm absent

(a)

(b)

(c)

Figure 1.1: Typical structure of a Carnatic main piece. (a) Main piece constituting of three
contrasting parts: Alapana, Krithi and Tani-Avarthanam. (b) Melody property distinguishes
Tani-Avarthanam with respect to Alapana and krithi. (c) Tempo property distinguishes Alapana
with respect to Krithi and Tani-Avarthanam.

analyze and investigate the extent to which the musical parts can be characterized by their
musical properties.

As mentioned earlier, a drone instrument is played throughout a concert to provide the reference
pitch for the performers. Neglecting the drone instrument, we can summarize the musical
properties of the main piece as below,

1. Alapana is purely harmonic as the lead performer(vocalist or harmonic instrumentalist)
improvises the melodic mode without the presence of percussion. Therefore, it has the
existence of melody and the absence of tempo.

2. Krithi is a lyrical composition performed by the lead artist, with the harmonic and
percussive instruments played in the background. Hence, this part has the presence of both
melody and tempo.

3. Tani-Avarthanam is a purely percussive part performed by percussionist(s). Thus, this
part has a clear notion of tempo and an absence of melody.

1.2 Main Contributions

From the above observations , we can infer that, it is possible to musically distinguish the different
parts of the main piece based on melody and tempo information as shown in the Figure 1.1. The
Tani-Avarthanam part can be musically distinguished from the Alapana and Krithi based on
melodic information. The Alapana part can be musically distinguished with respect to Krithi
and Tani-Avarthanam based on tempo information. The main technical contribution of this
thesis is as follows.

Firstly, we design several tempo salience features based on the cyclic tempogram representation,
which captures the absence or the presence of the tempo in the constituent parts. The cyclic
tempogram representation is obtained from the existing tempogram toolbox [16]

Secondly, we design several chroma salience features based on the chroma representation, which
captures the absence or the presence of the melody in the constituent parts. The chroma
representation is obtained from the existing chroma toolbox [25].

4 Master Thesis, Venkatesh Kulkarni
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Tempogram 
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Audio Recording Evaluation

Tempogram Toolbox

Chromagram Toolbox

Figure 1.2: Model of thesis structure.

Finally, we provide some insights into the tempo and chroma salience features by a quantitative and
qualitative analysis of their properties. For each of the features, we compute the average feature
value and its standard deviation for each of the three Alapana, Krithi and Tani-Avarthanam
parts separately. From this statistics, we can investigate how well the three different musical
parts are characterized by the novel features. The chroma and tempo salience features can be
further used in an automated algorithm for segmentation in conjunction with other features for
retrieval tasks.

1.3 Thesis Organization

In the following, we give an outline of this thesis and briefly describe the contents of each chapter.

In Chapter 2, we introduce the building blocks of Carnatic music with detailed explanation of
the different pieces performed in a concert. We also list a few differences between Indian classical
music and Western classical music.

In Chapter 3, we discuss how the tempo cue can musically distinguish Alapana with respect to
Krithi and Tani-Avarthanam parts of a main piece audio recording. We design several tempo
salience features based on the cyclic tempogram representation, which captures the absence or
the presence of the tempo in the constituent parts.

In Chapter 4, we discuss how the melody cue can musically distinguish Alapana and Krithi with
respect to Tani-Avarthanam part of a main piece audio recording. We design several chroma
salience features based on the chroma representation, which captures the absence or the presence
of the melody in the constituent parts.

In Chapter 5, we discuss how well the three different musical parts are characterized based
on quantitative and qualitative analysis of the chroma and tempo salience features. We also
lists the strengths sand limitations of the features for analyzing and segmenting Carnatic music
recordings.

At last in Chapter 6, we make conclusions about the main contributions of this thesis and discuss
about the future work.

5 Master Thesis, Venkatesh Kulkarni





2. CARNATIC MUSIC

Chapter 2

Carnatic Music

The two main classical music forms of India are Hindustani music found in northern part of
the country and Carnatic music popular in South India. Both the music forms claim to have
Vedic origins and it is also believed that they diverged from a common musical root in the 13th

century [5].

The traditional Indian classical music system is based on a just tempered scale1 [23]. It is possible
to get a lot of insight into Indian music using equal tempered scale which essentially makes it
easy and simple to use Western keyboards. There are seven basic swaras2 in Indian classical
music and they are Shadja(Sa), Rishabha (Ri), Gandhara (Ga), Madhyama(Ma), Panchama
(Pa), Dhaivata (Dha) and Nishadam (Ni) [7]. The remaining five swaras are derived from the
basic notes to make it to twelve notes per octave. The notation for the notes used in Indian
classical music and Western music as shown in the Table 2.1.

The three main pillars of Indian classical music are, Raga (providing the melodic framework),
the Tala (providing the rhythmic framework) and improvisation.

Raga is a set of swaras, gamakas3 given to these swaras and the sequence in which they occur.
gamaka is the variation of a pitch oscillating between the adjacent and the current note (micro
tones). Each Raga has specific rules for using the type of gamaka that is applied to a specific
note. A Raga is described by the sequence of notes in arohana and avarohana. Arohana is the
sequence of notes used in a Raga in the ascending order with the pitch going upwards. Avarohana
is a sequence of notes used in descent. For example, Lavangi Raga has four notes. The arohana
and avarohana are given as (S R1 M1 D1 ) and (S D1 M1 R1 ). Every Raga is associated with a
certain time of day or night, or season, resulting in particular moods or feelings being evoked [3].

Tala provides a rhythmic framework for the musicians. It roughly corresponds to metre in
Western music. There are two main characteristics of the Tala which differentiate it from Western
music [1]. In Western music each segment has the same number of beats (like, 4+4+4+4),
whereas in Indian classical music each segment may have a different number of beats (like,

1Just tempered scale (just intonation) is a method of tuning intervals and notes based exclusively on rational
numbers.

2Swara refers to a note in the octave.
3Gamaka refers to ornamentation that is used in the performance of Indian classical music. The unique

character of each Raga is given by its gamaka, making their role essential rather than decorative in Indian music.

7 Master Thesis, Venkatesh Kulkarni



2. CARNATIC MUSIC

Poistions
Western Music
System(notes)

Indian Music System
Swara Notation 1 Notation 2

1 C Shadja Sa S1

2 C] Shuddha Rishabha Ri 1 R1

3 D Chatushruti Rishabha Ri 2 (Ga 1) R2 (G1)

4 D] Sadharana Gandhara Ri 3 (Ga 2) R3 (G2)

5 E Antara Gandhara Ga 3 G3

6 F Shuddha Madhyama Ma 1 M1

7 F] Prati Madhyama Ma 2 M2

8 G Panchama Pa P1

9 G] Shuddha Dhaivata Dha 1 D1

10 A Chatushruti Dhaivata Dha 2 (Ni 1) D2 (N1)

11 A] Kaisiki Nishada Dha 3 (Ni 2) D3 (N2)

12 B Kakali Nishada Ni 3 N3

Table 2.1: Western music and Indian music system

2+3+2+3 pattern). The beat pattern can be presented in three ways, as a series of counts made
by wave of the hand or tap of the hand on the lap or using both the hands in a manner of clap.
For example, Jhoomra Tala has 14 beats, counted as 3+4+3+4.

There are several music compositions. Each composition is performed in a given Raga and Tala
along with the lyrics. A artist decides which Raga andTala to be used based on the mood or
the audience choice. Here the artist has freedom to improvise Raga and Tala to impress the
audience. There are different Ragas and Talas used in both of the main forms of Indian classical
music. The origin and historical development of both forms of the music are discussed further.

Hindustani music was developed, refined in 13th and 14th centuries AD. It was not only influenced
by ancient Hindu musical traditions and Vedic philosophy but also enriched by the Persian
performance practices of the Mughal era. The practice of singing based on notes was popular
from the Vedic times [4].

Carnatic music is based on historical developments in 15th and 16th centuries AD. Carnatic
in Sanskrit means soothing to hear [23]. It is a form of music, emphasizing on creativity and
improvisation. Most of the compositions are written to be sung and they are accompanied with
some instruments performed in a singing style. Purandara Dasa is considered as the ”Sangeetha
Pitamaha” or the ”grandfather of Carnatic music”. He has been credited to elevate Carnatic
music by systematizing the teaching methods and framing a series of lessons on various forms
of Carnatic music. Most of the songs and poems performed today in the concerts were written
and composed way back in 14th century. Composers such as Tyagaraja, Muthuswami Dikshitar ,
Shyama Shastri, Annamacharya, Bhadrachala Ramadasu, Annamacharya, Kanakadasa, etc wrote
lyrical compositions in various Ragas in languages such as Sanskrit, Telugu, Kannada and Tamil.
Most of the songs performed in concerts today come from one of the above mentioned composers.

Indian classical music differs from Western classical music in the aspects listed in the Table
2.2 [23]. In this thesis, we shall analyze Carnatic music compositions. There are different types
of Carnatic music compositions and improvisational aspects of compositions which are discussed
in the next Section 2.1.

8 Master Thesis, Venkatesh Kulkarni



2.1 CARNATIC MUSIC COMPOSITIONS

Indian Classical Music Western Classical Music

1
Musicians have freedom for
improvisation.

Musicians have lesser freedom for
improvisation.

2
It is homophonic focusing on melody
created using a set of notes.

It is polyphonic focusing on melody
and texture created using multiple voices.

3 Complex beat cycles. Simple beat cycles.

4 Use of micro tones. Restricted to semi tones.

5 No use of Dissonance.
Use dissonance to add texture to the
composition.

Table 2.2: Indian Classical Music versus Western Classical Music

2.1 Carnatic Music Compositions

Carnatic music can be classified in two basic formats. Abyasa Gaanam (literally singing for
practice) - for the purpose of learning and practicing music. Sabha Gaanam (literally concert
singing) - for performing in the concerts or public gathering. We mainly focus on the second
music format.

There are various forms of Carnatic music compositions [5]. The following types of pieces popular
in Carnatic music are listed below.

1. Varnam : A typical Carnatic concert begins with a Varnam. It is a lyrical composition
which may last for about 5 minutes. A Varnam usually starts off slow and requires a
doubling of tempo towards the end. This warms up the musicians and sets the mood and
pace of the concert. There are two types of Varnam and they are Tana Varnam and Pada
Varnam. Tana Varnam is performed in music concerts. Pada Varnam primarly intended
for classical dance.

2. Krithi : Krithi is an important piece of a Carnatic music concert. It is usually based on a
lyrical composition praising a personal deity or a patron king. Composers choose a certain
Raga, Tala, style and can also improvise the piece to impress the audience. Besides the
lead artist and melodic instruments, there are also accompanying percussion instruments
that establish a clear rhythmic framework based on the Tala. Since the percussionist(s)
provide rhythmic framework, the Krithi has a clear notion of tempo, which usually stays
roughly constant for the entire piece. A Krithi may last for upto 30 minutes.

Krithi is sub-divided into three parts and they are, Pallavi, Anu-pallavi and Charanam.
Pallavi is same as refrain in the Western music. Anu-pallavi is the second verse and
sometimes optional. Charanam is the longest and the final verse that concludes the piece.
Charanams last line usually contains the signature of the composer.

3. Ragam Talam Pallavi : It is the middle piece of a typical Carnatic music concert. It
consists of Raga Alapana, Tanam and Pallavi. It may last for about 15-20 minutes. Raga
Alapana is the improvised piece in the concert followed by Tanam. Raga is improvised by
using the words Anantam Anandam (bliss). It uses the syllables like aa, nam, taa, tham,
na, thom, tha in a repetition form. Rhythmic pulse plays an important role in the Tanam

9 Master Thesis, Venkatesh Kulkarni



2. CARNATIC MUSIC

exposition. Pallavi is usually a chosen lyrical line that is explored in the Raga and Tala
framework.

4. Viruttam : In this piece devotional songs are performed. This may include various Slokas4,
Bhajans5 and other compositions performed in honor of the performer’s teacher. It does
not posses a set Tala but solely improvises one or more Raga in the same piece. Each verse
of the piece is improvised with different Raga followed by a song. The song performed will
have the same Raga as that of last verse of Viruttam. This piece may perform the same
verse with different Raga in different concerts. It is mainly performed at the end of the
concert. Apart from music concerts, it is also performed in traditional celebrations in the
praise of Lord Muruga and Lord Ayyapa [1].

5. Tillana : It is a rhythmic piece performed almost at the end of the concert. It is a composed
piece intended mainly for dance performances. It uses certain syllables denoting division of
the Tala like, Ta, Deem, Thom and Takadimi.

6. Mangalam : This is the last piece of a Carnatic music concert. In this piece the artist
performs a thankful prayer in honor of his/her teacher and concludes the musical event.

An artist (vocalist or instrumentalist) has the freedom to improvise based on a given Raga and
Tala in any of the compositions. There are several improvisational aspects of a composition as
listed below.

1. Alapana : The Alapana part is a slow improvisational exposition, which introduces a Raga
and its underlying mood. This part may last up to 30 minutes, is performed without any
percussion and involves only the lead artist (often a singer) and a main melodic instrument
(often a violin) that follows, imitates, accompanies and interacts with the lead artist. In the
Alapana, various tonal and melodic aspects of the Raga are explored, and typical phrases
built from the Raga are presented to the audience. Being performed in a relaxed and free
manner, the Alapana part has only a vague sense of tempo.

2. Neraval : In this part, artist takes the lines from the Krithi and sing the lines over and
over each time. It may last for about 5− 10 minutes. TheNeraval is accompanied with
percussion instruments. The artist keeps the track of Tala to ensure that the lines of the
composition occur in the correct position of the Tala where the line starts. This is the
main aspect of Pallavi of the Krithi or the Ragam, Talam and Pallavi piece. The purpose
of Neraval is to elaborate the selected lines to bring out the underlying music and lyrical
beauty in it.

3. Kalpana Swara: In this part, musicians display various phrases of the Raga through the
Swara syllables namely Sa, Ri, Ga, Ma, Pa, Dha and Ni. It may last for about 5 − 10
minutes. The artists sings several Swaras and finish on the same line very time, ensuring
the Swara exposition had ended on the exact position of the Tala. The choice of Swaras
used must stick to the grammar of the Raga. For example, when singing Kalpana Swaras
in the Raga Hamsadhwani which consist of Sa, Ri, Ga, Pa and Ni notes. The artist is
usually restricted from using any other note than the notes of theRaga Hamsadhwani.

