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Music Data

Various interpretations — Beethoven's Fifth
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Schematic view of various synchronization tasks

Music Synchronization: Audio-Audio

Given: Two different audio recordings of
the same underlying piece of music.

Goal: Find for each position in one audio recording
the musically corresponding position
in the other audio recording.

Music Synchronization: Audio-Audio
Beethoven'’s Fifth
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Music Synchronization: Audio-Audio
Beethoven’s Fifth
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Synchronization: Karajan — Scherbakov

Music Synchronization: Audio-Audio

Application: Interpretation Switcher

Interpretation Switcher
Beveen, Gp0T.1_ymphern

Music Synchronization: Audio-Audio

Two main steps:

1.) Audio features

Robust but discriminative

Chroma features

Robust to variations in instrumentation, timbre, dynamics
Correlate to harmonic progression

2.) Alignment procedure

= Deals with local and global tempo variations
= Needs to be efficient

Music Synchronization: Audio-Audio
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Music Synchronization: Audio-Audio
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Music Synchronization: Audio-Audio
Beethoven’s Fifth
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Music Synchronization: Audio-Audio
Beethoven’s Fifth
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Music Synchronization: Audio-Audio

Music Synchronization: Audio-Audio
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Music Synchronization: Audio-Audio
Beethoven’s Fifth
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Music Synchronization: Audio-Audio

How to compute the alignment?
=+ Cost matrices
= Dynamic programming

= Dynamic Time Warping (DTW)

Dynamic Time Warping

= Well-known technique to find an optimal alignment
between two given (time-dependent) sequences
under certain restrictions.

= [ntuitively, sequences are warped in a non-linear
fashion to match each other.

= QOriginally used to compare different speech
patterns in automatic speech recognition

Dynamic Time Warping

Time

Time alignment of two time-dependent sequences,
where the aligned points are indicated by the arrows.

Dynamic Time Warping

The objective of DTW is to compare two (time-dependent)
sequences

of length v € ¥ and
Y = (y.92 ..., ym)
of length A/ € . Here,
Tn,Ym EF, nE[1: N, me[l: M],

are suitable features that are elements from a given
feature space denoted by F .

Dynamic Time Warping

To compare two different features .y € F
one needs a local cost measure which is defined
to be a function

c: FxF =Ry
Typically, ¢{x, 1) is small (low cost) if 2 and ¥

are similar to each other, and otherwise (. i)
is large (high cost).




Dynamic Time Warping

Evaluating the local cost measure for each pair of
elements of the sequences X and }" one obtains the
cost matrix

Ce ]R_\'x M
denfined by
Cln,m) = c¢(2n, ¥m).

Then the goal is to find an alignment between X and V'
having minimal overall cost. Intuitively, such an optimal
alignment runs along a “valley” of low cost within the
cost matrix C'.

Dynamic Time Warping

Cost matrix of the two real-valued sequences -X and Y
using the Manhattan distance (absolute value of the
difference) as local cost measuret .

Dynamic Time Warping
The next definition formalizes the notion of an alignment.

Awarping path is a sequence p = (p1..... pr) with
pe = (ng.my) € [1: N x [L: M]

for (€ [l : L]satisfying the following three conditions:

= Boundary condition: pm=(11) and pr = (N.M)

= Monotonicity condition: 71, < ns < ... < ny; and
mp<me <...<ing

= Step size condition: Pes1 —pe € {(1,0),(0,1).(1.1)}

for te[l:L—1]

Dynamic Time Warping
Warping path

. Each matrix entry
(cell) corresponds to
a pair of indices.

H Cell = (6,3)

Boundary cells:
p, = (1,1)
pL = (N,M) =(9,7)
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Dynamic Time Warping
Warping path
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Dynamic Time Warping

Warping path
Violation of
Pl boundary condition
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Dynamic Time Warping
Warping path

Dynamic Time Warping
Warping path
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The total cost ¢,(X.Y') of a warping path p between X
and Y with respect to the local cost measure ¢ is
defined as L

r'p( XX )= z "'{-rn, + Uy ]

i=1

Furthermore, an optimal warping path between X and Y’
is a warping path p* having minimal total cost among all
possible warping paths. The DTW distance DTW(X.Y')
between X and Y is then defined as the total cost o p*

DTW(X.Y) = ¢p(X.Y)
= min{e,(X.Y) | pis a warping path}

= The warping path p* is not unique (in general).

