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Lab Course

Short-Time Fourier Transform and Chroma Features

Abstract

The Fourier transform, which is used to convert a time-dependent signal to a
frequency-dependent signal, is one of the most important mathematical tools
in audio signal processing. Applying the Fourier transform to local sections
of an audio signal, one obtains the short-time Fourier transform (STFT). In
this lab course, we study a discrete version of the STFT. To work with the
discrete STFT in practice, one needs to correctly interpret the discrete time
and frequency parameters. Using MATLAB, we compute a discrete STFT
and visualize its magnitude in form of a spectrogram representation. Then, we
derive from the STFT various audio features that are useful for analyzing music
signals. In particular, we develop a log-frequency spectrogram, where the
frequency axis is converted into an axis corresponding to musical pitches. From
this, we derive a chroma representation, which is a useful tool for capturing
harmonic information of music.

1 Introduction

Audio signals can be complex mixtures consisting of a multitude of different sound components.
A first step in better understanding a given signal is to decompose it into building blocks that are
better accessible for the subsequent processing steps. In the case that these building blocks consist
of exponential functions, such a process is also called Fourier analysis. The Fourier transform maps
a time-dependent signal to a frequency-dependent function which reveals the spectrum of frequency
components that compose the original signal. Loosely speaking, a signal and its Fourier transform
are two sides of the same coin. On the one side, the signal displays the time information and hides
the information about frequencies. On the other side, the Fourier transform reveals information
about frequencies and hides the time information.

To obtain back the hidden time information, Dennis Gabor introduced in the year 1946 the
modified Fourier transform, now known as short-time Fourier transform or simply STFT. This
transform is a compromise between a time- and a frequency-based representation by determining
the sinusoidal frequency and phase content of local sections of a signal as it changes over time. In
this way, the STFT does not only tell which frequencies are “contained” in the signal but also at
which points of times or, to be more precise, in which time intervals these frequencies appear.

The main objective of this lab course is to acquire a good understanding of the STFT. To this
end, we study a discrete version of the STFT using the discrete Fourier transform (DFT), which
can be efficiently computed using the fast Fourier transform (FFT). The discrete STFT yields a
discrete set of Fourier coefficients that are indexed by time and frequency parameters. The correct
physical interpretation of these parameters in terms of units such as seconds and Hertz depends on
the sampling rate, the window size, and the hop size used in the STFT computation. In this lab
course, we will compute a discrete STFT using MATLAB and then visualize its magnitude by a
spectrogram representation, see Section 2 and Figure 1b. By applying the STFT to different audio
example and by modifying the various parameters, one should get a better understanding on how
the STFT works in practice.

To make music data comparable and algorithmically accessible, the first step in basically all
music processing tasks is to extract suitable features that capture relevant aspects while suppress-
ing irrelevant details. In the second part of this lab course, we study audio features and mid-level
representations that are particularly useful for capturing pitch information of music signals. As-
suming that we are dealing with music that is based on the equal-tempered scale (the scale that



Figure 1: Various representations for a piano recording of the chromatic scale ranging from A0
(p = 21) to C8 (p = 108). (a) Piano keys representing the chromatic scale. (b) Spectrogram
representation. (c) Pitch-based log-frequency spectrogram. (d) Chromagram representation. For
visualization purposes the values are color-coded using a logarithmic scale. The C3 (p = 48) played
at time t = 30 sec has been highlighted by the rectangular frames.

corresponds to the keys of a piano keyboard), we will convert an audio recording into a feature
representation that reveals the distribution of the signal’s energy across the different pitches, see
Section 3 and Figure 1c. Technically, these features are obtained from a spectrogram by converting
the linear frequency axis (measured in Hertz) into a logarithmic axis (measured in pitches). From
this log-frequency spectrogram, we then derive a time-chroma representation by suitably combining
pitch bands that correspond to the same chroma, see Section 4 and Figure 1d. The resulting chroma
features show a high degree of robustness to variations in timbre and instrumentation.