4Slokas is a category of verse line developed during Vedic times
5Bhajans is a type of Hindu devotional song

10 Master Thesis, Venkatesh Kulkarni



2.2 CARNATIC MUSIC CONCERT STRUCTURE

4. Tani-Avarthanam : This part is dedicated to the solo performances by the percussionists.
If more than one percussion instrument is involved in the concert, each percussionist
takes turns to exhibit his or her creativity in presenting interesting rhythmic patterns.
The percussionists finally join together in a grand crescendo following the same rhythmic
patterns. In the Tani-Avarthanam, there are no melodic instruments involved except for
a drone. Sometimes a morsing (Jaw harp) may be present acting as a kind of melodic
percussionist. While exploring the nuances of the underlying Tala, the rhythms presented
by the percussionists are often of high speed involving complex and syncopated patterns.
Usually, the Tani-Avarthanam part, which also may take up to 20 minutes, has a clear
notion of tempo. However, the tempo may change several times, in particular between the
various solo sections.

2.2 Carnatic Music Concert Structure

A Carnatic concert typically features a lead artist (often a vocalist), who is supported by a lead
melodic instrument (usually a violin). One or more percussion instruments (like the Mridangam,
Ghatam, or kanjira) may accompany the artists to provide both rhythmic and timbral variety. A
drone (the Tanpura) is often used to support the melodic instruments or the singer. A list of
harmonic and percussive instruments used in Carnatic music are shown in Figure 2.1 and Figure
2.2.

A typical concert has around 7 to 8 pieces performed over a duration of 2 to 3 hours. There is
usually 1 Varnam piece, 2 or 3 small Krithi pieces, 1 main piece, 1 or 2 elaborate Krithi pieces
(one of which may incorporate Viruttam), 1 Thillana and 1 Mangalam piece. The smaller pieces
may last for about 5 − 20 minutes while the main piece may last upto 60 minutes. The lead
performer chooses the set of pieces to perform depending on the occasion and the taste of the
audience.

The main piece may include Alapana, Krithi and Tani-Avarthanam or either Alapana or Tani-
Avarthanam along with Krithi or it can be only Krithi, as it is the considered the heart of the
main piece. The lead artist renders the main piece of the concert in his personal style. The
artist(vocalist or instrumentalist) displays improvisation of Raga and creativity in Alapana and
Krithi parts and then gives an opportunity for the percussionists to show their creativity in the
Tani-Avarthanam part.

In this thesis, we shall consider the main piece having all the three parts, Alapana, Krithi and
Tani-Avarthanam. The state of the art and the research in the filed of automatic segmentation
techniques for Carnatic music are discussed in the next Section.

2.3 Segmentation Task

Given an audio recording of the main piece consisting of Alapana, Krithi and Tani-Avarthanam,
we perform segmentation using various musical cues such as rhythm, tempo, tonal content,
harmony, melody, instruments, timbre and so on. Specific cues are selected that can differentiate
the segments with respect to each other. Main contribution of this thesis is to make use of two

11 Master Thesis, Venkatesh Kulkarni



2. CARNATIC MUSIC

Figure 2.1: Harmonic instruments used in Carnatic music (for more details, refer Appendix A).

musical cues. The first cue is the tempo which captures the information on the existence or
absence of local tempo changes. The second cue is the chroma which captures the information
of existence or absence of melody and tonal information in constituent parts of the main piece
audio recording.

Till date only little work has been done on automatic segmentation of Carnatic pieces of the
music. Padi Sarala and Hema Murthy proposed an idea to segment Carnatic music recordings
into individual items for archival purposes using applauses between the different parts [29].

12 Master Thesis, Venkatesh Kulkarni



2.3 SEGMENTATION TASK

Figure 2.2: Percussion instruments used in Carnatic music (for more details, refer Appendix A).

Further Hema Murthy et al. extended their work to segment the pieces based on identifying
inter and intra applauses in the music [28]. Inter applauses were used to locate the end of each
part where as intra applauses were identified which helped to merged the parts belonging to the
same item. Apart from segmenting Carnatic music pieces, many techniques are proposed on
Raga identification. Note identification based on frequency spectrum [27]. Identification of Raga
was possible using midi representation [26] and Hidden Markov Model [9].

In the next Chapter 3, we discuss how the tempo cue can musically distinguish Alapana with
respect to Krithi and Tani-Avarthanam parts of a main piece audio recording. We design
several tempo salience features based on the cyclic tempogram representation, which captures
the absence or the presence of the tempo in the constituent parts.
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Chapter 3

Tempo Salience Features

For any audio recording, the extraction of tempo and beat information is a challenging task,
in particular for music with soft onsets1 and local tempo variations. Carnatic music has very
complex predefined rhythmic beat structure (Tala). The artist has a freedom of speeding up or
slowing down of the tempo as a piece progresses, especially in the Krithi and Tani-Avarthanam
parts of the main piece. Sometimes there is also a vague notion or non-existence of beat in
the Alapana part. We exploit this musical property to segment the Alapana from the Krithi
and Tani-Avarthanam in which there exists a clear notion of beat and local tempo changes (see
Figure 3.1). Hence, we design few tempo salience features from the time-tempo representation to
musically distinguish the constituent parts of a Carnatic concert main piece audio recording.

The local tempo variations and beat information is captured in two steps. Firstly, note onset
from the music signal are extracted by exploiting the fact that the note onset typically occur due
to the sudden changes in the signal’s energy or spectrum. Based on this property, the note onset
detection novelty curves are derived. Secondly, the novelty curves are analyzed for local periodic
patterns using tempogram from which the local tempo variations are estimated.

Tempogram is a time-tempo representation that encodes the local tempo of a music signal
over time [16]. This can be obtained from comb-filter, Fourier or autocorrelation methods. In
the Fourier-based tempogram [14, 15], the novelty curve is compared with sinusoidal kernels
each representing a specific tempo. It reveals the local similarity of the novelty curve and
is suitable for analyzing tempo on tatum and tactus level [20]. In the autocorrelation-based
tempogram [12], novelty curve is compared with time-lagged windowed sections of itself. It
reveals the novelty similarity and is suitable for analyzing tempo on tactus and measure level. In
the comb filter-based tempogram, the tempo tracker is modeled as stochastic dynamical system
and is estimated by Kalman filtering [12].

Inspired by the concept of chroma features. We use the concept of cyclic tempogram, where the
idea is to form tempo equivalence classes by identifying tempi that differ by a power of two [21].
It is a mid level representation which robustly tracks the beat and local tempo changes [22].

In order to derive the novel features (see Figure 3.2) based on tempo property, we follow
three steps. Firstly, we obtain the note onset detection novelty curve using spectral based

1Onset is the time position where a note is played or finding start times of perceptually relevant to acoustic
events in music signal.
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Alapana Krithi Tani-Avarthanam

Rhythm presentRhythm absent

(a)

(b)

Figure 3.1: Typical structure of a Carnatic main piece.(a) Main piece constituting of three
contrasting parts: Alapana, Krithi and Tani-Avarthanam.(b) Tempo property distinguishes
Alapana with respect to Krithi and Tani-Avarthanam.

method [11, 32]. Secondly, we obtain the autocorrelation based tempogram using the novelty
curve. Finally, cyclic tempogram is used to track local tempo changes in each part of the main
piece audio recording.

The main contribution of this Chapter is to design the tempo salience features based on the
cyclic tempogram representation, which captures the absence or the presence of the tempo in the
constituent parts of the main piece audio recording. The cyclic tempogram representation is
obtained from the existing tempogram toolbox [16]. This Chapter is organized as follows. We
introduce the tempogram toolbox algorithms and parameter settings in the first two Sections. In
the Section 3.3, we design the tempo salience features based on cyclic tempogram representation
to musically distinguish the constituent parts of the main piece .

3.1 Note Onset Detection

A note onset is a time position where the note is played. The note onset detected can be obtained
in 2 steps. Firstly, transform the signal to a suitable feature representation. Secondly, derive a
novelty function based on some kind of derivative operative to detect the note onsets. There
are different methods to compute the novelty function such as energy based or spectral based
novelty functions [16]. Energy based method is good for percussive instruments having hard
onsets but not for harmonic string instruments having weak onsets. To increase the robustness
of the onset detection we use spectral based method which is more refined and used for onset
detection [11, 32]. The steps involved to compute the novelty function are discussed in the
Section 3.1.1.

3.1.1 Spectral Based Novelty

Onset detection becomes much harder when we have polyphonic music. The low intensity and
high intensity events may occur at the same time. The low intensity events may be masked by
the high intensity events. It is very hard to detect all onsets when we have multiple instruments
played at the same time having different energy fluctuations in the sustain phase. It is difficult
to obtain all the onsets using energy based approach. Characteristics of note onset events may
differ based on different categories of instruments. Percussive instruments have impulse like
note onsets with sudden increase of energy across all the frequencies of the spectrum. For
harmonic instruments most of the energy is concentrated in lower frequency bands for harmonic
instruments. Transients are often well detected in the higher frequency bands.
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Figure 3.2: Tempo salience feature extraction.

Hence motivated by this observation, we use the concept of spectral based novelty detection to
first convert the signal to time-frequency representation (spectrogram) and then capture the
spectral changes throughout the frequency range [16]. The steps involved in computing the onset
detection novelty function are mentioned below.

1. Spectrogram: Given a discrete time domain signal x of an audio recording. Convert the
time domain signal into time-frequency representation to detect the spectral changes over
the entire frequency range. Aspects concerning pitch, harmony or timbre are captured by
spectrogram. Let X be the discrete STFT (short-time Fourier transform) of the discrete
time signal x with parameters including sampling rate Fs = 1/T , the discrete window w with
window length N and hop size H. The discrete STFT signal mathematically represented as
X(n, k) ∈ C. It denotes the kth Fourier coefficient for frequency index k ∈ [0 : K] and time
frame n ∈ N, where K = N

2 is the frequency index corresponding to Nyquist frequency.

2. Logarithmic compression: In order to enhance the spectral coefficients, we apply logarithmic
compression to the spectral coefficients which mimics the processing within the auditory
systems. The advantage of such a compression is to enhance weak high frequency spectrum,
low intensity values and balance out the dynamic range of the signal [20]. We apply a
logarithm to the magnitude spectrogram |X| of the signal yielding to,

Y := log(1 + C · |X|), (3.1)

with suitable constant C > 1 which acts as compression factor for spectral coefficients.
Different values of C are chosen. For example, for C = 1, the low frequency component
is visible but may not track the weak vertical line corresponding to the beat positions in
the spectrogram. For C = 1000, even the weak vertical lines are prominent and can track
the weak onsets. Large value of C corresponding to larger compression may end up in
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amplifying the non relevant noise like components, hence an optimum value of C is to be
selected.

3. Differentiation: To capture the changes in the spectral content, we compute the discrete
temporal derivative of the log compressed spectrum [11, 32]. . Increase in the intensity is
obtained by considering only the positive differences and by discarding the negatives ones
which, results in spectral based novelty function, 4Spectral : Z→ R for n ∈ Z.

4Spectral(n) :=

K∑
k=0

|Y (n+ 1, k)− Y (n, k)|≥0, (3.2)

4. Normalization: One can further enhance the properties of novelty function by applying
post-processing techniques to suppress the small fluctuations [11, 32]. . Enhanced novelty
function 4̄Spectral can be obtained in two steps. Firstly, subtract 4̄Spectral with the local
mean µ(n) as in equation (3.3). Finally, we perform half-wave rectification to obtain only
the positive part that enhances the peak structure and reduce the spurious note onset
peaks. This results in a function, which is known as note onset detection novelty function

µ(n) :=
1

(2M + 1)

M∑
k=−M

4Spectral(n+m), (3.3)

4̄Spectral(n) := | 4Spectral (n)− µ(n)|≥0, (3.4)

The resulting novelty function serve as a basis for deriving the time-tempo representation, which
is explained in the Section 3.2.

3.2 Tempogram Representation

Similar to the idea of a spectrogram, a tempogram is a time-tempo representation, which
indicates for each time instance the local relevance of a specific tempo for a given audio recording.
Mathematically, a tempogram can be modeled as a function,

Γ(t, τ) : R× R>0 → R≥0, (3.5)

where, time t ∈ R measured in seconds and a tempo τ ∈ R>0 measured in beats per minute
(BPM). A large value Γ(t, τ) indicates that the music signal has at time t ∈ R a dominating
tempo τ ∈ R>0. Γ(t, τ) indicates to what extent the signal contains the locally periodic pulse of
a given tempo τ in a neighborhood of time instance t [16]. For example, let us suppose that the
music signal has a dominant tempo of 200 BPM around the time position t = 20sec then, the
resulting tempogram Γ has a large value at t = 20 sec and τ = 200 BPM.

Tempogram representation of a music recording can be derived in two steps. Firstly, based on
the two assumptions which were discussed earlier, to convert the given music signal into note

18 Master Thesis, Venkatesh Kulkarni



3.2 TEMPOGRAM REPRESENTATION

onset novelty function. In the second step, we analyze the locally periodic behaviour of the
novelty function 4̄Spectral.

The novelty curves are analyzed for the locally periodic patterns for various periods T > 0 in a
neighborhood of a given time instance. The period T (T = 1/ω, ω in Hz) and the tempo τ (in
BPM) are related by,

τ = 60 · ω. (3.6)

If we consider a musical recording that reveals significant tempo changes, the detection of locally
periodic patterns becomes a challenging task. Furthermore, there are various pulse levels that
contribute to the human perception of tempo such as the tatum, tactus, and measure levels [20].
Tempo on tactus level matches to the foot tapping rate, measure to fast music and tatum refers
to the fastest music.

Due to the ambiguity concerning the pulse levels, the tempogram Γ takes into account the
existence of different pulse levels. Higher pulse level corresponding to integral multiples of τ , 2τ ,
3τ ... of a given tempo τ (referred as harmonics of τ) and integer fractions τ , τ/2, τ/3... of a
given tempo τ (referred as subharmonics of τ).

As mentioned before, we can derive two different types of tempograms, one emphasizing on
tempo harmonics (using Fourier method, see Figure 3.3 b) and the other on tempo sub-harmonics
(using autocorrelation method, see Figure 3.3 d). In our implementation, we use autocorrelation
based tempogram, which is discussed in Section 3.2.1.

3.2.1 Autocorrelation Tempogram

In this Section, we discuss the autocorrelation based approach for computing a tempogram [12].
Autocorrelation is a mathematical tool for measuring the degree of similarity between a given
time series and a delayed version of itself over successive time intervals. It can also be interpreted
as calculating the correlation between two different time series, except that the same time series
is used twice, once in its original form and once lagged one or more time instants.

