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Lab Course

Statistical Methods for Audio Experiments

A part of this lab course material is taken from the OpenIntro Statistics Book [1] which is online
for free at www.openintro.org. We encourage you to look into the book if you feel that you have
problems understanding the basics of statistics.

1 Motivation

This course intends to teach students the basics of experimental statistics as it is used for evaluat-
ing auditory experiments. Listening tests or experiments are a crucial part of assessing the quality
of audio systems. There is currently no system available to give researchers and developers the
possibility to evaluate the quality of audio systems fully objectively. In fact the best evaluation
instrument is the human ear. Therefore the success of audio coding systems such as MP3 or AAC
would not have been possible without hundreds of hours of music and speech content assessed by
expert listeners using professional equipment. Since only fair and unbiased comparisons between
codecs guarantee that new developments are more preferred than the previous system, it is im-
portant to bring fundamental knowledge of statistics into the evaluation process to address the
main problems of experimental tests, such as uncontrolled environments, subpar headphones or
loudspeaker reproduction systems, listeners who have no experience to listening tests and so on.

2 Elementary Descriptive Statistics

2.1 Box plots, quartiles, and the median

A box plot summarizes a data set using five statistics while also plotting unusual observations.
Figure 1 provides a vertical dot plot alongside a box plot.
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Figure 1: A vertical dot plot next to a labeled box plot for the number of characters in 50 emails.
The median splits the data into the bottom 50% and the top 50%, marked in the dot plot by
horizontal dashes and open circles, respectively.



The first step in building a box plot is drawing a dark line denoting the median, which splits
the data in half. Figure 1 shows 50% of the data falling below the median (dashes) and other 50%
falling above the median (open circles). There are 50 character counts in the data set (an even
number) so the data are perfectly split into two groups of 25. We took the median in this case to be
the average of the two observations closest to the 50th percentile. When there are an odd number
of observations, there will be exactly one observation that splits the data into two halves, and in
this case that observation is the median (no average needed).

Median: the number in the middle
If the data are ordered from smallest to largest, the median is the observation right in the

middle. If there are an even number of observations, there will be two values in the middle, and
the median is taken as their average.

The second step in building a box plot is drawing a rectangle to represent the middle 50% of
the data. The total length of the box, shown vertically in Figure 1, is called the interquartile range
(IQR, for short). Similar to the standard deviation, it is a measure of variability in data. The more
variable the data, the larger the standard deviation and IQR. The two boundaries of the box are
called the first quartile (the 25th percentile, i.e. 25% of the data fall below this value) and the third
quartile (the 75th percentile), and these are often labeled Q1 and Q3, respectively.

Interquartile range (IQR)
The IQR is the length of the box in a box plot. It is computed as

IQR = Q3 −Q1

where Q1 and Q3 are the 25th and 75th percentiles.

Homework Excercise 1

What percent of the data fall between Q1 and the median? What percent is between the median
and Q3?

Extending out from the box, the whiskers attempt to capture the data outside of the box,
however, their reach is never allowed to be more than 1.5 × IQR. While the choice of exactly 1.5
is arbitrary, it is the most commonly used value for box plots. They capture everything within this
reach. In Figure 1, the upper whisker does not extend to the last three points, which is beyond
Q3 + 1.5× IQR, and so it extends only to the last point below this limit. The lower whisker stops
at the lowest value, 0, since there is no additional data to reach; the lower whisker’s limit is not
shown in the figure because the plot does not extend down to Q1 − 1.5× IQR. In a sense, the box
is like the body of the box plot and the whiskers are like its arms trying to reach the rest of the
data.

Any observation that lies beyond the whiskers is labeled with a dot. The purpose of labeling
these points – instead of just extending the whiskers to the minimum and maximum observed values
– is to help identify any observations that appear to be unusually distant from the rest of the data.
Unusually distant observations are called outliers.

Outliers are extreme
An outlier is an observation that appears extreme relative to the rest of the data.

Why is it important to look for outliers? Examining data for possible outliers serves many
useful purposes, including

1. Identifying strong skew in the distribution.
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Figure 2: Histogram and normal probability plot for the NBA basketball heights of players from
the 2008-9 season.