2 STFT

The Fourier transform and in particular the discrete STFT serve as front-end transform, the first
computing step, for deriving a large number of different musically relevant audio features. We now
recall the definition of the discrete STFT while fixing some notation. Let x : Z→ R be a real-valued
discrete signal obtained by equidistant sampling with respect to a fixed sampling rate Fs given in
Hertz (Hz). Furthermore, let w : [0 : N − 1] := {0, 1, . . . , N − 1} → R be a discrete-time window
of length N ∈ N and let H ∈ N be a hop size parameter. With regards to these parameters, the
discrete STFT X of the signal x is given by

X (m, k) :=

N−1∑
n=0

x(n+mH)w(n) exp(−2πikn/N) (1)

with n ∈ Z and k ∈ [0 : K]. The complex number X (m, k) denotes the kth Fourier coefficient for
the mth time frame, where K = N/2 is the frequency index corresponding to the Nyquist frequency.
Each Fourier coefficient X (m, k) is associated with the physical time position

Tcoef(m) :=
m ·H
Fs

(2)

given in seconds (sec) and with the physical frequency

Fcoef(k) :=
k · Fs
N

(3)

given in Hertz (Hz). For example, using Fs = 44100 Hz as for a CD recording, a window length
of N = 4096, and a hop size of H = N/2, we obtain a time resolution of H/Fs ≈ 46.4 ms and
frequency resolution of Fs/N ≈ 10.8 Hz.

Homework Excercise 1

(a) Compute the time and frequency resolution of the resulting STFT when using the following
parameters. What are the Nyquist frequencies?

(i) Fs = 22050, N = 1024, H = 512

(ii) Fs = 48000, N = 1024, H = 256

(iii) Fs = 4000, N = 4096, H = 1024

(b) Using Fs = 44100, N = 2048 and H = 1024, what is the physical meaning of the Fourier
coefficients X (1000, 1000), X (17, 0), and X (56, 1024)?

The STFT is often visualized by means of a spectrogram, which is a two-dimensional represen-
tation of the squared magnitude:

Y(m, k) = |X(m, k)|2. (4)

When generating an image of a spectrogram, the horizontal axis represents time, the vertical axis
is frequency, and the dimension indicating the spectrogram value of a particular frequency at a
particular time is represented by the intensity or color in the image.



Lab Experiment 1

• Use the function wavread to read the file Sound_TwoSineTwoImpulse.wav. This defines a
signal x as well as the sampling rate Fs. In the case that the signal is stereo, only use the
first channel.

• Initialize a length parameter N = 4096 and a hop size parameter H = 2048.

• Define a window function w of length N (using hann).

• Compute X using the function S=spectrogram(X,WINDOW,NOVERLAP). To this end, one
needs to compute the window overlap from N and H The matrix S contains the complex-
valued Fourier coefficients X (m, k).

• Compute the spectrogram Y(m, k) as in (4).

• Using (2), compute a vector T that contains the physical time positions (in seconds) of the
time indices.

• Using (3), compute a vector F that contains the frequency values (in Hertz) of the frequency
indices.

• Visualize the spectrogram in various ways using the functions image, imagesc, axis xy,
colorbar, and so on. Doing so, also get familiar with the various visualization parameters
and tools offered by MATLAB.

• Plot the spectrogram with the axis given in form of indices.

• Plot the spectrogram with the axis given in seconds and Hertz. This should be done by
applying the functions image or imagesc using T and F as additional parameters.

• Next, use a logarithmic decibel-scale for visualizing the values Y(m, k). (Recall that, given
a value v ∈ R, the decibel value is 10 log10(v).)

• Compute spectrograms using different window sizes (for example, N ∈
{256, 1024, 4096, 8192}) and different hop sizes (for example, H ∈ {1, N/4, N/2}).
Discuss the trade-off between time resolution and frequency resolution.

• Try out other audio files.