Let us consider a discrete-time real valued signal x ∈ l2(Z) having finite energy then the
autocorrelation Rxx : Z→ C of signal x is defined as,

Rxx(l) =
∑
m∈M

x(m)x(m− l), (3.7)

where l ∈ Z is the time lag parameter. Rxx is well defined in space l2(Z), is maximal for l = 0
and symmetric in l

To analyze the given novelty function (4̄Spectral, see Figure 3.3 a), we now apply autocorrelation
in a local fashion with a time parameter n. Let the window function be w : Z → R of finite
length at n = 0, then the windowed version of 4̄Spectral(w,n)

is given by,

4̄Spectral(w,n)
(m) := 4̄Spectral(m)w(m− n), (3.8)

19 Master Thesis, Venkatesh Kulkarni



3. TEMPO SALIENCE FEATURES

where m ∈ Z. If we assume, that the window function w lies between the interval [−L : L] and
L ∈ N, then the unbiased local autocorrelation <(n, l) : Z× Z→ R is given by,

<(n, l) :=

∑
m∈M 4̄Spectral(m)w(m− n)4̄Spectral(m− l)w(m− n− l)

2L+ 1− l
. (3.9)

To obtain the time-lag representation from time-tempo representation, we need to convert the
lag parameter into tempo parameter. Let the time frame be r seconds and the time-lag be l
seconds. The shift of each time frame corresponds to a rate 1/ (l · r) Hz, then the time-tempo
can be obtained from time-lag by,

τ =
60

l · r
BPM. (3.10)

If we assume that, there is a high correlation of the windowed section of novelty function with
a shift a l lags where k ∈ N then, l corresponds to tempo τ and the lags k.l corresponds to
sub-harmonics τ/k.

3.2.2 Cyclic Tempogram

As an analogy, the different tempo levels like measure, tactum and tactus may be compared to
the existence of harmonics in the pitch context. Inspired by the concept of chroma features, we
introduce the concept of cyclic tempogram which reduces the effect of harmonics, where the idea
is to form tempo equivalence classes by identifying tempi that differ by a power of two [21].

To be more precise, if we assume two tempi say τ1 and τ2, they are said to be octave equivalent,
if they are related by τ1 = 2µτ2 for some µ ∈ Z.

Given a tempogram representation Γ : R× R>0 → R≥0, cyclic tempogram is defined as

=(t, [τ ]) :=
∑

α∈[τ ] Γ(t, α). (3.11)

Note that the tempo equivalence classes topologically corresponds to a circle. Fixing a reference
tempo ρ (e. g., ρ = 60BPM), the cyclic tempogram can be represented by a mapping =ρ :
R× R>0 → R≥0 defined by,

=ρ(t, s) := =(t, [s · ρ]), (3.12)

for t ∈ R and s ∈ R>0. Note that =ρ(t, s) = =ρ(t, 2ks) for k ∈ Z and =ρ is completely determined
by its relative tempo values s ∈ [1, 2). Figure 3.3c shows an example for cyclic tempogram using
autocorrelation based method.

So far we assumed that, the time and tempo parameters are continuous. In practice, one computes
a cyclic tempogram only for a finite number of time points t and a finite number of relative
tempo parameters s. In the following, let N be the number of time points (corresponding to
frames) and M the number of considered scaling parameters (logarithmically spaced on the
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Figure 3.3: Tempo features for a click track with increasing click frequency: (a) Novelty curve,
(b) Fourier-based tempogram(showing harmonics), (c) Cyclic Fourier-based tempogram (d)
Autocorrelation-based tempogram(showing sub-harmonics), (e) Cyclic autocorrelation-based
tempogram. Reproduced from [17].

tempo axis). By abuse of notation, let =ρ(n,m) denote the values of the cyclic tempogram for
discrete time parameters n ∈ [0 : N − 1] and relative tempo parameters m ∈ [0 : M − 1], refer
[16] for more details.

There are different ways for computing tempograms and its cyclic versions. In the following, we
use a cyclic tempogram computed from an autocorrelation tempogram as described in [14, 17].
In order to obtain the autocorrelation based cyclic tempogram representation, we use the existing
tempogram toolbox in this thesis with the following parameter settings [16] . A higher-order
smoothed differentiator [8] of filter length 0.3 seconds is used. The spectrum is processed in a
band wise fashion using five bands, which are logarithmically spaced and non-overlapping (with
logarithmic compression factor C = 1000). Each band is roughly one octave wide. The lowest
band covers the frequencies from 0 Hz to 500 Hz, the highest band from 4000 Hz to 11025 Hz.
The five novelty curves which are summed up to obtain the resulting novelty function. From
the novelty function, the autocorrelation based cyclic tempogram is obtained. There are three
main parameter setting for autocorrelation based cyclic tempogram, which specify the length
L (measured in seconds) of the analysis window used in the local autocorrelation, a hop size
parameter that determines the final feature rate Fs (measured in Hertz) of the tempogram, and
the number M of relative tempo parameters that determines the dimension of the feature vectors.
In our setting, using L = 16 sec, Fs = 5 Hz, and M = 15 turned out to be a reasonable setting
for the experiments, which are further discussed in chapter 5.
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3.3 Salience Features

This Section contains one of the main technical contribution of the thesis. In this Section,
we design the tempo salience features based on tempogram representation. The tempogram
representation is obtained from the existing tempogram toolbox [16] as described in the Section 3.1
and in the Section 3.2.

Figure 3.4: Discrete version of a normalized cyclic tempogram representation based on an
autocorrelation tempogram using the parameters L = 16 sec, Fs = 5 Hz, and M = 15.

Recall from the Section 1.1 that, the Krithi and Tani-Avarthanam parts have a strong notion of
tempo, as opposed to Alapana. As mentioned earlier that, Alapana is an improvisational part
where only exposition of Raga takes place, with no rhythm involved in it. This observation can
be better explained with a cyclic tempogram representation of a Carnatic concert main piece
audio recording as shown in Figure 3.4. In Alapana part, the tempo looks rather diffused with no
large coefficients that would indicate the clear notion of tempo. On the other hand, Krithi and
Tani-Avarthanam parts have stronger coefficients that would indicate the presence of specific
dominating tempo entry. As we can also notice that the dominating tempo entries may vary
over time in Krithi and Tani-Avarthanam, which reflects the fact that the tempo is changing.

Our objective is to not find the specific tempo in each part but to differentiate the parts with
the absence or presence of notion of tempo. In the the following we refer this property as
tempo salience. We now describe several kinds of salience features derived from a tempogram
representation as mentioned below.

3.3.1 Entropy Feature

A first idea is to apply the concept of entropy, which is usually used to express the uncertainty when
predicting the value of a random variable. For a probability vector p = (p0, . . . , pM−1)

T ∈ RM ,
the (normalized) entropy is defined by

H(p) = −
(∑M−1

m=0 pm log2(pm)
)
/ log2(M), (3.13)

which assumes a maximal value of one if the vector p corresponds to a uniform distribution and
a minimal values of zero if the vector p corresponds to a dirac distribution.
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Figure 3.5: Entropy feature H(X) obtained from the discrete version of a normalized autocorre-
lation based cyclic tempogram representation (see, Figure 3.4 ) of a Carnatic concert main piece
audio recording.

In our scenario, we normalize the columns of the cyclic tempogram =ρ ∈ RN×M with regard

to the Manhattan norm to obtain a matrix X ∈ [0, 1]N×M . Then, each column X[n] ∈ RM ,
n ∈ [0 : N − 1], of X can be interpreted as a probability vector. Applying the entropy to each
column, we obtain the sequence

H(X) := (H(X[0]), . . . ,H(X[N − 1])) (3.14)

of numbers H(X[n]) ∈ [0, 1], see Figure 3.5 for an example. To obtain a measure of salience
(rather than one of uncertainty), we consider 1−H(X[n]). Further smoothing this sequence by
applying an averaging filter of some length λ ∈ N yields our first feature that we refer to as fHλ .
As demonstrated by Figure 3.6, this feature has the desired property of being close to zero in the
Alapana part and much larger in the other parts, see Chapter 5 for a more detailed investigation.

Figure 3.6: Feature fHλ with λ = 1 (blue) and λ = 100 corresponding to 20 sec (red). It is
obtained from the discrete version of a normalized autocorrelation based cyclic tempogram
representation (see, Figure 3.4 ) of a Carnatic concert main piece audio recording.
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3.3.2 Max Median Feature

As an alternative to the entropy, one may also look at the difference of the maximum value and
the median value of a probability vector. This yields a number

M(p) := max{p0, . . . , pM−1} −median{p0, . . . , pM−1} (3.15)

in the interval [0, 1], which assumes the value 0 in the case that p is a uniform distribution and
the value 1 if p is dirac distribution. Applying M to each column of X and smoothing the
resulting sequence with an averaging filter of length λ ∈ N yields our second feature we refer to
fMλ . As illustrated by Figure 3.7, this feature behaves similarly to fHλ .

Figure 3.7: Feature fMλ with λ = 1 (blue) and λ = 100 (red). It is obtained from the discrete
version of a normalized autocorrelation based cyclic tempogram representation (see, Figure 3.4 )
of a Carnatic concert main piece audio recording.

3.3.3 Tempo Density Feature

Next, we introduce a conceptually different salience feature, which measures a kind of density
of abrupt and significant tempo changes. To this end, we first compute the maximizing tempo
index for each column of X:

mmax(n) := argmaxm∈[0:M−1](X(n,m)). (3.16)

Then the idea is to look at differences of the resulting sequence of tempo indices over subsequent
time frames. However, when computing these differences, one needs to take into account that we
are dealing with cyclic tempogram features. Therefore, we define a cyclic distance by setting

dcyc(m1,m2) := min
{
|m1 −m2|,M − |m1 −m2|

}
(3.17)

for m1,m2 ∈ [0 : M − 1]. With this definition at hand, we then define

I(n) := dcyc
(
mmax(n),mmax(n− 1)

)
(3.18)
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Figure 3.8: Feature fIτ,λ with τ = 0 and λ = 1 (blue, size of binary values reduced for visibility
reasons) and λ = 100 (red). It is obtained from the discrete version of a normalized autocorrelation
based cyclic tempogram representation (see, Figure 3.4 ) of a Carnatic concert main piece audio
recording.

for n ∈ [1 : N − 1]. Intuitively, any value I(n) > 0 expresses that there has been a tempo change
at time n. Now, smooth tempo changes and small local tempo fluctuations may result in a value
I(n) = 1 as illustrated by the tempogram in the Krithi part of Figure 3.6. Therefore, being
interested in measuring abrupt tempo changes rather than small deviations, we introduce a
tolerance parameter τ ∈ N0 and define the feature fIτ by setting

fIτ (n) :=

{
0 if I(n) ≤ τ ,
1 if I(n) > τ.

(3.19)

As before, applying an averaging filter of length λ ∈ N yields a feature we refer to as fIτ,λ.

Figure 3.9: Feature fIτ,λ with τ = 1. It is obtained from the discrete version of a normalized
autocorrelation based cyclic tempogram representation (see, Figure 3.4 ) of a Carnatic concert
main piece audio recording.

These definitions are illustrated by Figure 3.8, which shows the binary feature fIτ for τ = 0 and
its averaged version fIτ,λ using λ corresponding to 20 sec. One important observation is that
this density feature tends to assume large values in sections with a diffuse tempo (such as in the
Alapana part). In such noise-like sections, the maximizing index randomly jumps from frame
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to frame, which results in many non-positive values of I. Using a tolerance parameter τ = 1
results in the features shown in Figure 3.9. In this case, smooth tempo changes as occurring in
the Krithi and Tani-Avarthanam parts do not contribute to the density feature.

In this Chapter, we derived the tempo salience features which has a strong relevance of tempo in
Krithi and Tani-Avarthanam but low value in Alapana. In the next Chapter, we use the melody
property to musically distinguish the constituent parts of a Carnatic concert main piece audio
recording. We design few novel features which has a strong relevance of melody in Alapana and
Krithi but low value in Tani-Avarthanam.
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Chapter 4

Chroma Salience Features

A music signal has several musical aspects such as tempo, beat, played notes, melody, harmony,
timbre of different instruments, dynamics of the sound, etc. For a given music processing task,
only few of them may be relevant. In the last Chapter, we derived few novel features to distinguish
the Alapana from the Krithi and the Tani-Avarthanam based on the tempo cue. Similarly, in
this chapter, we use the melody property to design the novel features to musically differentiate
the Tani-Avarthanam from the Alapana and the Krithi parts of the main piece audio recording.
In doing so, we accomplish the task of segmenting the Alapana, Krithi and Tani-Avarthanam
into individual parts.

As mentioned earlier in the Section 1.1 that, a drone instrument is played throughout the main
piece to provide a pitch reference to the artists. By neglecting the effect of the drone, we can
make a few observations based on the melody property as follows. The Tani-Avarthanam is a
purely percussive and has an absence of melody. The Alapana and the Krithi parts have clear
notion of melody as shown in Figure 4.1b. Hence, we use the chroma1 cue, which captures the
information of the existence or absence of melody and tonal information of the constituent parts.

This Chapter is organized as follows. We present pitch2 features obtained from the existing
chroma toolbox, which serve as a basis for the other features in our experiments (see Section 4.1).
We discuss the tuning of the drone instruments used in the Carnatic concerts and also state
the art to remove the drone from the pitch feature representation of the main piece audio
recording. After the drone removal, we now obtain enhanced chroma features (see Section 4.2).
The enhanced chroma features are computed based on the singing octave range of the singers
in the Carnatic music. Finally, we design the novel features based on the chroma features (see
Section 4.4).

The main contribution of this Chapter is to design a few chroma novel features based on pitch
and chroma feature representations. The pitch and chroma feature representations are obtained
by using the existing chroma toolbox [25].

1Chroma is a set of all the pitches belonging to the same pitch class which are perceived as having a similar
”quality” or ”color”.

2Pitch is a property of a sound that correlates to its perceived frequency [24].
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Alapana Krithi Tani-Avarthanam

Melody present Melody absent

(a)

(b)

Figure 4.1: Typical structure of a Carnatic main piece. (a) Main piece constituting of three
contrasting parts: Alapana, Krithi and Tani-Avarthanam. (b) Melody property distinguishes
the Tani-Avarthanam part with respect to the Alapana and the Krithi parts.