2. Identifying data collection or entry errors.

3. Providing insight into interesting properties of the data.

2.2 Distributions

2.2.1 Normal Distribution model

Among all the distributions, the normal distribution the most common.

Many variables are nearly normal, but none are exactly normal. Thus the normal distribution,
while not perfect for any single problem, is very useful for a variety of problems. We will use it
in data exploration and to solve important problems in statistics.

The normal distribution model always describes a symmetric, unimodal, bell shaped curve.
However, these curves can be different depending on the details of the model. Specifically, the
normal distribution model can be adjusted using two parameters: mean and standard deviation.

2.2.2 Q-Q Plot

There are two visual methods for checking normality, which can be implemented and interpreted
quickly. The first is a simple histogram with the best fitting normal curve overlaid on the plot,
as shown in the left panel of Figure 2. The sample mean x̄ and standard deviation s are used as
the parameters of the best fitting normal curve. The closer this curve fits the histogram, the more
reasonable the normal model assumption.

Another more common method is examining a normal probability plot or quantile-quantile plot
shown in the right panel of Figure 2.

The Q-Q plot is a graphical method to determine if two variables follow the same statistical
distribution. The plot evaluates the fit of sample data to the normal distribution or more generally,
the for any theoretical distribution if you provide two variables. There is no need for the values to
be observed as pairs, as in a scatter plot, or even for the numbers of values in the two groups being
compared to be equal. If the two distributions being compared are similar, the points in the Q–Q
plot will approximately lie on the line y = x. Because of the complexity of these calculations, Q-Q
plots are generally created using statistical software.



3 Hypothesis testing

3.1 Experimental Variables

When designing experiments, three different types are considered differently. The independent
variable is the variable which is controlled by the experimenter. E.g. when three different audio
codecs are evaluated according to the audio quality, the audio codec is the independent variable.
The second type of variable is the dependent variable. The dependent variable is the response of
the participant. In the example used before, the reported subjective audio quality is the dependent
variable. All other variables which might influence the experiment are of type “other”. All “other”
variables which might influence the experiment and are known by the experiment should be kept
constant during the experiment. E.g. the headphones might influence the perceived audio quality.
In such a situation, all participants must use the same type of headphones.

Variables of any type have different scales. The main scales are categorical, ordinal and quan-
titative. The levels of categorical variable can not be ordered naturally (e.g. the gender of the
participants: “female” or “male”). Ordinal variables can be ordered naturally (e.g. age groups:
“0-30 years old”, “31 - 60 years old” and “61+ years old”). Quantitative variables are continu-
ous variables. How many levels are needed for considering a variable as quantitative depends on
the experimenter’s point of view. Many experimenters consider a variable with 100 levels (e.g.
0-100 points) as quantitative. A mathematician would never do that.

When evaluating audio systems, the experimental design and planning plays an important role.
Therefore it is needed to ensure that uncontrolled factors which can cause ambiguity in test results
are minimized. As an example, if the actual sequences of audio items were identical for all the
subjects in a listening test, then one could not be sure whether the judgements made by the
subjects were due to that sequence rather than to the different levels of impairments that were
presented. Accordingly, the test conditions must be arranged in a way that reveals the effects of
the independent factors, and only of these factors.

Is your MP3 file actually of lower quality than the Original CD? It certainly depends on who
you ask, what kind of equipment you are using, and etc.

The null hypothesis (H0) often represents a skeptical perspective or a claim to be tested. The
alternative hypothesis (HA) represents an alternative claim under consideration and is often repre-
sented by a range of possible parameter values.

The hypothesis testing framework is a very general tool, and we often use it without a second
thought. If a person makes a somewhat unbelievable claim, we are initially skeptical. However, if
there is sufficient evidence that supports the claim, we set aside our skepticism and reject the null
hypothesis in favor of the alternative.

3.2 Formal testing using p-values

The p-value is a way of quantifying the strength of the evidence against the null hypothesis and in
favor of the alternative. Formally the p-value is a conditional probability.

The p-value is the probability of observing data at least as favorable to the alternative hypothesis
as our current data set, if the null hypothesis is true. We typically use a summary statistic of the
data, in this chapter the sample mean, to help compute the p-value and evaluate the hypotheses.