The human sensation of the intensity of a sound is logarithmic in nature. In practice, sounds
that have an extremely small intensity may still be relevant for human listeners. Therefore, one
often uses a decibel scale, which is a logarithmic unit expressing the ratio between two values.
As alternative of using a decibel scale, one often applies in audio processing a step also referred
to as logarithmic compression, which works as follows. Let γ ∈ R>0 be a positive constant and
Γγ : R>0 → R>0 a function defined by

Γγ(v) := log(1 + γ · v). (5)

for v ∈ R>0, where we use the natural logarithm. Note that the function Γγ yields a positive value
Γγ(v) for any positive value v ∈ R>0. Now, for a representation with positive values such as a
spectrogram, one obtains a compressed version by applying the function Γγ to each of the values:

(Γγ ◦ Y)(m, k) := log(1 + γ · Y(m, k)). (6)

Why is this operation called “compression” and what is the role of the constant γ? The problem
with representations such as a spectrogram is that its values possess a large dynamic range. As
a result, small, but still relevant values may be dominated by large values. Therefore, the idea of
compression is to balance out this discrepancy by reducing the difference between large and small
values with the effect to enhance the small values. This exactly is done by the function Γγ , where
the degree of compression can be adjusted by the constant γ. The larger γ, the larger the resulting
compression

Homework Excercise 2

Plot the function Γγ for the parameters γ ∈ {1, 10, 100}.



Lab Experiment 2

• Use the file Tone_C4_Piano.wav to define a signal x.

• Compute the STFT and the spectrogram Y as above using a Hann window of size N = 4096
and a hop size H = 2048.

• Compute the compressed version Γγ ◦ Y of the spectrogram using different constants γ ∈
{1, 10, 100, 1000, 10000}.
• Visualize the original spectrogram and its compressed versions. What do you see? Discuss

the results.

• Try out other audio files.

3 Log-Frequency Spectrogram

We now derive some audio features from the STFT by converting the frequency axis (given in
Hertz) into an axis that corresponds to musical pitches. In Western music, the equal-tempered scale
is most often used, where the pitches of the scale correspond to the keys of a piano keyboard. In
this scale, each octave (which is the distance of two frequencies that differ a factor of two) is split
up into twelve logarithmically spaced units. In MIDI notation, one considers 128 pitches, which
are serially numbered starting with 0 and ending with 127. The MIDI pitch p = 69 corresponds
to the pitch A4 (having a center frequency of 440 Hz), which is often used as standard for tuning
musical instruments. In general, the center frequency Fpitch(p) of a pitch p ∈ [0 : 127] is given by
the formula

Fpitch(p) = 2(p−69)/12 · 440. (7)

The logarithmic perception of frequency motivates the use of a time-frequency representation with
a logarithmic frequency axis labeled by the pitches of the equal-tempered scale. To derive such a
representation from a given spectrogram representation, the basic idea is to assign each spectral
coefficient X (m, k) to the pitch with center frequency that is closest to the frequency Fcoef(k). More
precisely, we define for each pitch p ∈ [0 : 127] the set

P (p) := {k ∈ [0 : K] : Fpitch(p− 0.5) ≤ Fcoef(k) < Fpitch(p+ 0.5)}. (8)

From this, we obtain a log-frequency spectrogram YLF : Z× [0 : 127]→ R≥0 defined by

YLF(m, p) :=
∑

k∈P (p)

|X (m, k)|2. (9)

By this definition, the frequency axis is partitioned logarithmically and labeled linearly according
to MIDI pitches.

Homework Excercise 3

(a) Compute the center frequencies Fpitch(p) for p = 68, p = 69, and p = 70.

(b) Compute the cutoff frequencies Fpitch(p − 0.5) and Fpitch(p − 0.5) of the frequency band
corresponding to pitch p = 69.

(c) Using Fs = 22050 and N = 4096, determine the set P (p) for p = 69.

(d) Also compute P (p) for p = 57, p = 45, and p = 33.

(e) Why is the definition of YLF(m, p) in (9) becoming problematic for small pitches p?



Lab Experiment 3

• Use the file Scale_Cmajor_piano.wav to define a signal x.

• Compute the STFT and the spectrogram as above using a Hann window of size N = 4096
and a hop size H = 2048. In the following you also need the information contained in the
frequency vector F.

• Compute the log-frequency spectrogram YLF as defined in (9).

• Visualize the log-frequency spectrogram with the axes given in seconds and MIDI pitch,
respectively.

• Use log-compression as in (5) to enhance the visualization.