4.1 Pitch Features

In order to obtain the chroma features, we first decompose a given audio signal into 88 frequency
bands, which corresponds to 88 musical notes. The 88 frequency bands have center frequencies
corresponding to the pitches A0 to C8 [25]. The pitches A0 to C8 are the MIDI3 pitches
corresponding to p = 21 to p = 108, where p is the MIDI note number. These musical notes are
of equal-tempered scale. Every note is associated with a certain frequency range with a fixed
center frequency. For example, the note A4 corresponds to MIDI note number p = 69 has the
center frequency as 440 Hz.

Let p be the MIDI note number, p ∈ [0 : 127] with fp as its center frequency, then p and fp are
related by,

fp = 2
p−69
12 · 440, (4.1)

where, MIDI note number p = 69(A4) with center frequency 440 Hz is taken as a reference for
computing the center frequency fp for the corresponding MIDI note number p. For example,
p = 81(A5) has a center frequency fp = 880 Hz. From this, we can infer that, the pitch of a
note that is one octave higher than a reference note is twice that of the reference note [19]. As
increase in the MIDI note number p leads to an increase in fp in logarithmic fashion.

The decomposition of a given audio signal into pitch sub-bands can be achieved by using multirate
filter banks, which consist of an array of band-pass filters. As the pitch gets higher, the bandwidth
of the corresponding filter gets wider (see Figure 4.2). For better spectral resolution either reduce
the sampling rate or increase the temporal window length. Hence, we use different sampling rate
for different pitches. Higher the pitch, lower will be the sampling rate and vice-versa.

Let X be the discrete STFT of the discrete time signal x with parameters including sampling
rate Fs = 1/T , the discrete window w with window length N and hop size H. The discrete STFT
is denoted X(n, k) ∈ C. It denotes the kth Fourier coefficient for frequency the index k ∈ [0 : K]
and time frame n ∈ N, where K = N

2 is the frequency index corresponding to Nyquist frequency.

The frequency corresponding to spectral coefficient X(n, k) is given by,

fcoeff (k) :=
k

N
· 1

T
. (4.2)

3MIDI stands for Musical Instrument Digital Interface, is essentially a communications protocol for computers
and electronic musical instruments
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Figure 4.2: A sample array of filters with their respective magnitude responses in dB. (reproduced
from [25]).

Let fp be the MIDI note number of a pitch p ∈ [0 : 127] (refer, equation (4.1)) and S(p) be the
set of frequency indexes assigned to a MIDI note number p. The set S(p) is given by,

S(p) := {k : fp(p− 0.5) ≤ fcoeff (k) < fp(p+ 0.5)}. (4.3)

For each sub-band, we now compute short time mean square power P(n, p) for a MIDI note
number p and is given by,

P(n, p) :=
∑

k∈S(p)

|X(n, k)|2. (4.4)

The resulting P(n, p) is referred to as pitch features for a given frame n. The pitch features
measure the short time mean square power of the signal within each sub-band.

Further, global tuning of an audio recording is taken into account by suitably shifting the center
frequencies of the sub-band filters of the multirate filter bank. This is done in two steps. Firstly,
we compute average spectrogram vector. Secondly, we derive an estimate for the tuning deviation
by simulating the filter banks shifts using weighted binning techniques [25].

In order to obtain MIDI pitch representation, we use the chroma toolbox with the parameter
settings as follows. We employ a constant-Q multirate filter bank of 88 sub-bands with a sampling
rate of 22050 Hz for high pitches, 4410 Hz for medium pitches and 882 Hz for low pitches (see
[13, 18, 24] for further details). Short time mean square power for each sub-band is computed by
using a fixed window length of 200 milliseconds with overlap of 50% (leads to feature rate = 10
features per second). For tuning of an audio recording, we consider pre-computed six multirate
filter banks corresponding to a shift of σ ∈ {0, 14 ,

1
3 ,

1
2 ,

2
3 ,

3
4} semi-tones respectively. According to

the estimated tuning deviation, we choose the most suitable filter bank.

In the next Section, we discuss how to obtain the standard chroma features from the pitch feature
representation.
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4.2 Chroma Features

As we know that, the human perception of a pitch is periodic in the sense that two pitches are
perceived similar in color, if they differ by an octave [13, 24, 10]. The pitch has two components,
namely chroma and tone height (octave number) [30]. From the pitch representation, we can
compute chroma representation by simply adding up the corresponding values that belong to the
same chroma.

Let us consider the musical notes of equal-tempered scale. The 12 dimension chroma { is defined
as a set of pitch classes { , {C, C],D . . . ,B}, each pitch class corresponding to a chroma. For
example, chroma C is computed by adding up values corresponding to the musical pitches C ,
{C1, C2, . . . , C8} (MIDI pitches p = 24, 36, . . . , 108).

In the Section 4.3, we next apply the concept of pitch and chroma features on a Carnatic music
main piece audio recording for the analysis of the constituent parts.

4.3 Enhanced Chroma Representation

To compute the chroma features from the MIDI pitch representation of a Carnatic music main
piece audio recording, we follow two steps. In the first step, we remove the drone from the MIDI
pitch representation. Secondly, we consider the ideal singing octave range to compute the chroma
features. The resulting chroma representation is referred to as enhanced chroma representation.

As discussed earlier that, a drone instrument is played through out a concert to provide a pitch
reference for the performers to stay in tune. The Tani-Avarthanam part is not purely percussive,
due to the presence of the melody from the drone instrument. By removing the effect of the
drone from the main piece audio recording, we can musically distinguish the Tani-Avarthnam
part with respect to the Alapana and the Krithi parts based on chroma representation.

Let us now discuss the various types and their characteristics of the drone instruments used in
the Carnatic music. Drone instrument is a long plucked string instrument whose function is
to continuously sound one or more notes providing the harmonic base for the performers. The
drone became a definite component of the Carnatic music in the late 17th century [2]. The most
commonly used drone instrument in the Carnatic music are Tanpura, Tambura or Sruti petti
(see Figure 2.1). A drone instruments can have 1-7 strings. A drone instrument with single
string is known as the primary drone, which is always tuned to the note Sa often at C]. The
note Sa is tuned to the male vocalist pitch or to the female singer (usually a fifth higher). For
two string drone instrument, the first string is the primary drone and second string is known
as the secondary drone. If the primary drone is tuned to Sa referring to C], then the second
string is tuned to seven notes higher Pa corresponding to G] in the Western music scale. These
tonic notes may vary according to the preference of the singer, as there is no absolute or fixed
pitch-reference in the Indian classical music system. The most commonly used drone instrument
has 3− 4 strings. The three string drone instrument is tuned to (Sa - Pa - Sa), where first two
strings belong to a pitch octave and the last note Sa refers to the next immediate octave note ,
i. e., (C]4 – G]4 – C]5) on Western music scale. Similarly, four string drone instrument is tuned to
(Sa - Sa - Pa - Sa), in which the last three strings is same as that of the three string instrument,

except its first note referring to an immediate lower octave note Sa, i. e., (C]3 – C]4 – G]4 – C]5).
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To compute the chroma features, we consider the ideal singing octave range of the singers in
the Carnatic music. An ideal Carnatic music voice has three octave range of singing. They are
Mandhara sthaayi (lower octave), Madhya sthaayi (middle or main octave) and Tara sthaayi
(higher octave) [2, 31]. The lower octave is usually the third octave, middle octave is the fourth
octave and higher octave corresponds to the fifth octave of the MIDI pitch representation. In
Carnatic music, the singer normally starts at a frequency higher than 240 Hz and refers to the
starting frequency as the Sa note. In addition, a typical Carnatic music song is performed in
two octaves. The two octaves refer to the second half of the lower octave, the full of the middle
octave and the first half of the higher octave [31].

(a) (b)

Figure 4.3: MIDI representation of the Carnatic music main piece audio recording. (a) MIDI
pitch representation (P(n, p)). (b) pitch energy across the frames (De(p)).

Let us consider the MIDI pitch representation of a Carnatic music main piece audio recording
as shown in the Figure 4.3a. From the figure, we can make three observations. Firstly, there
are three predominant pitches (three horizontal lines between the octaves four and five of the
MIDI pitch representation) throughout the music piece. This is mainly because of the presence
of three string drone instrument. The three horizontal lines corresponds to (Sa - Pa - Sa) notes,

i. e., (C]4 – G]4 – C]5) in the Western music scale. Secondly, we notice that the singing range of
the singer is between three octaves, i.e., third to fifth MIDI octaves. In other words, most of the
pitch energy is predominant between third to fifth MIDI octaves. Finally, we also observe that,
pitches (Sa - Pa) are tuned to the (C]4 – G]4) corresponds to the main or the middle octave. The
pitch energy is more predominant in the main octave due to the presence of the drone instrument
as shown in the Figure 4.3b.

From the MIDI pitch representation of a Carnatic music main piece audio recording, we now
remove the drone and later compute the chroma features based on the singing octave range of
the Carnatic music as follows.

Let P(n, p) (see Figure 4.3a) be the pitch features (short time mean square power), where p is the
MIDI note number p ∈ [0 : 127] and time frame n ∈ N. The pitch energy De(p) (see Figure 4.3b)
for all the time frames is given by,

De(p) :=
∑
∀n P(n, p). (4.5)

As defined earlier, Let C , {C1, C2, . . . , C8} be a set of octaves of the MIDI pitch representation,
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then the pitch energy E(Ci) for MIDI octave Ci be given by,

E(Ci) :=
∑

p∈Ci
De(p) (4.6)

where, i is the octave number, i ∈ [1 : 8] and p is the MIDI note number of the octave Ci. As
mentioned earlier, the middle octave has the maximum chroma energy. Let the middle (main)
octave with maximum energy Cmax is given by,

Cmax := argmaxi∈[1:8]E(Ci). (4.7)

As mentioned earlier, the four string drone instrument is tuned to (Sa - Sa - Pa - Sa) notes

i. e., (C]4 – G]4 – C]5 – C]5) in the Western music scale. The second and third notes are present
in the middle octave which differ by seven semi-tones. The lower note Sa (first note) and the
higher note Sa (fourth note) differs by an octave with respect to the second note of the drone
instrument. It may so happen that, the Pa note is more predominant than Sa note of a main
octave. To avoid such confusion in finding the Sa note of the drone instrument, we add the
pitch energies of the notes differing by seven semitones of the middle octave. Let D̃e(p) be the
resulting pitch energies of the middle octave and is given by,

D̃e(p) := De(p) +De(p+7), (4.8)

where, p ∈ Cmax(S̃) middle octave and the set S̃ = {1, 2, 3, 4, 5} corresponding to the first five
notes of the octave Cmax. The predominant Sa note present in the main octave given by,

Dmax := argmaxp∈Cmax
D̃e(p). (4.9)

If p̂ = {pmax−12, pmax, pmax+7, pmax+12} is a set of MIDI note numbers tuned to a drone
instrument. The resulting pitch energy P̃(n, p) without the drone is given by,

P̃(n, p) := P(n, p) . κ , where

{
κ = 0 for p ∈ p̂
κ = 1 for p /∈ p̂

(4.10)

As mentioned earlier that, an ideal Carnatic music voice has three octave range of singing. Hence,
we consider the relevant three octaves (Cmax−1, Cmax, Cmax+1) having dominant pitch energy
from the MIDI pitch representation to compute the chroma features. The chroma feature is
computed by simple addition of the corresponding values that belong to the same chroma. We
compute the chroma features for four different combinations of MIDI octaves. The combination
having maximum discriminability of the constituent parts is selected to design the novel features.
The four combinations are, a) Lower and middle octave; b) Middle octave; c) Middle and upper
octave; and d) Lower to upper octave.

The Figure 4.4 shows chroma features for all the four different combinations of the MIDI octaves.
We select the middle and upper octave because majority of the time the singer usually sings in
the middle and the upper octave and thus, this combination has a maximum discriminability
of the constituent parts (see Figure 4.4d) as compared to the other octave combinations as
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Figure 4.4: The MIDI pitch and chroma representation of the Carnatic music main piece audio
recording. (a) MIDI pitch representation (drone present). (b) MIDI pitch representation (drone
removed). (c) Chroma representation (lower to middle octave). (d) Chroma representation
(middle octave). (e) Chroma representation (middle and upper octave). (f) Chroma represen-
tation (lower to upper octave). (g) Manual segmentation of the recording. The white areas
indicate transition regions (often pauses, sometimes used for tuning the instruments) between
the respective parts.

mentioned above. We neglect the lower octave because the singer rarely sings in the lower octave
and the bass noise present in the lower octave pops up in the chroma feature (see Figure 4.4c).
Hence, we only consider the middle octave (Cmax) and the upper octave (Cmax+1) for computing
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the enhanced chroma features.

Let the pitch class Θ = {Cmax, Cmax+1} where, Cmax and Cmax+1 corresponds to the middle
octave and upper octave. The resulting chroma feature is represented by a twelve dimension
vector vn = [vn(1), vn(2), vn(3), . . . , vn(12)]T , where n is the frame index. For example, The
twelve dimension vector vn corresponds to {, vn(1) corresponds to chroma C, vn(2) to C], vn(3)
to D and so on. From the resulting enhanced chroma features vn, we now design the novel
features as described in the next Section.

4.4 Salience Features

This Section contains the main technical contribution of the thesis. In this Section, we design
the chroma salience features based on enhanced chroma representation (see Section 4.3). The
enhanced chroma representation is derived from the pitch feature representation, which in turn
is computed from the existing chroma toolbox [25] as described in the Section 4.1 and in the
Section 4.2.

Recall from 1.1 that, a drone instrument is played throughout a concert to provide a reference
pitch for the performers. Neglecting the drone instrument, the Tani-Avarthanam part of a
Carnatic music main piece tends to have no strong notion of chroma, as opposed to the Alapana
and the Krithi parts. This observation is reflected well by the enhanced chroma representation
of a Carnatic music main piece audio recording as shown in the Figure 4.4e.

Figure 4.5: The enhanced chroma representation of a Carnatic music main piece audio recording
(considering only middle and upper octaves of MIDI representation).

In the Tani-Avarthanam part, the enhanced chroma representation looks rather diffuse having
no larger coefficients that would indicate the presence of a specific chroma. In contrast, most of
the chroma vectors that belong to the Alapana and the Krithi parts possess a dominant entry.
Furthermore, one can notice that the chroma class of the dominating entry may vary over time.
Which reflects the fact that, the chroma is changing especially in the Alapana and the Krithi
parts.