If researchers are only interested in showing an increase or a decrease, but not both, use a
one-sided test. If the researchers would be interested in any difference from the null value – an
increase or decrease – then the test should be two-sided.

We evaluate the hypotheses by comparing the p-value to the significance level. Because the
p-value is less than the significance level, we reject the null hypothesis. What we observed is so
unusual with respect to the null hypothesis that it casts serious doubt on H0 and provides strong
evidence favoring the alternative HA.



p-value as a tool in hypothesis testing
The p-value quantifies how strongly the data favor HA over H0. A small p-value (usually

< 0.05) corresponds to sufficient evidence to reject H0 in favor of HA.

The following ideas below review the process of evaluating hypothesis tests with p-values:

• The null hypothesis represents a skeptic’s position or a position of no difference. We reject
this position only if the evidence strongly favors HA.

• A small p-value means that if the null hypothesis is true, there is a low probability of seeing
a point estimate at least as extreme as the one we saw. We interpret this as strong evidence
in favor of the alternative.

• We reject the null hypothesis if the p-value is smaller than the significance level, α, which is
usually 0.05. Otherwise, we fail to reject H0.

• We should always state the conclusion of the hypothesis test in plain language so non-
statisticians can also understand the results.

The p-value is constructed in such a way that we can directly compare it to the significance
level (α) to determine whether or not to reject H0.

null value observed x

distribution of x
if H0 was true

chance of observed x
or another x that is even
more favorable towards HA,
if H0 is true

Figure 3: To identify the p-value, the distribution of the sample mean is considered as if the null
hypothesis was true. Then the p-value is defined and computed as the probability of the observed
x̄ or an x̄ even more favorable to HA under this distribution.

Homework Excercise 2

Explain the term p-value and how it can be derived in your own words. Why do you think a value
of p = 0.05 is commonly used?

3.3 Two-sided hypothesis testing with p-values

We now consider how to compute a p-value for a two-sided test. In a two-sided test, we shade two
tails since evidence in either direction is favorable to HA.

Because the normal model is symmetric, the right tail will have the same area as the left tail.
The p-value is found as the sum of the two shaded tails:

p-value = left tail + right tail = 2× (left tail)



3.4 Choosing a significance level

Choosing a significance level for a test is important in many contexts, and the traditional level is
0.05. However, it is often helpful to adjust the significance level based on the application. We may
select a level that is smaller or larger than 0.05 depending on the consequences of any conclusions
reached from the test. A type 1 error is the incorrect rejection of a true null hypothesis. If making
a Type 1 Error is dangerous or especially costly, we should choose a small significance level (e.g.
0.01). Under this scenario we want to be very cautious about rejecting the null hypothesis, so we
demand very strong evidence favoring HA before we would reject H0. A type 2 error (or error of
the second kind) is the failure to reject a false null hypothesis. If a Type 2 Error is relatively more
dangerous or much more costly than a Type 1 Error, then we should choose a higher significance
level (e.g. 0.10). Here we want to be cautious about failing to reject H0 when the null is actually
false.

The significance level selected for a test should reflect the consequences associated with Type 1
and Type 2 Errors.

3.5 Sample size and power

The Type 2 Error rate and the magnitude of the error for a point estimate are controlled by the
sample size. Real differences from the null value, even large ones, may be difficult to detect with
small samples. If we take a very large sample, we might find a statistically significant difference
but the magnitude might be so small that it is of no practical value. In this section we describe
techniques for selecting an appropriate sample size based on these considerations. Sample size
computations are helpful in planning data collection, and they require careful forethought. The
probability of rejecting the null hypothesis is called the power. The power varies depending on
what we suppose the truth might be.

Cohen’s d is a measure of effect size which indicates the amount of difference between two
groups. Cohen’s d is some sort of counter-point to significance tests and gives an indication of how
big or small a significant difference is:

d =
|mean1 −mean2|
StandardDeviation

. (1)

According to Cohen, Cohen d = 0,2 is defined as a small effect, d = 0,5 amedium effect and
d = 0,8 is a considered to be a large effect.

3.6 Independent t-tests

3.6.1 One-sample means with the t distribution

We will see that the t distribution is a helpful substitute for the normal distribution when we model
a sample mean x̄ that comes from a small sample. While we emphasize the use of the t distribution
for small samples, this distribution may also be used for means from large samples.