= DTW does (in general) not definne a metric since it
may not satisfy the triangle inequality.

= There exist exponentially many warping paths.

= How can p* be computed efficiently?

Dynamic Time Warping

Notation: X(1:n) = (a1.....: tn), 1<n<N
Y(Lam) o= (yises tm), 1<m<M
Din,m) = DTW(X(1:nr),Y(1:m))

The matrix D) is called the accumulated cost matrix.

The entry D(n.m) specifies the cost of an optimal
warping path that aligns X (1 :n) with Y (1 :m).

Dynamic Time Warping
Lemma:

(i) D(N,M) = DTW(X,Y)

(it)  D(1.1) = C(1,1)
(iti) D(n.1) = vt Clk, 1)
D(l,m) = Y, CLk)

Din—=1.m-=1)
(iv) Din.m) = min| Din-1.m) + (n.m)
D(n,m—1)

forn>1,m>1

Proof: (i) — (iii) are clear by definition




Dynamic Time Warping
Proof of (iv): Induction vian.m :

Let n>1, m>1and g=I(q..... PrL—1.pL) be
an optimal warping path for X(1:n)) and Y (1:m)).
Then g = (n.m) (boundary condition).

Let gi.—1 = (a.b) . The step size condition implies
(a.b) e {(n—-1.m—1),(n—1.m),(n,m— 1)}

The warping path (qi..... (1.—1) must be optimal for
X(1:a), Y(1:D). Thus,

D(n.m)=ciy..q_(X(1:a),Y(1:0)+C(n,m)
|

Dynamic Time Warping

Accumulated cost matrix

Given the two feature sequences X and Y, the matrix [D
is computed recursively.

= |Initialize D using (ii) and (iii) of the lemma.
= Compute D(n.m) for n > 1, m > 1 using (iv).
= DTW(X.Y) = D(N. M) using (i).

Note:
= Complexity O(NM).
= Dynamic programming: “overlapping-subproblem property”

Dynamic Time Warping

Optimal warping path

Given to the algorithm is the accumulated cost matrix 1.
The optimal path p* = (p1..... pL) is computed in reverse

order of the indices starting with p;. = (N. M) .
Suppose p¢ = (11.1m) has been computed. In case

(n,m)=1{(1.1), one must have ¢ = 1 and we are done.
Otherwise,
(L.m—1). ifn=1
(n—1,1), if m=1
Pi—1 =

argmin{D(n — 1,m — 1),

D(n—1.m), D(n.m—1)}. otherwise.

where we take the lexicographically smallest pair in case
“argmin” is not unique.

Dynamic Time Warping

Cost matrix ('

Accumulated
cost martrix [

Dynamic Time Warping
Cost matrix '

Optimal warping path

Accumulated
cost martrix [

Optimal warping path

Dynamic Time Warping

Variation of step size condition
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Dynamic Time Warping

Variation of step size condition

(r.m} »

Dynamic Time Warping

Variation of step size condition

(n—1,m—3)

Dynamic Time Warping
= Computation via dynamic programming
= Memory requirements and running time: O(NM)
= Problem: Infeasible for large N and M

= Example: Feature resolution 10 Hz, pieces 15 min

= N,M ~ 10,000
= N-M ~ 100,000,000

Dynamic Time Warping

Strategy: Global constraints

Sakoe-Chiba band Itakura parallelogram

Dynamic Time Warping

Strategy: Global constraints

Sakoe-Chiba band Itakura parallelogram

Problem: Optimal warping path not in constraint region

Dynamic Time Warping
Strategy: Multiscale approach

Compute optimal warping path on coarse level




Dynamic Time Warping
Strategy: Multiscale approach

Project on fine level

Dynamic Time Warping
Strategy: Multiscale approach

Specify constraint region

Dynamic Time Warping
Strategy: Multiscale approach

Compute constrained optimal warping path

Dynamic Time Warping
Strategy: Multiscale approach

= Suitable features?
= Suitable resolution levels?
= Size of constraint regions?