It is our objective to capture the property of having a dominating chroma regardless of the
specific value of the chroma or a possible change in chroma. In the following, we refer to this
property as chroma salience. We now describe several kinds of salience features derived from the
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enhanced chroma representation.

4.4.1 Max Chroma Feature

Figure 4.6: Max chroma feature fMCλ with λ = 15 sec obtained from the enhanced chroma
representation (see Figure 4.5) of a Carnatic music main piece audio recording (considering only
upper and lower octaves of MIDI representation).

The Figure 4.5 shows the enhanced chroma representation of a Carnatic music main piece audio
recording. From the figure, we can notice that, the chroma is more predominant in the Alapana
and Krithi parts as compared to the Tani-Avarthanam. Motivated by this observation, a first
idea is to apply the concept of the maximum chroma for a given. The maximum chroma MC(n)
for a frame index n ∈ N is given by,

MC(n) := max∀nvn. (4.11)

Furthermore, as the chroma energy is very low in the Tani-Avarthanam part as compared
to the dominant chroma entries in the Alapana and Krithi parts. We normalize the feature
MC(n) ∈ [0 : 1] with its most dominant chroma entry. To this end, smoothing this sequence by
applying an averaging filter of some length λ ∈ N yields our first feature that we refer to as fMCλ .
As demonstrated by Figure 4.6, this feature has the desired property of being close to zero in the
Tani-Avarthanam part and much larger in the other parts, see Section 5.2 for a more detailed
investigation.

4.4.2 Sum Chroma Feature

As an alternative to the maximum chroma feature, one may also compute entire chroma energy
per frame resulting in the sum chroma feature. If the twelve dimensional chroma vector is given
by vn = [vn(1), vn(2), vn(3), . . . , vn(12)]T , then the resulting sum chroma feature is computed by
adding all the twelve chromas. The chroma feature SC(n) for a frame index n ∈ N is given by,

SC(n) :=
12∑
i=1

vn(i), (4.12)
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Figure 4.7: Sum chroma feature fSCλ with λ = 15 sec obtained from the enhanced chroma
representation (see Figure 4.5) of a Carnatic music main piece audio recording (considering only
middle and upper octaves of MIDI representation).

where, vn(i) is the ith chroma for the nth frame index.

Furthermore, the feature SC(n) behaves similar as the feature MC(n). Hence, we normalize
the feature SC(n) ∈ [0 : 1] with its most dominant chroma entry. To this end, smoothing this
sequence by applying an averaging filter of some length λ ∈ N yields our second feature that we
refer to as fSCλ . As illustrated by Figure 4.7, this feature behaves similarly to fMCλ .

4.4.3 Relative Chroma Strength Feature

The Figure 4.5 shows the enhanced chroma representation of a Carnatic music main piece audio
recording. From the figure, we can make 2 observations. Firstly, there is a strong notion of
melody in the Krithi and the Alapana parts and has predominant chroma energy. Secondly, a
vague notion of melody in Tani- Avarthanam part and has very low chroma energy.

Hence, we can infer that, the relative strength of chroma is predominant in the Alapana and the
Krithi parts and has low relative chroma strength in the Tani-Avarthanam part of a main piece.

From the above observation, we now introduce a conceptually different salience feature, i.e.,
relative chroma strength. Let the most predominant chroma M̃e for the entire piece be given by,

M̃e = maximum(MC(n)), (4.13)

where, MC(n) is the maximum chroma for the nth time frame. Let vector ~n represent all the
chroma entries greater than (M̃e · τ) and is given by,

~n(i) =

{
0 if vn(i) ≥ (M̃e · τ)

1 if vn(i) < (M̃e · τ)
, (4.14)

where, τ is a threshold and n is the frame index. We now define relative chroma strength RC(n)
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Figure 4.8: Relative chroma strength feature fRCλ with λ = 15 sec and τ = 0.05 obtained from
the enhanced chroma representation ( see Figure 4.5) of a Carnatic music main piece audio
recording (considering only middle and upper octaves of MIDI representation).

for n time frames and is given by,

RC(n) :=
1

12

12∑
i=1

~n(i). (4.15)

Furthermore, for any time frame n, the maximum value of ~n(i) can have all the chroma entries,
i.e., ~n(i) = 12. Hence, we normalized the feature RC(n) by the total number of notes of an
octave. To this end, smoothing this sequence by applying an averaging filter of some length
λ ∈ N yields our third feature that we refer to as fRCλ . As demonstrated by Figure 4.8, this
feature has the desired property of relative chroma strength being nearly close to zero in the
Tani-Avarthanam part and much larger in the other parts, see Section 5.2 for a more detailed
investigation.

In this Chapter, we designed the chroma salience features based on the melody property to
musically distinguish the Tani-Avarthanam part from the Alapana and Krithi parts. Similarly, in
the Chapter 3, we derived the tempo salience features based on the tempo property to musically
distinguish Alapana part from the krithi and Tani-Avarthanam parts. Hence, we can use the
tempo and chroma salience features to aim towards the segmentation task.

We now investigate in the next Chapter, how well the three different musical parts are characterized
based on quantitative and qualitative analysis of the chroma and tempo salience features.
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Chapter 5

Evaluation

In this Chapter, we provide some insights into the tempo and chroma salience features by a
quantitative and qualitative analysis of their properties. We shall describe examples of audio
where the features behave anomalously. In our experiments, we used music recordings of good
audio quality from the Sangeethapriya website1. In total, our dataset consists of 15 main pieces
from various Carnatic concerts with an overall duration of more than 15 hours. We manually
annotated the music recordings (for more details, refer Appendix B.2) and determined the segment
boundaries for the Alapana, Krithi and Tani-Avarthanam parts. This chapter is organized as
follows. Firstly, evaluation of tempo salience features is discussed in the Section 5.1. Secondly,
we discuss the evaluation of chroma salience features in the Section 5.2.

5.1 Tempo Salience Features

Based on the annotations, we computed some statistics to investigate how well the three different
musical parts are characterized by our tempo salience features. To this end, we first computed for
each audio file cyclic tempogram representations2. Based on these representations, we computed
the salience features as introduced in Section 3.3.

Then, for each of the features, we computed the average feature value and its standard deviation
for each of the three Alapana, Krithi and Tani-Avarthanam parts separately. These values, in
turn, were averaged over the 15 different pieces. As a result, we obtained for each salience feature
and each part a mean µ and a standard deviation σ. These results are shown in Table 5.1. Note
that, rather than the absolute values, the relative relation between the values across the three
different parts are of interest.

First, let us have a look at the statistics for the features fHλ and fMλ . As can be seen from
Table 5.1, the mean statistics of fHλ assume a value of 0.0032 for the Alapana part, which is
roughly ten times smaller than the value 0.0285 for the Krithi part and the value 0.0246 for the
Tani-Avarthanam part. Also, the standard deviation σ for fHλ shows a similar trend: it assumes

1http://www.sangeethapriya.org
2For the computation we used the MATLAB implementations supplied by the Tempogram Toolbox, see [16] and

www.mpi-inf.mpg.de/resources/MIR/tempogramtoolbox.
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Feature
µ σ

A K T A K T

fHλ 0.0032 0.0285 0.0246 0.0016 0.0181 0.0154

fMλ 0.0169 0.0685 0.0585 0.0054 0.0228 0.0237

fI0,λ 0.1045 0.0059 0.0115 0.0489 0.0154 0.0181

fI1,λ 0.0705 0.0059 0.0115 0.0436 0.0154 0.0181

Table 5.1: Mean µ and standard deviation σ of various salience features shown for the three
different parts Alapana (A), Krithi (K), and Tani-Avarthanam (T). For the full table of all the
15 pieces of dataset, refer Appendix C.

the value 0.0016 for the Alapana part, which is much lower than the value 0.0181 for the Krithi
and the value 0.0154 for the Tani-Avarthanam part. Recall from Section 3.3 that the feature
fHλ measures the column-wise entropy of a normalized tempogram. Therefore, a low value of
fHλ indicates a flat distribution (no clear notion of a tempo), whereas a high value indicates a
dirac-like distribution (the presence of a dominating tempo value). The average values of fHλ
in the three parts exactly reflect the musical property that there is no sense of tempo in the
Alapana part, whereas there is a clearly perceivable tempo (either constant or changing) in the
other two parts. For the feature fMλ , one can observe similar trends as for fHλ . Both features are
suitable for discriminating the Alapana part from the other two parts.

Next, we examine the behavior of the features fI0,λ and fI1,λ. As shown by Table 5.1, these features
also assume quite different values in the Alapana part compared to the other two parts. However,
this time the features assume comparatively high values in the Alapana part. For example, the
mean of fI0,λ is 0.1045 for the Alapana part, which is much higher than the mean value 0.0059
for Krithi and 0.0115 for Tani-Avarthanam part. The relative differences between the parts
behave almost similar of the feature fI1,λ. Recall from Section 3.3 that the features fI0,λ and fI1,λ
measure some kind of density for tempo changes by considering differences of maximizing bin
indices between subsequent frames. Since the tempogram in the Alapana part is rather diffuse,
the maximizing entries are unstable leading to more or less random jumps when considering
subsequent frames. This results in large values of fI0,λ and fI1,λ. In contrast, there usually exists a
dominating tempo in the Krithi and Tani-Avarthanam part for most of the frames, which results
in a more or less constant sequence when considering maximizing bin indices in the columns
of the tempogram. Small tempo fluctuations may lead to bin differences of plus or minus one,
which are filtered out when considering the feature fI1,λ. As a result, only occasional index jumps
due to abrupt and significant tempo changes are captured by this feature. Since such tempo
changes are rare in the Krithi and Tani-Avarthanam part, the overall mean values are small
compared to the Alapana part. Interestingly, the mean and standard deviations of Table 5.1 also
indicate that abrupt tempo changes seem to occur more often in the final Tani-Avarthanam part
compared to the Krithi part. This observation is also reflected by our listening inspections and
the representative examples as shown in Figure 5.1.

As a supplement to our quantitative evaluation, we further illustrate the behavior of our salience
features by showing representative examples computed from three different recordings3 in

3For the sake of a better visual understanding, the figure shows the various feature representations only for
representative subsections of the four parts (also including the transition regions between subsequent parts) instead
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(i) (ii)

(iii) (iv)

Figure 5.1: (a) Discrete version of a normalized cyclic tempogram representation based on an
autocorrelation tempogram using the parameters L = 16 sec, Fs = 5 Hz, and M = 15. (b)
Feature fHλ with λ = 1 (blue) and λ = 100 corresponding to 20 sec (red).(c) Feature fMλ with
λ = 1 (blue) and λ = 100 (red). (d) Feature fIτ,λ with τ = 0 and λ = 1 (blue, size of binary values

reduced for visibility reasons) and λ = 100 (red). (e) fIτ,λ with τ = 1. (f) Manual segmentation
of the recording. The white areas indicate transition regions (often pauses, sometimes used for
tuning the instruments) between the respective parts.
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Figure 5.1. We start with the inspection of the Alapana parts of the examples. In Figure 5.1(i),
the behavior of the features exactly corresponds to our previous discussion. The features fHλ and
fMλ consistently assume small values in the curve, while the features fI0,λ and fI1,λ present large
values. A similar behavior of the features in the Alapana part can be observed in the other three
examples Figure 5.1.

However, in Figure 5.1(iv), one can notice an outlier in the feature representation of fMλ (indicated
by a dotted circle). By listening inspection, we noticed that in this section of the Alapana part,
the audience started to rhythmically clap along the music, thus introducing some clear notion of
tempo. Such clapping is not unusual in Carnatic music concerts.

Turning to the Krithi part, the features fHλ and fMλ assume consistently large values (compared
to the ones in the Alapana part) for the first three examples of Figure 5.1. Also, as expected, the
features fI0,λ and fI1,λ assume small values thus reinforcing our observation that there is usually
a clear notion of tempo in the Krithi part with some occasional tempo changes. In the third
example shown in Figure 5.1(iv), one can observe a deviation of this tendency in the first section
of the Krithi part (indicated by a dashed circle). In this part, it turned out that the lead artist
has started the Krithi part without being accompanied by percussion. Even though the lyrical
composition has already started, the artist still continues in an Alapana-like style. After a while,
the percussion finally sets in, which leads to the expected feature values in the Krithi part. Even
though such deviations in the Krithi part do not happen often in concerts, they give an idea of
the wide range of challenges that Carnatic music poses to any segmentation algorithm.

A similar behavior of the features can be seen in the Tani-Avarthanam part of the four examples.
As an interesting tendency, one can observe that the features fI0,λ and fI1,λ vary more in the
Tani-Avarthanam part compared to the Krithi part, as also verified by the standard deviations
σ shown in Table 5.1. This nicely reflects the fact that in this final part the percussionists often
change the tempo abruptly to present a new solo.

Let us now discuss a quantitative statistics and a qualitative analysis of the chroma salience
features in the Section 5.2.

5.2 Chroma Salience Features

Based on the annotated dataset, we first computed for each audio file chroma representations4.
Based on these representations, we computed the salience features as introduced in Section 4.4.
Then, for each of the features, we computed the average feature value and its standard deviation
for each of the three Alapana, Krithi and Tani-Avarthanam parts separately. These values, in
turn, were averaged over the 15 different pieces. As a result, we obtained for each salience feature
and each part a mean µ and a standard deviation σ. These results are shown in Table 5.2. As
before, the relative values across the three parts are of interest rather than their absolute values.

First, let us have a look at the statistics for the features fMCλ and fSCλ . It can be seen from

Table 5.2, the mean statistics of fMCλ assume a value of 0.0393 for the Tani-Avarthanam part,

of showing the representations for the entire pieces.
4For the computation we used the MATLAB implementations supplied by the Chroma Toolbox, see [25] and

www.mpi-inf.mpg.de/resources/MIR/chromatoolbox/.
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5.2 CHROMA SALIENCE FEATURES

Feature
µ σ

A K T A K T

fMCλ 0.3976 0.3376 0.0393 0.1954 0.1672 0.0269

fSCλ 0.4209 0.3912 0.0691 0.2026 0.1889 0.0445

fRCλ 0.0492 0.0466 0.0013 0.0288 0.0308 0.0028

Table 5.2: Mean µ and standard deviation σ of various salience features shown for the three
different parts Alapana (A), Krithi (K), and Tani-Avarthanam (T). For the full table for all the
15 pieces of dataset, refer Appendix C.

which is roughly ten times smaller than the value 0.3376 for the Krithi part and the value 0.3976
for the Alapana part. Also, the standard deviation σ for fMCλ shows a similar trend: it assumes
the value 0.0269 for the Tani-Avarthanam part, which is much lower than the value 0.1672 for
the Krithi and the value 0.1954 for the Alapana part. Recall from Section 4.4.1 that the feature
fMCλ measures the maximum chroma of a chroma feature representation. Therefore, a low value

of fMCλ implies no clear notion of a chroma, whereas a high value indicates the presence of a

dominating chroma value. The average values of fMCλ in the three parts exactly reflect the
musical property that there is no obvious melody in the Tani-Avarthanam part, whereas there is
a clearly perceivable melody in the other two parts. For the feature fSCλ (refer, Section 4.4.2),

one can observe similar trends as for fMCλ . Both features are suitable for differentiating the
Tani-Avarthanam from the other two parts.