We use a special case of the Central Limit Theorem to ensure the distribution of the sample
means will be nearly normal, regardless of sample size, provided the data come from a nearly normal
distribution.

Central Limit Theorem for normal data
The sampling distribution of the mean is nearly normal when the sample observations are

independent and come from a nearly normal distribution. This is true for any sample size.

While this seems like a very helpful special case, there is one small problem. It is inherently
difficult to verify normality in small data sets.
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Figure 4: Comparison of a t distribution (solid line) and a normal distribution (dotted line).
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Figure 5: The larger the degrees of freedom, the more closely the t distribution resembles the
standard normal model.

You may relax the normality condition as the sample size goes up. If the sample size is 10 or
more, slight skew is not problematic. Once the sample size hits about 30, then moderate skew is
reasonable. Data with strong skew or outliers require a more cautious analysis.

3.6.2 Introducing the t distribution

The second reason we previously required a large sample size was so that we could accurately
estimate the standard error using the sample data. In the cases where we will use a small sample to
calculate the standard error, it will be useful to rely on a new distribution for inference calculations:
the t distribution. A t distribution, shown as a solid line in Figure 4, has a bell shape. However, its
tails are thicker than the normal model’s. This means observations are more likely to fall beyond
two standard deviations from the mean than under the normal distribution.2 These extra thick
tails are exactly the correction we need to resolve the problem of a poorly estimated standard error.

The t distribution, always centered at zero, has a single parameter: degrees of freedom. The
degrees of freedom describe the precise form of the bell shaped t distribution. Several t distributions
are shown in Figure 5. When there are more degrees of freedom, the t distribution looks very much
like the standard normal distribution.

Degrees of freedom (df)
The degrees of freedom describe the shape of the t distribution. The larger the degrees of

freedom, the more closely the distribution approximates the normal model.

2The standard deviation of the t distribution is actually a little more than 1. However, it is useful to always think
of the t distribution as having a standard deviation of 1 in all of our applications.



When the degrees of freedom is about 30 or more, the t distribution is nearly indistinguishable
from the normal distribution.

3.7 The t distribution as a solution to the standard error problem

When estimating the mean and standard error from a small sample, the t distribution is a more
accurate tool than the normal model. This is true for both small and large samples.

Use the t distribution for inference of the sample mean when observations are independent
and nearly normal. You may relax the nearly normal condition as the sample size increases. For
example, the data distribution may be moderately skewed when the sample size is at least 30.

To proceed with the t distribution for inference about a single mean, we must check two condi-
tions.

Independence of observations. We verify this condition just as we did before. We collect a
simple random sample from less than 10% of the population, or if it was an experiment or
random process, we should carefully check to the best of our abilities that the observations
were independent.

Observations come from a nearly normal distribution. This second condition is difficult to
verify with small data sets. We often (i) take a look at a plot of the data for obvious departures
from the normal model, and (ii) consider whether any previous experiences alert us that the
data may not be nearly normal.

When examining a sample mean and estimated standard error from a sample of n independent and
nearly normal observations, we use a t distribution with n−1 degrees of freedom (df). For example,
if the sample size was 19, then we would use the t distribution with df = 19 − 1 = 18 degrees of
freedom

3.8 t tests

In this section we use the t distribution for the difference in sample means. We will drop the
minimum sample size condition and instead impose a strong condition on the distribution of the
data.

It will be useful to extend the t distribution method to apply to a difference of means:

x̄1 − x̄2 as a point estimate for µ1 − µ2

First, we verify the small sample conditions (independence and nearly normal data) for each sample
separately, then we verify that the samples are also independent. We can use the t distribution for
inference on the point estimate x̄1 − x̄2.

The formula for the standard error of x̄1 − x̄2 also applies to small samples:

SEx̄1−x̄2 =
√
SE2

x̄1
+ SE2

x̄2
=

√
s2

1

n1
+
s2

2

n2
(2)

Because we use the t distribution, we need to identify the appropriate degrees of freedom. This
can be done using computer software. An alternative technique is to use the smaller of n1 − 1 and
n2 − 1, which is the method we apply in the examples and exercises.3

Using the t distribution for a difference in means
The t distribution can be used for inference when working with the standardized difference

of two means if (1) each sample meets the conditions for using the t distribution and (2) the
samples are independent. We estimate the standard error of the difference of two means using
Equation (2).