Good trade-off between efficiency and robustness?

Suitable parameters depend very much on application!

Music Synchronization: Audio-Audio

= Transform audio recordings

into chroma vector sequences ﬁ

~ X = (21,20,...,2N)
~ Y= (... .., yar)

= Compute cost matrix
Cln.m) = e(2n. tm)
with respect to local
cost measure «

= Compute cost-minimizing

Music Synchronization: Audio-Audio

= Transform audio recordings ﬁ
into chroma vector sequences

~ X = (21,22,...,2N)
~ Y = (y.y2-.., yar)

= Compute cost matrix
Cln.m) = e(2n. tm)
with respect to local
cost measure

warping path from ¢’




Music Synchronization: MIDI-Audio

MIDI
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Music Synchronization: MIDI-Audio

MIDI = meta data
Automated annotation

Audio recording

Sonification of annotations > >

Music Synchronization: MIDI-Audio

MIDI = reference (score)
Tempo information

Audio recording

Performance Analysis: Tempo Curves

Schumann: Traumerei

Performance:
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Performance Analysis: Tempo Curves
Schumann: Traumerei

Score (reference):
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Performance Analysis: Tempo Curves
Schumann: Traumerei

Score (reference):

Strategy: Compute score-audio synchronization
and derive tempo curve
Performance:
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Performance Analysis: Tempo Curves

Schumann: Traumerei

Score (reference): [%*tE;_T
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Performance Analysis: Tempo Curves

Schumann: Traumerei

— = s
Score (reference): E.én ;[f'?s;:ﬂg Eriprasirac.
i 5 3‘-—-%

Tempo curves:

v
Musical tempo (BPM)

a a4 L
Musical time (measures)

Performance Analysis: Tempo Curves

Schumann: Traumerei

Score (reference): [

Tempo curves:

v
Musical tempo (BPM)

Performance Analysis: Tempo Curves

Schumann: Traumerei

What can be done if no reference is available?

Tempo curves:

v
Musical tempo (BPM)

3 'l 5
Musical time (measures)

Music Synchronization: MIDI-Audio
Applications

= Automated audio annotation
= Accurate audio access after MIDI-based retrieval

= Automated tracking of MIDI note parameters
during audio playback

= Performance Analysis

Music Synchronization: Image-Audio
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Music Synchronization: Image-Audio

Grave,
0
T ="
<) . - . ENTAREF E 3
s (S TR
SRl == i E e ol e
Eh ‘L;;a 7 o

Audio

Time (seconds)

Music Synchronization: Image-Audio
Convert into common mid-level feature representation

—

Music Synchronization: Image-Audio

Convert into common mid-level feature representation
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Audio chroma representation

Music Synchronization: Image-Audio

Optical music recognition
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Music Synchronization: Image-Audio

Application: Score Viewer

Music Synchronization: Lyrics-Audio
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Difficult task!




Music Synchronization: Lyrics-Audio
Lyrics-Audio — Lyrics-MIDI + MIDI-Audio
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Music Synchronization: Lyrics-Audio
Application: SyncPlayer/LyricsSeeker
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Source Separation

= Decomposition of audio stream into different sound sources
= Central task in digital signal processing

= “Cocktail party effect”

= Sources are often assumed to be statistically independent

= This is often not the case in music

Strategy: Exploit additional information (e.g. musical score)
to support the seperation process

Score-Informed Source Separation
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Score-Informed Source Separation

First step: Use music synchronization techniques to
generate an audio-synchronous piano roll
representation from the score.

Score-Informed Source Separation

First step: Use music synchronization techniques to
generate an audio-synchronous piano roll
representation from the score.

Time (measures)

Time (seconds)

Score-Informed Source Separation
Application: Audio editing

Score-Informed Source Separation

Application: Instrument equalization
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