Next, we examine the behavior of the feature fRCλ . As shown in the Table 5.2, this feature also
assume quite different values in the Tani-Avarthanam part compared to the other two parts.
However, this time the feature assumes comparatively very low values in the Tani-Avarthanam
part. For example, the mean of fRCλ is 0.0013 for the Tani-Avarthanam part, which is very less
as compared to the mean value 0.0466 for Krithi and 0.0492 for Alapana part.

The relative differences between the parts become even larger for the average values of the feature
fRCλ . Recall from Section 4.4.3 that the feature fRCλ measures some kind of relative chroma
changes. Since, the melody in the Tani-Avarthanam part is rather diffused as compared to that
of the other two parts. This results in large values of fRCλ in the remaining two parts of the
main piece audio recordings. In contrast, there usually exists a dominating chroma in the Krithi
and Alapana parts for most of the frames, which results in a more or less constant sequences of
the chroma representation. Since such chroma changes are rare in the Tani-Avarthanam part
(because of tuned percussive instruments), the overall mean values are small as compared to
that of the Krithi and the Alapana parts. Interestingly, the mean and standard deviations of
Table 5.2 also indicate that abrupt chroma changes seem to occur more often in the first two
parts compared to the Tani-avarthanam part. This observation is also reflected by our listening
inspections and the representative examples as shown in Figure 5.2.

As a supplement to our quantitative evaluation, we further illustrate the behavior of our salience
features by showing representative examples computed from four different recordings5 in Figure 5.2.
We start with the inspection of the Tani-Avarthanam parts of the examples. In Figure 5.2(i),

5For the sake of a better visual understanding, the figure shows the various feature representations only for
representative subsections of the three parts (also including the transition regions between subsequent parts)
instead of showing the representations for the entire pieces.
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(i) (ii)

(iii) (iv)

Figure 5.2: Representation of a Carnatic music recordings and the resulting feature representations
with parameter settings, short time mean square power for each sub-band is computed by using
a fixed window length of 200 milliseconds with overlap of 50% (leads to feature rate = 10
features per second) and Fs = 22050 Hz. (a) midi pitch representation (drone present) (b)
midi pitch representation (drone removed). (c) chroma representation (considering middle and
upper midi octave). (d) Maximum chroma feature fMCλ (with λ = 15 sec). (e) Sum chroma

feature fSCλ (with λ = 15 sec). (f) Relative chroma strength feature fRCλ (with λ = 15 sec). (g)
Manual segmentation of the recording. The white areas indicate transition regions (often pauses,
sometimes used for tuning the instruments) between the respective parts.
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the behavior of the features exactly corresponds to our previous discussion. The features fMCλ

and fSCλ consistently assume small values in the curve, while the feature fRCλ presents the lowest
values as compared to the other two parts.

A similar behavior of the features in the Tani-Avarthanam part can be observed in the other
three examples of Figure 5.2. However, in Figure 5.2(iv), one can notice an outlier in the feature
representation of fSCλ (indicated by a dotted circle). By listening inspection, we noticed that in
this section of the Alapana and Krithi parts, the singer stopped singing for sometime resulting in
low chroma energy as compared to its remaining parts, thus losing a notion of melody.

Turning to the Tani-Avarthanam part, the features fMCλ and fSCλ assume consistently small values
(compared to the ones in the Alapana and Krithi parts) for all the examples of Figure 5.2. Also,
as expected, the feature fRCλ assume lowest values thus reinforcing our observation that there
is usually a vague notion of chroma in the Tani-Avarthnam part with some occasional chroma
changes. The occasional changes are due to the harmonically tuned percussive instruments
performed in the Tani-Avarthanam part. A similar behavior of the features can be seen in the
Tani-Avarthanam part of the four examples. As an interesting tendency, one can observe that
the features fRCλ has a very low relative chroma strength in the Tani-Avarthanam part compared
to the Krithi and the Alapana parts, as also verified by the standard deviations σ shown in
Table 5.2. This nicely reflects the fact that in this final part the there is a vague notion of melody.

5.3 Summary

Based on the evaluation of tempo and chroma salience features by a quantitative and qualitative
analysis, one can now investigate how well the three musical parts are characterized as follows.

1. The tempo salience features fHλ and fMλ has a low µ and σ statistics for the Alapana part
as compared to the Krithi and Tani-Avarthanam parts. Similarly, the tempo salience
features fI0,λ and fI1,λ has a high µ and σ statistics for the Alapana part as compared to
the Krithi and Tani-Avarthanam parts. Hence, we can infer that, tempo salience feature
musically distinguish Alapana part with respect to the Krithi and the Tani-Avarthanam
parts of the main piece audio recording (see Figure 5.3b).

2. The chroma salience features fMCλ , fSCλ and fRCλ has a high µ and σ statistics for the
Alapana and Krithi parts as compared to the Tani-Avarthanam part. Hence, we can infer
that, chroma salience feature musically distinguish Alapana and Krithi parts with respect
to the Tani-Avarthanam part of the main piece audio recordings (see Figure 5.3c).

3. The tempo and chroma salience features can musically distinguish all the three parts of a
Carnatic music main piece audio recordings into Alapana, Krithi and Tani-Avarthanam
(see Figure 5.3d).

Furthermore, the designed tempo and chroma features aim towards the automatic segmentation
of the main piece audio recording into Alapana, Krithi and Tani-Avarthanam. For example, we
considered an audio recording, which depicts the automatic segmentation of all the three parts
using fMλ and fRCλ salience features as shown in the Figure 5.4. A simple threshold technique is

applied for both the features fMλ and fRCλ . The threshold is obtained by considering the average
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Alapana Krithi Tani-Avarthanam(a)

(b)

(c)

(d) Tempo and Chroma

Salience Features

Tempo Salience Features

Chroma Salience Features

Figure 5.3: Typical structure of a Carnatic main piece. (a) Main piece constituting of three
contrasting parts: Alapana, Krithi and Tani-Avarthanam. (b) Tempo salience features musically
distinguishes Alapana with respect to Krithi and Tani-Avarthanam. (c) Chroma salience features
musically distinguishes Alapana and Krithi with respect to Tani-Avarthanam. (d) Chroma and
Tempo salience features together musically distinguishes all the three parts into Alapana, Krithi
and Tani-Avarthanam.

µ and σ of the lowest chroma energy of the contrasting part of the 15 main piece audio recordings
(i.e., Alapana part for tempo feature fMλ and Tani-Avarthanam for chroma feature fRCλ ). From
Table 5.1, the statistics of the Alapana for the tempo feature fMλ is µ = 0.0169 and σ = 0.0054,
then the resulting threshold is 0.0223 ( i.e., µ + σ) as shown in Figure 5.4a. Similarly, from
Table 5.2, the statistics of the Tani-Avarthanam part for the tempo feature fMλ is µ = 0.0013
and σ = 0.0028, then the resulting threshold is 0.0041 as shown in Figure 5.4c. By applying
the tempo and chroma thresholds, we can automatically segment the three contrasting parts as
shown in Figure 5.4b,d.
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Figure 5.4: Wavfile : Raga 02 excerpt s 152.wav. The chroma and tempo salience features
together musically distinguish and segment all the three parts into Alapana, Krithi and Tani-
Avarthanam. (a) The tempo salience feature fMλ with λ = 100 (red) and tempo threshold =
0.0223 (cyan). (b) After segmentation (by using a simple global tempo threshold = 0.0223),
the tempo salience feature fMλ musically segment Alapana with respect to Krithi and Tani-

Avarthanam. (c) The chroma salience feature fRCλ with λ = 15 (blue), τ = 0.05 and
and chroma threshold = 0.0223 (cyan). (d) After segmentation (by using ta simple global
chroma threshold = 0.0223) task, the chroma salience feature fRCλ musically segment Alpana
and Krithi with respect to Tani-Avarthanam. (e) Manual segmentation of the recording. The
white areas indicate transition regions (often pauses, sometimes used for tuning the instruments)
between the respective parts.
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Chapter 6

Conclusions

In this thesis, we considered a segmentation problem of Carnatic music audio recordings, where the
different musical parts are characterized by the presence or absence of certain musical properties.
A music signal may contain several musical aspects characterized by timbre, tempo, beat, played
notes, melody, harmony, timbre of different instruments, dynamics of the sound, etc. For a given
music processing task, only few of them may be relevant. As main technical contribution, we
described several novel features that capture tempo and melody related information.

By means of the Carnatic music scenario, we demonstrated that these features reflect well
whether there is a notion of a clear tempo or melody in the constituent parts of a Carnatic music
main piece audio recording. Based on tempo property alone, one can clearly distinguish the
Alapana part from the other two parts. If we consider melody property, one can also musically
differentiate the Tani-Avarthanam part from the other two parts. In the study presented in this
thesis, we focused on the aspect of tempo and melody salience that should also be useful for
analyzing and understanding other types of music.

Our main contributions can be summarized as follows. We introduced the concert format in
Carnatic music, explained in detail the significance and structure of the main piece and its
musical characteristics. We further exploited the musical characteristics of each part of the main
piece to design tempo and chroma salience features which define a notion of tempo and melody
in any part of a music signal. These features can be used for any type of music as descriptors of a
tempo salience and melody salience. Furthermore, we also showed the consistency of the features
in analyzing the segments, corroborating with our experimental evidence. Further research into
this area could lead to interesting analytical approaches to other forms of music and also new
features which offer insights into musical structure. We intend to explore this technique for
analyzing other structures in Carnatic music such as RTP and Thillana parts.

The chroma and tempo salience features can be further used in an automated algorithm for
segmentation as shown in Figure 5.4 in conjunction with other features for retrieval tasks. The
tempo salience and the melody salience can also be used as descriptors for Carnatic music.
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A. CARNATIC MUSIC INSTRUMENTS

Appendix A

Carnatic Music Instruments

The instruments used in the Carnatic music are broadly divided into two groups. They are as
follows.

1. Harmonic or melodic instruments : The Melodic instruments may be further sub-divided
into three groups. They are as follows.

(a) String instruments : The string instruments are categorized by the way they are
played, plucked or bowed. The string instruments used in Carnatic music are as
follows.

i. Tambura : is a long-necked plucked string instrument(3-6 strings) found. It is a
drone instrument, which is an important part of the Carnatic music concerts. It
is used to support and sustain the melody of instruments or a singer, and played
in a continuous loop.

ii. Tanpura : is also a long-necked plucked string instrument(3-6 strings) found in
various forms in Indian music. It is similar to Tambura. It also act as a drone
instrument, which is played throughout the Carnatic concerts to provide a pitch
reference to the artist.

iii. Veena : is a 7-string instrument which was invented in ancient India. It is made
out of the dried wood of the jack fruit tree. The instrument is played through
breath retention (in other words, you neither inhale nor exhale while playing).

iv. Violin : is a string instrument generally used for high pitched sounds. The violinist
produces the sound by having a bow over the strings. This was mainly used with
gut, nylon, synthetic or steel strings. It is also used in Western music.

(b) Wind instruments : The wind instruments used in Carnatic music as as follows.

i. Indian Flute : is one of the oldest wind instruments used in the Carnatic music.
The most commonly used flute in Indian classical music is made up of bamboo.
A typical Indian Flute is about fourteen inches in length and 0.75 of an inch in
diameter.

ii. Nagaswaram : is a musical instrument, mostly used in the Hindu weddings and in
the South Indian temples. This was played with pair accompanied with a pair of
drums called Thavil or Ottu. It is the most popular classical musical instrument
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and also used in the concerts. Its body is made of hard wood, and its flaring bell
is made of wood or metal.

iii. Ottu : is a drone instrument. It resembles the Nagaswaram in shape and
construction but is slightly longer. The player holds the reed at the upper end
of the instrument in his mouth and blows into it to produce a single note which
provides the drone for the Carnatic music.

(c) Bellowed instruments : The bellowed instruments used in Carnatic music as as follows.

i. Harmonium : is used to provide a drone sound. It has a keyboard of over two
and one-half octaves and works on a system of bellows. This instruments is very
popular in the North India. In South India, it is used more commonly in concerts
and Bhajans (devotional) songs.

ii. Sruti-peti : is similar to Harmonium and it is used to provide a drone sound. It
is a small box with few buttons used for adjusting the drone sounds.

2. Percussion or rhythm instruments : The Percussive instruments used in Carnatic music as
as follows.

(a) Mridangam : is a percussive instrument from ancient Indian origin. It is like a drum
shape with membranes on both of its ends. One of the membrane is smaller and the
other one on larger membrane. Like other drums, it is also used as an accompaniment
for instruments, vocals and dance performances.

(b) Ghatam : is pot like structure. The player uses his fingers, thumbs, palms and heels of
the hands to play on the outer surface of the pot. A low pitch bass sound is obtained
by hitting the mouth of the pot with a hand. Different tones generated while hitting
on different regions of the pot. It accompanies with Mridangam instrument played in
the concerts.

(c) Kanjira : is used as a supporting instrument for Mridangam. It is made from the
wood of jack fruit tree. It is 7− 9 inch in width and 2− 4 inches in depth.

(d) Moorsing : is mainly used in the Carnatic concerts and for Indian folk music. It is a
tuned percussive instrument. It is mostly tuned to higher octave as compared to the
remaining percussive instruments. It is made of a metal ring which looks similar to a
shape of a horse shoe.

(e) Thavil : The Thavil is the main percussion instrument for the Nagaswaram. It is a
barrel-shaped drum which is hollowed out of a solid block of wood. The one head of
the Thavil is made from the skin of Buffalo and the other head is made from goat
skin.