3This technique for degrees of freedom is conservative with respect to a Type 1 Error; it is more difficult to reject
the null hypothesis using this df method.



3.9 Two sample t test

After verifying the conditions for each sample and confirming the samples are independent of each
other, we are ready to conduct the test using the t distribution. We are estimating the true difference
in average test scores using the sample data, so the point estimate is x̄A − x̄B . The standard error
of the estimate can be calculated using Equation (2). Finally, we construct the test statistic:

T =
point estimate− null value

SE

4 Analysis of Variance

Sometimes we want to compare means across many groups. We might initially think to do pairwise
comparisons; for example, if there were three groups, we might be tempted to compare the first
mean with the second, then with the third, and then finally compare the second and third means
for a total of three comparisons. However, this strategy can be treacherous. If we have many groups
and do many comparisons, it is likely that we will eventually find a difference just by chance, even
if there is no difference in the populations.

ANOVA uses a single hypothesis test to check whether the means across many groups are equal:

H0: The mean outcome is the same across all groups. In statistical notation, µ1 = µ2 = · · · = µk

where µi represents the mean of the outcome for observations in category i.

HA: At least one mean is different.

Generally we must check three conditions on the data before performing ANOVA:

• the observations are independent within and across groups,

• the data within each group are nearly normal, and

• the variability across the groups is about equal.

When these three conditions are met, we may perform an ANOVA to determine whether the data
provide strong evidence against the null hypothesis that all the µi are equal.

Strong evidence favoring the alternative hypothesis in ANOVA is described by unusually large
differences among the group means. We will soon learn that assessing the variability of the group
means relative to the variability among individual observations within each group is key to ANOVA’s
success.

Examine Figure 6. Compare groups I, II, and III. Can you visually determine if the differences in
the group centers is due to chance or not? Now compare groups IV, V, and VI. Do these differences
appear to be due to chance?

Any real difference in the means of groups I, II, and III is difficult to discern, because the data
within each group are very volatile relative to any differences in the average outcome. On the other
hand, it appears there are differences in the centers of groups IV, V, and VI. For instance, group V
appears to have a higher mean than that of the other two groups. Investigating groups IV, V, and
VI, we see the differences in the groups’ centers are noticeable because those differences are large
relative to the variability in the individual observations within each group.

The method of analysis of variance in this context focuses on answering one question: is the
variability in the sample means so large that it seems unlikely to be from chance alone? This
question is different from earlier testing procedures since we will simultaneously consider many
groups, and evaluate whether their sample means differ more than we would expect from natural
variation. We call this variability the mean square between groups (MSG), and it has an associated
degrees of freedom, dfG = k− 1 when there are k groups. The MSG can be thought of as a scaled
variance formula for means. If the null hypothesis is true, any variation in the sample means is due
to chance and shouldn’t be too large.



ou
tc

om
e

−1

0

1

2

3

4

I II III IV V VI

Figure 6: Side-by-side dot plot for the outcomes for six groups.

The mean square between the groups is, on its own, quite useless in a hypothesis test. We need
a benchmark value for how much variability should be expected among the sample means if the
null hypothesis is true. To this end, we compute a pooled variance estimate, often abbreviated as
the mean square error (MSE), which has an associated degrees of freedom value dfE = n − k. It
is helpful to think of MSE as a measure of the variability within the groups.

When the null hypothesis is true, any differences among the sample means are only due to
chance, and the MSG and MSE should be about equal. As a test statistic for ANOVA, we
examine the fraction of MSG and MSE:

F =
MSG

MSE
(3)

The MSG represents a measure of the between-group variability, and MSE measures the variability
within each of the groups.

We can use the F statistic to evaluate the hypotheses in what is called an F test. A p-value can
be computed from the F statistic using an F distribution, which has two associated parameters:
df1 and df2. For the F statistic in ANOVA, df1 = dfG and df2 = dfE .

The larger the observed variability in the sample means (MSG) relative to the within-group
observations (MSE), the larger F will be and the stronger the evidence against the null hypothesis.
Because larger values of F represent stronger evidence against the null hypothesis, we use the upper
tail of the distribution to compute a p-value.