• Play around with different parameter settings for N and H. Also, try out some other audio
files.

4 Chroma Features

The human perception of pitch is periodic in the sense that two pitches are perceived as similar in
“color” (playing a similar harmonic role) if they differ by one or several octaves (where, in our scale,
an octave is defined as the distance of 12 pitches). For example, the pitches p = 60 and p = 72 are
one octave apart, and the pitches p = 57 and p = 71 are two octaves apart. A pitch can be separated
into two components, which are referred to as tone height and chroma. The tone height refers to the
octave number and the chroma to the respective pitch spelling attribute. In Western music notation,
the 12 pitch attributes are given by the set {C,C],D, . . . ,B}. Enumerating the chroma values, we
identify this set with [0 : 11] where c = 0 refers to chroma C, c = 1 to C], and so on. A pitch
class is defined as the set of all pitches that share the same chroma. For example, the pitch class
that corresponds to the chroma c = 0 (C) consists of the set {0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120}
(which are the musical notes {. . . , C0,C1,C2,C3 . . .}).

The main idea of chroma features is to aggregate all spectral information that relates to a
given pitch class into a single coefficient. Given a pitch-based log-frequency spectrogram YLF :
Z× [0 : 127]→ R≥0 as defined in (9), a chroma representation or chromagram Z× [0 : 11] → R≥0
can be derived by summing up all pitch coefficients that belong to the same chroma:

C(m, c) :=
∑

{p∈[0:127] | pmod 12=c}

YLF(m, p) (10)

for c ∈ [0 : 11].

Lab Experiment 4

• Derive the chroma representation C from the log-frequency spectrogram as computed in the
last exercise.

• Visualize the chroma representation with the axes given in seconds and chroma indices,
respectively.

• Try to explain what you see in the chroma visualization.

• Also play around with different parameter settings for N and H and try out some other
audio files.

5 Further Notes

In this lab course, we have addressed the issue on computing and visualizing a discrete version
of the short-time Fourier transform. Furthermore, we have used this transform to derive audio



features that can be used for analyzing music signals. If you are interested in the topic of music
processing, you may attend the lecture Music Processing – Analysis, which is held in the winter
semester. For an overview, please have a look at

http://www.audiolabs-erlangen.com/m_mueller/teaching/ws2013_mpa/

The basic definitions and main properties of the Fourier transform are covered in most introduc-
tory books on signal processing. As example references, we want to mention the classical textbook
on Signals and Systems by Oppenheim et al. [13] or the book on Digital Signal Processsing by
Proakis and Manolakis [15]. As for the notation, we have closely followed [10, Section 2.2]. An
entertaining and non-technical introduction to the main ideas of time-frequency analysis can be
found in the book The World According to Wavelets by Hubbard [6]. Also Wikipedia contains
many interesting articles.

As one important audio feature, we have discussed the concept of chroma features These features
show a high degree of robustness to variations in timbre and closely correlate to the musical aspect
of harmony. This is the reason why chroma-based audio features, sometimes also referred to as
pitch class profiles, have become a major tool for processing and analyzing music data [1, 4, 10, 11].
Besides music synchronization and alignment [5, 7, 10], chroma features have de facto become the
standard for many other tasks such as chord recognition [2, 3, 9], audio structure analysis [14],
or content-based audio retrieval such as cover song and version identification [8, 16]. This is only
a small selection of research problems that are tackled in the area known as Music Information
Retrieval (MIR) or Music Processing.

There are many ways for computing chroma-based audio features. In this lab course, we have
studied a strategy based on a short-time Fourier transforms in combination with pooling strate-
gies [1, 4]. To obtain better frequency resolutions, one popular alternative to using a single spectro-
gram is to construct a multirate bank of bandpass filters, each filter corresponding to a pitch with
an appropriately tuned bandwidth [10, Section 3.1]. Various implementations of chroma-based au-
dio features are publicly available such as the chroma-variants by Ellis1 and the Chroma-Toolbox2

including extractors for a variety of pitch- and chroma-based audio features [12]. In conclusion, one
should keep in mind that there is no “best” chroma variant and that the results of a specific music
analysis task may crucially depend on the used chroma type.
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