(f) Jalra : is made of metal and connected with a copper cord which passes through holes
in their center. They produce a rhythmic sound when struck together. The sound’s
pitch varies according to their size, weight and the material of their construction. By
varying the point of contact, one can adjust its timbre.
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Appendix B

Annotation of Carnatic Music
Database

In our experiments, we have used the music recordings of good audio quality from the Sangeethapriya
website1. In total, our dataset consists of 15 main pieces from various Carnatic concerts with an
overall duration of more than 10 hours. In the chapter, we discuss about the naming convention
of the concert files (see Appendix B.1) and how to manually annotate the music recordings with
the help of Sonic Visualiser2. software (see Appendix B.2) to find the segment boundaries for
the Alapana, Krithi and Tani-Avarthanam parts.

B.1 Database Naming Convention

As mentioned in Chapter 2, Every piece in a Carnatic concert is performed with a predefined
Raga and Tala. It may also so happen that, main piece may include Alapana , Krithi and
Tani-Avarthanam or either Alapana or Tani-Avarthanam along with Krithi or it can be only
Krithi, as it is the heart of the main piece. In this thesis, we shall consider the main piece having
all the three parts, Alapana, Krithi and Tani-Avarthanam. Considering all the above criteria
for the naming convention of the main piece. We have come up with the following naming
convention which has information regarding Raga, Krithi, Tala, Performer, year and month of
the performance as shown below.

raga krithi tala performer year month.wav

For example, madyamaavati paalinchukaamaakSi aadi tnseshagopalan 2003 01.wav is name
given to a Carnatic music main piece audio recording with madyamaavati as the name of the
Raga, paalinchukaamaakSi as Krithi, aadi as Tala, T.N.Seshagopalan as performer, 2003 as year
and 01 as the month of the performance. A metadata file is also provided with the database for
every main piece of the concert which almost has all information like, file formats, Raga, Tala
lyrical composition of Krithi part and soon as shown below.

1http://www.sangeethapriya.org
2http://http://www.sonicvisualiser.org/
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######################Filename########################################

raaga_kriti_tala_Performer_year_xx.wav(format)

madyamaavati_paalinchukaamaakSi_aadi_tnseshagopalan_2003_01.wav

madyamaavati_paalinchukaamaakSi_aadi_tnseshagopalan_2003_01.mp3

#######################################################################

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Raga : madyamaavati

Krithi : paalinchu kaamaakSi

TaaLam : aadi

Singer : t n seshagopalan

Composer : shyaamaa shaastree

Concert : madurai

Year : 2003

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

**************************Raga******************************************

paalinchu kaamaakSi

raagam: madyamaavati

22 kharaharapriya janya

Aa: S R2 M1 P N2 S

Av: S N2 P M1 R2 S

**************************Tala******************************************

Taalam: aadi

Composer: Shyaamaa Shaastree

**************************Lyrics****************************************

pallavi:

pAlincu kAmAkSi pAvani pApa shamani

anupallavi:

cAla bahu vidhamugA ninu sadA vEDukonaDina endEla iLAgu sEvu veta

harincavE vEgamE nanu

swara saahitya:

kanaka giri sadana lalita ninu bhajana santatamu jEya nijanuDana vinumu

nikhila bhuvana janavini ipuDu mA duritamu dIrcci varAlicci

caraNam 1:

svAntambulOna ninnE dalacE sujanula kellanE vELa santOSamu

losagEvani nIvu manOratha phaladAyinivani kAntamagu pEru ponditivi

kAruNya mUrti vaijagamu kApADina talli gadA nEnu nIdu biTTanu lAlinci

caraNam 2:

I mUrti inta tEjOmayamai iTuvale kIrti visphUrti viTalAnaya guNa

mUrti trilOkamulO jUcindaina galadA Emi toli nOmu nOcitinO nI pAda

padma darshanamu vEmAru labhinci krtArtuDainati nA manaviyAlinci

caraNam 3:

rAjAdhirAja rAjanmakuTI taTamaNi rAj abhAjAla nija sannidhi

dEvi samasta janula kella varadA rAjamukhi shyAmakrSNanuta

kAnci purIshvari vikaca rAjIva daLAkAi jagat sAkSiyau prasanna parAshakti

swara:

ni sa ri pa ma ri sa ni sa ri ma ri sa ni sa ri sA, ri sa ni pA,

pa ma pa ni sa rI

pa ma pa sa ri sa pa ma pa ni pa sa ni ri sa ma rI , sa ni pa

ri sa , ni pa ma , rI sa

http://www.karnatik.com/c2442.shtml

***************************************************************************
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The naming convention of the the main piece audio recordings are very long. In order to have
simple names, we perform mapping of naming conventions of the dataset as shown in Figure B.1.

Dataset Mapping

aabheri nagumomuganaleni aadi tnseshagopalan 2002 01.wav ⇒ Raga 01.wav
bhairavi thanayunibrova aadi tnseshagopalan 1993 01.wav ⇒ Raga 02.wav
brindaavanasaaranga kamalaaptakula deshaadi tnseshagopalan 1980 01.wav ⇒ Raga 03.wav
kaambhoji ohrangasaayi aadi tnseshagopalan 2002 01.wav ⇒ Raga 04.wav
kaambhoji ohrangasaayi aadi tnseshagopalan xxxx 01.wav ⇒ Raga 05.wav
kalyaani thallininunera mishracaapu tnseshagopalan 1983 01.wav ⇒ Raga 06.wav
kalyani etaavunara aadi tnseshagopalan 1988 01.wav ⇒ Raga 07.wav
kalyani kamalambambhajareremaanasa aadi sanjaisubramaniam 2007 01.wav ⇒ Raga 08.wav
madyamaavati paalinchukaamaakSi aadi tnseshagopalan 2003 01.wav ⇒ Raga 09.wav
mukhaari elaavathaaram aadi tmkrishna 2005 01.wav ⇒ Raga 10.wav
shankaraabharanam endhukupeddhala deshaadi tnseshagopalan 1979 01.wav ⇒ Raga 11.wav
shankaraabharanam sridakshinaamoortte mishrajhampa tmkrishna 2006 01.wav ⇒ Raga 12.wav
shankarabharanam edhutanilichithe aadi tnseshagopalan 1988 01.wav ⇒ Raga 13.wav
todi kaddhanuvaariki aadi tnseshagopalan 1989 01.wav ⇒ Raga 14.wav
todi shrikrishnambhajamanasa aadi tnseshagopalan 1985 01.wav ⇒ Raga 15.wav

Table B.1: Mapping of dataset naming conventions

B.2 Annotation

For annotating a Carnaitc music main piece audio recording, we manually find the boundaries of
the Alapana, Krithi and Tani-Avarthanam parts with the help of the Sonic Visualiser tool. We
listen to the audio recordings in the Sonic Visualiser and manually annotate the boundaries of
all the three parts (for example, see Table B.2).

Parts Starttime(in sec) Endtime(in sec)

Alapana talapana start talapana end
Krithi tkrithi start tkrithi end
Tani-Avarthanam ttani start ttani end

Table B.2: Annotation of the main piece of the concert

B.3 Excerpt Database

A typical Carnatic concert main piece may last for about 60 minutes. Testing on such a huge
audio recording is time consuming. Hence, we obtain excerpt files from the audio recordings.
The excerpt files contain small segments of each part (say, 2 minutes) along with the transition
region between the parts of the main piece.

The excerpt files created from a main piece audio recording is as shown in the Figure B.1. The
Figure B.1(a) represents the main piece constituting parts, theAlapana, the Krithi and the
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Figure B.1: For example, bhairavi thanayunibrova aadi tnseshagopalan 1993 01.wav, a main
piece of the concert file. (a) Shows the ground truth of main piece of the concert of length
roughly around 60-90 minutes. (b) Taking chunks [C1, C3, C5] of length 2 minutes from each
parts of main piece along with the transition parts [C2, C4]. (c) Concatenate [C1 . . . C5] to get
an excerpt file, which is used for testing the salience features.

Tani-Avarthanam along with the transition regions. We now take chunks of 2 minutes of each of
the parts as shown in Figure B.1 (b) as C1, C3 and C5 whereas, C2 and C4 are also taken to
preserve the information about the transition between the parts. Now by concatenating these
chunks [C1 . . . C5], results in excerpt file as shown in Figure B.1 (c)).

By taking different chunks from each main audio recording, 10 such excerpt audio files are
obtained from each main piece audio recording. As we have 15 such huge main piece audio
recordings and 10 excerpt audio files per audio recording, resulting in (15× 10) 150 excerpt audio
files. Hence, we use 150 total excerpt files in our dataset.
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Appendix C

Dataset Overview

This chapter is organized as follows. Firstly, Based on the manually annotation dataset, we
compute statistics to investigate how well the three different musical parts are characterized
by our tempo and chroma salience features. Secondly, we show an overview of the results of
tempo and chroma salience features on the Carnatic music excerpt dataset. The tempo salience
features are obtained from the concept of tempogram which, helps to musically differentiate
theAlapana with respect to the Krithi and the Tani-Avarthanam parts based on the tempo cue.
Similarly, the salience features can be derived from the concept of Chroma features which, helps
to musically differentiate the Tani-Avarthanam with the Krithi and the Alapana parts based on
melody cue.
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Feature fMCλ

µ σ
A K T A K T

Raga 01.wav 0.3424 0.3418 0.0502 0.2391 0.1992 0.0185
Raga 02.wav 0.6049 0.4756 0.0653 0.1507 0.0891 0.0334
Raga 03.wav 0.1822 0.4044 0.0512 0.1158 0.2267 0.0299
Raga 04.wav 0.1235 0.2719 0.0261 0.0667 0.2303 0.0158
Raga 05.wav 0.4706 0.3288 0.0311 0.2229 0.1722 0.0114
Raga 06.wav 0.6292 0.5607 0.1419 0.2025 0.1479 0.0757
Raga 07.wav 0.2147 0.0947 0.0189 0.2227 0.0487 0.0227
Raga 08.wav 0.4188 0.0734 0.0182 0.2126 0.0318 0.0122
Raga 09.wav 0.3614 0.2593 0.0202 0.2515 0.2276 0.0101
Raga 10.wav 0.4730 0.3023 0.0091 0.2173 0.1559 0.0066
Raga 11.wav 0.5100 0.4936 0.0791 0.2032 0.1409 0.0225
Raga 12.wav 0.2436 0.5881 0.0107 0.1913 0.1674 0.0091
Raga 13.wav 0.5017 0.3537 0.0120 0.1519 0.1983 0.0146
Raga 14.wav 0.4568 0.2756 0.0320 0.1581 0.1855 0.0260
Raga 15.wav 0.4317 0.2403 0.0237 0.2303 0.1209 0.0079

Average 0.3976 0.3376 0.0393 0.1954 0.1672 0.0269

Table C.1: Mean µ and standard deviation σ of maximum chroma salience feature (fMCλ ) shown
for the three different parts Alapana (A), Krithi (K), and Tani-Avarthanam (T).

fSCλ
Feature µ σ

A K T A K T

Raga 01.wav 0.4001 0.4522 0.1076 0.2381 0.2126 0.0427
Raga 02.wav 0.6142 0.5021 0.0934 0.1983 0.0925 0.0396
Raga 03.wav 0.1608 0.3491 0.0718 0.1069 0.2156 0.0429
Raga 04.wav 0.1084 0.2820 0.0437 0.0613 0.2518 0.0277
Raga 05.wav 0.4447 0.3321 0.0441 0.2225 0.1625 0.0172
Raga 06.wav 0.5753 0.5703 0.2378 0.2010 0.1612 0.1211
Raga 07.wav 0.3128 0.2128 0.0445 0.2023 0.1291 0.0476
Raga 08.wav 0.5257 0.1321 0.0493 0.2196 0.0513 0.0326
Raga 09.wav 0.3806 0.2339 0.0252 0.2773 0.2083 0.0139
Raga 10.wav 0.4938 0.3824 0.0179 0.2098 0.2037 0.0149
Raga 11.wav 0.5339 0.5902 0.1559 0.2370 0.1786 0.0453
Raga 12.wav 0.2795 0.6441 0.0199 0.2201 0.1906 0.0153
Raga 13.wav 0.5389 0.5065 0.0189 0.1150 0.2490 0.0178
Raga 14.wav 0.5087 0.3581 0.0585 0.1856 0.2316 0.0471
Raga 15.wav 0.4355 0.3204 0.0475 0.2284 0.1773 0.0135

Average 0.4209 0.3912 0.0691 0.2026 0.1889 0.0445

Table C.2: Mean µ and standard deviation σ of sum chroma salience feature (fSCλ ) shown for the
three different parts Alapana (A), Krithi (K), and Tani-Avarthanam (T).
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fRCλ
Feature µ σ

A K T A K T

Raga 01.wav 0.0358 0.0388 0.0008 0.0214 0.0243 0.0014
Raga 02.wav 0.0734 0.0517 0.0007 0.0279 0.0152 0.0030
Raga 03.wav 0.0206 0.0426 0.0012 0.0159 0.0300 0.0018
Raga 04.wav 0.0204 0.0646 0.0029 0.0150 0.0617 0.0034
Raga 05.wav 0.1055 0.0680 0.0003 0.0527 0.0416 0.0005
Raga 06.wav 0.0809 0.0797 0.0099 0.0324 0.0253 0.0088
Raga 07.wav 0.0131 0.0039 0.0003 0.0114 0.0044 0.0007
Raga 08.wav 0.0125 0.0003 0 0.0107 0.0011 0
Raga 09.wav 0.0512 0.0244 0.0000 0.0411 0.0301 0.0001
Raga 10.wav 0.0233 0.0112 0 0.0135 0.0079 0
Raga 11.wav 0.0838 0.0895 0.0025 0.0397 0.0326 0.0024
Raga 12.wav 0.0352 0.0990 0.0002 0.0348 0.0322 0.0009
Raga 13.wav 0.0630 0.0526 0.0002 0.0176 0.0361 0.0012
Raga 14.wav 0.0714 0.0452 0.0007 0.0280 0.0380 0.0024
Raga 15.wav 0.0477 0.0277 0.0000 0.0305 0.0216 0.0003

Average 0.0492 0.0466 0.0013 0.0288 0.0308 0.0028

Table C.3: Mean µ and standard deviation σ of relative chroma strength salience feature (fRCλ )
shown for the three different parts Alapana (A), Krithi (K), and Tani-Avarthanam (T).