The F statistic and the F test Analysis of variance (ANOVA) is used to test whether the
mean outcome differs across 2 or more groups. ANOVA uses a test statistic F , which represents a
standardized ratio of variability in the sample means relative to the variability within the groups.
If H0 is true and the model assumptions are satisfied, the statistic F follows an F distribution
with parameters df1 = k − 1 and df2 = n − k. The upper tail of the F distribution is used to
represent the p-value.

Again, there are three conditions we must check for an ANOVA analysis: all observations must
be independent, the data in each group must be nearly normal, and the variance within each group
must be approximately equal.

4.1 Pairwise Comparisons

When we reject the null hypothesis in an ANOVA analysis, we might wonder, which of these
groups have different means? To answer this question, we compare the means of each possible pair



of groups. For instance, if there are three groups and there is strong evidence that there are some
differences in the group means, there are three comparisons to make: group 1 to group 2, group 1
to group 3, and group 2 to group 3. These comparisons can be accomplished using a two-sample t
test, but we use a modified significance level and a pooled estimate of the standard deviation across
groups.

There is strong evidence that the different means in each of the three classes is not simply due
to chance. We might wonder, which of the classes are actually different? As discussed in earlier
chapters, a two-sample t test could be used to test for differences in each possible pair of groups.

Multiple comparisons and the Bonferroni correction for α
The scenario of testing many pairs of groups is called multiple comparisons. The Bonferroni

correction suggests that a more stringent significance level is more appropriate for these tests:

α∗ = α/K

where K is the number of comparisons being considered (formally or informally). If there are k

groups, then usually all possible pairs are compared and K = k(k−1)
2 .

Caution: Sometimes an ANOVA will reject the null but no groups will have statistically sig-
nificant differences. It is possible to reject the null hypothesis using ANOVA and then to not
subsequently identify differences in the pairwise comparisons. However, this does not invalidate the
ANOVA conclusion. It only means we have not been able to successfully identify which groups
differ in their means.

The ANOVA procedure examines the big picture: it considers all groups simultaneously to
decipher whether there is evidence that some difference exists. Even if the test indicates that
there is strong evidence of differences in group means, identifying with high confidence a specific
difference as statistically significant is more difficult.

5 MUltiple Stimuli with Hidden Reference and Anchor
(MUSHRA)

Subjective assessment methods, like listening tests, are an important tool when it comes to evaluate
the quality of audio systems. One of these subjective assessment methods is MUSHRA which
targets to evaluate intermediate quality levels of coding systems. The purpose of this chapter is to
briefly describe the MUSHRA recommendation. For a comprehensive description of the MUSHRA
methodology and the recommended statistical analysis, see [2].

In 2001, the ITU formally described in Recommendation BS.1534-0 the first version of MUSHRA
(MUltiple Stimuli with Hidden Reference and Anchor) which is a test method for assessing inter-
mediate audio quality [3]. A second revision of MUSHRA was just recently published in ITU-R
Recommendation BS.1534-2 which introduced changes in the test design as well as in the analysis
of the results [2].

In a MUSHRA test, assessors are presented with an open reference stimulus and a number
of test stimuli (conditions). The conditions contain the hidden reference stimulus, at least two
anchor stimuli (low quality anchor and mid quality anchor) and stimuli which were processed by
the systems under test. MUSHRA allows to have a maximum of eleven conditions (eight systems
under test, two anchors and the hidden reference) to be presented in one trial. Since the conditions
are shown in random order, the assessor does not know which condition is a system under test, the
hidden reference or an anchor. All conditions are rated relatively to the open reference stimulus. By
adding the hidden reference stimulus to the conditions, an anchor for the highest rating is implicitly
set. Without adding the hidden reference, the highest rating might also be given to a system under
test which is the best system among all conditions but still causes some artifacts. With this design,
it is more likely that only conditions are rated with the highest score which cannot be distinguished



from the open reference. Another purpose of the hidden reference is to find out whether an assessor
would rate the hidden reference stimulus with a very high or the highest rating. If an assessor rates
the hidden reference too low in too many trials, his or her ratings are excluded from the results by
the post-screening process. BS.1534-2 recommends to add two anchor stimuli which are low-passed
filtered versions of the reference stimulus. The low quality anchor has a cut-off frequency of 3.5 kHz
and the mid quality anchor has a cut-off frequency of 7 kHz.

When assessing the conditions, the assessors are allowed to switch instantaneously between
conditions and the open reference while listening. Besides switching between conditions, looping is
a common strategy for assessing the conditions. Looping means that only an excerpt of the stimuli
is marked and listened to repeatedly while assessing. For example, by marking a one-second critical
part of a 10-second long stimulus, it is much easier to focus on the artifacts of this part caused
by the system under test. The conditions are rated according to a continuous quality scale (CQS)
ranging from 0 to 100. The scale is divided in five equal intervals, where each interval is labeled
with an adjective (0-20: Bad, 20-40: Poor, 40-60: Fair, 60-80: Good, 80-100: Excellent). In most
cases, the assessors are asked to rate the Basic Audio Quality (BAQ) of each condition. In ITU-R
Recommendation BS.1534 Basic Audio Quality is defined as:

“This single, global attribute is used to judge any and all detected differences between
the reference and the object.”

Although MUSHRA has been originally designed to evaluate the quality of audio coding systems,
it is widely used for evaluating other types of audio systems.

5.1 Statistical Analysis

Statistical Analysis should always start with a visualization of the raw data. This may incorporate
the use of histograms with a fitting curve for a normal distribution, boxplots (See Section 2.1), or
quartile quartile plots (Q-Q-plots). Based on the visual inspection of these plots plus assumptions
about the underlying population of the observed sample, it should be decided whether one may
assume to have observed a normal distribution or not. If the fitting curve is clearly skewed, the
histogram contains many outliers or the Q-Q-plot is not at all a straight line, one should not consider
the sample as being normally distributed.The calculation of the median of normalized scores of all
listeners that remain after post-screening will result in the median subjective scores.

5.2 Post-screening

Post-screening methods can be roughly separated into at least two classes:

• Stage 1 is based on the ability of the subject to make consistent repeated gradings

• Stage 2 relies on inconsistencies of an individual grading compared with the mean result of
all subjects for a given item.

The Stage 1 post-screening method excludes subjects who do not consistently rate the hidden
reference condition above 90. To quantify a post-hoc method that addresses this concern the
following metric may be used: a listener should be excluded from the aggregated responses if he
or she rates the hidden reference condition for >15% of the test items lower than a score of 90.
Additionally, a subject should be excluded from the aggregated responses if he or she rates the
mid-range anchor for more than 15% of the test items higher than a score of 90. If more than 25%
of the subjects rate the mid-range anchor higher than a score of 90, this might indicate that the
test item was not degraded significantly by the anchor processing. In this case assessors should not
be excluded on the basis of scores for that item.

Stage 2 post-screening methods are additionally performed to collect more reliable aggregation.
Stage 2 methods exclude subjects whose individual grades are inconsistent when compared with the



median result of all subjects for a given item and system. Box plot data visualization will provide
indication of the existence and effect of outliers on the descriptive summaries of the data.

To remove outliers, it is recommended that those data points which are further apart than 1.5
times IQR from the first or third quartile, respectively, should be considered as outliers. The IQR
shall be calculated and compared for each listener for each signal condition at test. If the listener’s
responses fall outside 1.5 * the upper or lower bound of the IQR of the aggregated listeners for 25%
or more of the test conditions it suggests they are over-using the extremes of the rating scale. This
would be a valid metric to consider exclusion across the testing group.

5.3 Main effect of conditon

For most cases, the main effect is of interest. If the ANOVA indicates a significant effect of condition,
then the null hypothesis can be rejected that in the population the perceived audio quality is
identical for all conditions (reference, coder 1 to k). In other words, the test indicates that in the
population there are differences between the perceived audio quality of the audio systems. As a
measure of effect size, it is not possible to use Cohen’s (1988) d or one of its analogues, because d
is not defined for a comparison of more than two means. In an ANOVA context, it is common to
report a measure of association strength.

Following a significant test result for a main effect, it will then often be of interest to locate
the origins of this effect. This can be achieved by computing paired comparison tests as described
in section 4.1. For instance, one might be interested in whether the sound quality of a new coder
differed from the sound quality of three established systems.