Feature fHλ
µ σ

A K T A K T

Raga 01.wav 0.0023 0.0223 0.0235 0.0011 0.0162 0.0135
Raga 02.wav 0.0031 0.0237 0.0168 0.0013 0.0100 0.0105
Raga 03.wav 0.0034 0.0220 0.0330 0.0028 0.0069 0.0094
Raga 04.wav 0.0059 0.0694 0.0115 0.0025 0.0562 0.0056
Raga 05.wav 0.0030 0.0145 0.0149 0.0019 0.0064 0.0088
Raga 06.wav 0.0021 0.0265 0.0264 0.0009 0.0072 0.0141
Raga 07.wav 0.0042 0.0304 0.0152 0.0022 0.0166 0.0047
Raga 08.wav 0.0038 0.0385 0.0419 0.0017 0.0129 0.0362
Raga 09.wav 0.0039 0.0293 0.0342 0.0013 0.0133 0.0204
Raga 10.wav 0.0020 0.0287 0.0186 0.0007 0.0124 0.0124
Raga 11.wav 0.0035 0.0156 0.0258 0.0012 0.0074 0.0090
Raga 12.wav 0.0027 0.0140 0.0176 0.0013 0.0096 0.0052
Raga 13.wav 0.0038 0.0288 0.0401 0.0013 0.0125 0.0259
Raga 14.wav 0.0026 0.0315 0.0238 0.0016 0.0094 0.0102
Raga 15.wav 0.0024 0.0314 0.0255 0.0010 0.0101 0.0099

Average 0.0032 0.0285 0.0246 0.0016 0.0181 0.0154

Table C.4: Mean µ and standard deviation σ of tempo entropy salience feature (fHλ ) shown for
the three different parts Alapana (A), Krithi (K), and Tani-Avarthanam (T).
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Feature fMλ
µ σ

A K T A K T

Raga 01.wav 0.0132 0.0580 0.0618 0.0039 0.0273 0.0223
Raga 02.wav 0.0161 0.0660 0.0477 0.0037 0.0146 0.0171
Raga 03.wav 0.0187 0.0564 0.0708 0.0102 0.0112 0.0141
Raga 04.wav 0.0229 0.1212 0.0425 0.0067 0.0595 0.0105
Raga 05.wav 0.0170 0.0461 0.0446 0.0062 0.0110 0.0185
Raga 06.wav 0.0134 0.0679 0.0606 0.0025 0.0075 0.0253
Raga 07.wav 0.0180 0.0718 0.0417 0.0061 0.0276 0.0128
Raga 08.wav 0.0187 0.0856 0.0777 0.0055 0.0178 0.0477
Raga 09.wav 0.0202 0.0750 0.0758 0.0047 0.0213 0.0299
Raga 10.wav 0.0130 0.0713 0.0497 0.0040 0.0155 0.0225
Raga 11.wav 0.0176 0.0508 0.0501 0.0041 0.0126 0.0124
Raga 12.wav 0.0156 0.0442 0.0532 0.0044 0.0150 0.0100
Raga 13.wav 0.0177 0.0710 0.0813 0.0047 0.0204 0.0410
Raga 14.wav 0.0161 0.0732 0.0579 0.0049 0.0149 0.0193
Raga 15.wav 0.0157 0.0688 0.0625 0.0046 0.0146 0.0140

Average 0.0169 0.0685 0.0585 0.0054 0.0228 0.0237

Table C.5: Mean µ and standard deviation σ of tempo maximum median salience feature (fMλ )
shown for the three different parts Alapana (A), Krithi (K), and Tani-Avarthanam (T).

Feature fI0,λ
µ σ

A K T A K T

Raga 01.wav 0.1296 0.0136 0.0032 0.0446 0.0287 0.0078
Raga 02.wav 0.1205 0.0008 0.0145 0.0385 0.0033 0.0208
Raga 03.wav 0.1015 0.0042 0.0093 0.0493 0.0095 0.0142
Raga 04.wav 0.0956 0.0017 0.0108 0.0453 0.0060 0.0143
Raga 05.wav 0.0916 0.0049 0.0326 0.0609 0.0115 0.0308
Raga 06.wav 0.1152 0.0051 0.0080 0.0520 0.0115 0.0155
Raga 07.wav 0.1043 0.0216 0.0120 0.0420 0.0337 0.0131
Raga 08.wav 0.0814 0.0037 0.0151 0.0427 0.0084 0.0181
Raga 09.wav 0.0873 0.0058 0.0056 0.0488 0.0168 0.0170
Raga 10.wav 0.1224 0.0026 0.0210 0.0616 0.0050 0.0324
Raga 11.wav 0.1224 0.0031 0.0210 0.0421 0.0068 0.0238
Raga 12.wav 0.0925 0.0026 0.0091 0.0454 0.0072 0.0129
Raga 13.wav 0.1055 0.0032 0.0081 0.0562 0.0086 0.0141
Raga 14.wav 0.0951 0.0085 0.0025 0.0470 0.0231 0.0065
Raga 15.wav 0.1022 0.0071 0.0004 0.0501 0.0102 0.0023

Average 0.1045 0.0059 0.0115 0.0489 0.0154 0.0181

Table C.6: Mean µ and standard deviation σ of tempo stability salience feature (fI0,λ) shown for
the three different parts Alapana (A), Krithi (K), and Tani-Avarthanam (T).
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Feature fI1,λ
µ σ

A K T A K T

Raga 01.wav 0.0900 0.0136 0.0032 0.0426 0.0287 0.0078
Raga 02.wav 0.0833 0.0008 0.0145 0.0434 0.0033 0.0208
Raga 03.wav 0.0738 0.0042 0.0093 0.0462 0.0095 0.0142
Raga 04.wav 0.0643 0.0017 0.0108 0.0363 0.0060 0.0143
Raga 05.wav 0.0629 0.0049 0.0326 0.0546 0.0115 0.0308
Raga 06.wav 0.0799 0.0051 0.0080 0.0440 0.0115 0.0155
Raga 07.wav 0.0593 0.0216 0.0120 0.0358 0.0337 0.0131
Raga 08.wav 0.0609 0.0037 0.0151 0.0392 0.0084 0.0181
Raga 09.wav 0.0664 0.0058 0.0056 0.0413 0.0168 0.0170
Raga 10.wav 0.0757 0.0026 0.0210 0.0507 0.0050 0.0324
Raga 11.wav 0.0720 0.0031 0.0210 0.0429 0.0068 0.0238
Raga 12.wav 0.0514 0.0026 0.0091 0.0404 0.0072 0.0129
Raga 13.wav 0.0701 0.0032 0.0081 0.0480 0.0086 0.0141
Raga 14.wav 0.0713 0.0085 0.0025 0.0418 0.0231 0.0065
Raga 15.wav 0.0767 0.0071 0.0004 0.0422 0.0102 0.0023

Average 0.0705 0.0059 0.0115 0.0436 0.0154 0.0181

Table C.7: Mean µ and standard deviation σ of tempo stability salience feature (fI1,λ) shown for
the three different parts Alapana (A), Krithi (K), and Tani-Avarthanam (T).
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Figure C.1: Wavfile : Raga 01 excerpt s 152.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the normalized cyclic tempogram
representation as well as the salience features fHλ , fMλ , fI0,λ, and fI1,λ. The same parameter
setting as in Figure 5.1 are used.
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Figure C.2: Wavfile : Raga 01 excerpt s 152.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the midi pitch (with and without
drone), chroma representation as well as the salience features fMCλ , fSCλ and fRCλ . The same
parameter setting as in Figure 5.2 are used.

64 Master Thesis, Venkatesh Kulkarni



C. DATASET OVERVIEW

Figure C.3: Wavfile : Raga 02 excerpt s 152.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the normalized cyclic tempogram
representation as well as the salience features fHλ , fMλ , fI0,λ, and fI1,λ. The same parameter
setting as in Figure 5.1 are used.
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Figure C.4: Wavfile : Raga 02 excerpt s 152.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the midi pitch (with and without
drone), chroma representation as well as the salience features fMCλ , fSCλ and fRCλ . The same
parameter setting as in Figure 5.2 are used.
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Figure C.5: Wavfile : Raga 03 excerpt s 248.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the normalized cyclic tempogram
representation as well as the salience features fHλ , fMλ , fI0,λ, and fI1,λ. The same parameter
setting as in Figure 5.1 are used.
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Figure C.6: Wavfile : Raga 03 excerpt s 248.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the midi pitch (with and without
drone), chroma representation as well as the salience features fMCλ , fSCλ and fRCλ . The same
parameter setting as in Figure 5.2 are used.
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Figure C.7: Wavfile : Raga 04 excerpt s 260.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the normalized cyclic tempogram
representation as well as the salience features fHλ , fMλ , fI0,λ, and fI1,λ. The same parameter
setting as in Figure 5.1 are used.
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Figure C.8: Wavfile : Raga 04 excerpt s 260.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the midi pitch (with and without
drone), chroma representation as well as the salience features fMCλ , fSCλ and fRCλ . The same
parameter setting as in Figure 5.2 are used.
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Figure C.9: Wavfile : Raga 05 excerpt s 212.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the normalized cyclic tempogram
representation as well as the salience features fHλ , fMλ , fI0,λ, and fI1,λ. The same parameter
setting as in Figure 5.1 are used.
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Figure C.10: Wavfile : Raga 05 excerpt s 212.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the midi pitch (with and without
drone), chroma representation as well as the salience features fMCλ , fSCλ and fRCλ . The same
parameter setting as in Figure 5.2 are used.

72 Master Thesis, Venkatesh Kulkarni



C. DATASET OVERVIEW

Figure C.11: Wavfile : Raga 06 excerpt s 164.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the normalized cyclic tempogram
representation as well as the salience features fHλ , fMλ , fI0,λ, and fI1,λ. The same parameter
setting as in Figure 5.1 are used.
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Figure C.12: Wavfile : Raga 06 excerpt s 164.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the midi pitch (with and without
drone), chroma representation as well as the salience features fMCλ , fSCλ and fRCλ . The same
parameter setting as in Figure 5.2 are used.
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Figure C.13: Wavfile : Raga 07 excerpt s 248.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the normalized cyclic tempogram
representation as well as the salience features fHλ , fMλ , fI0,λ, and fI1,λ. The same parameter
setting as in Figure 5.1 are used.
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Figure C.14: Wavfile : Raga 07 excerpt s 248.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the midi pitch (with and without
drone), chroma representation as well as the salience features fMCλ , fSCλ and fRCλ . The same
parameter setting as in Figure 5.2 are used.
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Figure C.15: Wavfile : Raga 08 excerpt s 260.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the normalized cyclic tempogram
representation as well as the salience features fHλ , fMλ , fI0,λ, and fI1,λ. The same parameter
setting as in Figure 5.1 are used.
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Figure C.16: Wavfile : Raga 08 excerpt s 260.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the midi pitch (with and without
drone), chroma representation as well as the salience features fMCλ , fSCλ and fRCλ . The same
parameter setting as in Figure 5.2 are used.
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Figure C.17: Wavfile : Raga 09 excerpt s 224.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the normalized cyclic tempogram
representation as well as the salience features fHλ , fMλ , fI0,λ, and fI1,λ. The same parameter
setting as in Figure 5.1 are used.
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Figure C.18: Wavfile : Raga 09 excerpt s 224.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the midi pitch (with and without
drone), chroma representation as well as the salience features fMCλ , fSCλ and fRCλ . The same
parameter setting as in Figure 5.2 are used.
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Figure C.19: Wavfile : Raga 10 excerpt s 176.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the normalized cyclic tempogram
representation as well as the salience features fHλ , fMλ , fI0,λ, and fI1,λ. The same parameter
setting as in Figure 5.1 are used.
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Figure C.20: Wavfile : Raga 10 excerpt s 176.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the midi pitch (with and without
drone), chroma representation as well as the salience features fMCλ , fSCλ and fRCλ . The same
parameter setting as in Figure 5.2 are used.
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Figure C.21: Wavfile : Raga 11 excerpt s 200.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the normalized cyclic tempogram
representation as well as the salience features fHλ , fMλ , fI0,λ, and fI1,λ. The same parameter
setting as in Figure 5.1 are used.
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Figure C.22: Wavfile : Raga 11 excerpt s 200.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the midi pitch (with and without
drone), chroma representation as well as the salience features fMCλ , fSCλ and fRCλ . The same
parameter setting as in Figure 5.2 are used.

84 Master Thesis, Venkatesh Kulkarni



C. DATASET OVERVIEW

Figure C.23: Wavfile : Raga 12 excerpt s 152.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the normalized cyclic tempogram
representation as well as the salience features fHλ , fMλ , fI0,λ, and fI1,λ. The same parameter
setting as in Figure 5.1 are used.
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Figure C.24: Wavfile : Raga 12 excerpt s 152.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the midi pitch (with and without
drone), chroma representation as well as the salience features fMCλ , fSCλ and fRCλ . The same
parameter setting as in Figure 5.2 are used.
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Figure C.25: Wavfile : Raga 13 excerpt s 152.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the normalized cyclic tempogram
representation as well as the salience features fHλ , fMλ , fI0,λ, and fI1,λ. The same parameter
setting as in Figure 5.1 are used.
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C. DATASET OVERVIEW

Figure C.26: Wavfile : Raga 13 excerpt s 152.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the midi pitch (with and without
drone), chroma representation as well as the salience features fMCλ , fSCλ and fRCλ . The same
parameter setting as in Figure 5.2 are used.
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C. DATASET OVERVIEW

Figure C.27: Wavfile : Raga 14 excerpt s 224.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the normalized cyclic tempogram
representation as well as the salience features fHλ , fMλ , fI0,λ, and fI1,λ. The same parameter
setting as in Figure 5.1 are used.
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Figure C.28: Wavfile : Raga 14 excerpt s 224.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the midi pitch (with and without
drone), chroma representation as well as the salience features fMCλ , fSCλ and fRCλ . The same
parameter setting as in Figure 5.2 are used.
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Figure C.29: Wavfile : Raga 15 excerpt s 224.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the normalized cyclic tempogram
representation as well as the salience features fHλ , fMλ , fI0,λ, and fI1,λ. The same parameter
setting as in Figure 5.1 are used.
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C. DATASET OVERVIEW

Figure C.30: Wavfile : Raga 15 excerpt s 224.wav: Representation of a Carnatic music record-
ings and the resulting feature representations. The figure shows the midi pitch (with and without
drone), chroma representation as well as the salience features fMCλ , fSCλ and fRCλ . The same
parameter setting as in Figure 5.2 are used.
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