6 Regression

6.1 Linear Regression Models

Linear regression is a very powerful statistical technique. Many people have some familiarity with
regression just from reading the news, where graphs with straight lines are overlaid on scatterplots.
Linear models can be used for prediction or to evaluate whether there is a linear relationship
between two numerical variables.

Figure 7 shows two variables whose relationship can be modeled perfectly with a straight line.
The equation for the line is

y = 5 + 57.49x

Imagine what a perfect linear relationship would mean: you would know the exact value of y just
by knowing the value of x. This is unrealistic in almost any natural process. For example, if we
took family income x, this value would provide some useful information about how much financial
support y a college may offer a prospective student. However, there would still be variability in
financial support, even when comparing students whose families have similar financial backgrounds.

Linear regression assumes that the relationship between two variables, x and y, can be modeled
by a straight line:

y = β0 + β1x (4)

where β0 and β1 represent two model parameters (β is the Greek letter beta). These parameters are

β0, β1

Linear model
parameters

estimated using data, and we write their point estimates as b0 and b1. When we use x to predict
y, we usually call x the explanatory or predictor variable, and we call y the response.

It is rare for all of the data to fall on a straight line, as seen in the three scatterplots in Figure 8.
In each case, the data fall around a straight line, even if none of the observations fall exactly on the
line. The first plot shows a relatively strong downward linear trend, where the remaining variability
in the data around the line is minor relative to the strength of the relationship between x and y. The
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Figure 7: Requests from twelve separate buyers were simultaneously placed with a trading company
to purchase Target Corporation stock (ticker TGT, April 26th, 2012), and the total cost of the shares
were reported. Because the cost is computed using a linear formula, the linear fit is perfect.
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Figure 8: Three data sets where a linear model may be useful even though the data do not all fall
exactly on the line.

second plot shows an upward trend that, while evident, is not as strong as the first. The last plot
shows a very weak downward trend in the data, so slight we can hardly notice it. In each of these
examples, we will have some uncertainty regarding our estimates of the model parameters, β0 and
β1. For instance, we might wonder, should we move the line up or down a little, or should we tilt
it more or less? As we move forward in this chapter, we will learn different criteria for line-fitting,
and we will also learn about the uncertainty associated with estimates of model parameters.

We will also see examples in this chapter where fitting a straight line to the data, even if there
is a clear relationship between the variables, is not helpful. One such case is shown in Figure 9
where there is a very strong relationship between the variables even though the trend is not linear.

7 Exercises

The actual lab course is set up in the R programming environment which perfect for statistical
evaluation and includes a terrific number of build in statistics functions. The syntax is easy to
learn but differs e.g. from Matlab.
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Figure 9: A linear model is not useful in this nonlinear case. These data are from an introductory
physics experiment.

7.1 Additional Homework

Besides to the homework assignments that are marked in the script we ask you to go through the
basics of R. For a quick guide we have attached a simple R tutorial in the lab course appendix. A
more detailed course can be found at http://tryr.codeschool.com/

Homework Excercise 3

Read and work out the introduction to R and R-Studio attached to this document in section 10.

• Explain the use of the $-Operator in R.

• How does the following Matlab-Syntax translate in R:

B = A( 2 : 4 5 , : )

• Write down a hello world example in R

• If var1 is the dependent variable of an experiment and var2 is the independent variable how
does this translate in an R formula?



Part I

Exercises

8 Listening Test

Before you start with the programming exercises at least one student of each group should take
part in a MUSHRA like listening test. The listening test can be conducted online through the
browser at http://work.audiolabs.uni-erlangen.de/aplab/. Please use your headphones and
follow the instructions. The results of the listening test will later be used in one of the exercises.

9 Programming

The software used for the lab course is R-Studio which is installed on the AudioLabs-Webserver
and can be accessed from the web browser. Each group will have a separate workspace that they
can use to assess the exercises. The exercises itself are directly stored in the main workspace folder
and are named:

• ex1_t.Rmd

• ex2_mushra.Rmd

• ex3_elem.Rmd (optional)

Each of the exercises is a R Markdown file which is a mix between a plain text file formatted in
Markdown syntax [4]. Within the text file you can place R code which is executed and the output
is embedded at the same place. This even works for plots. In the end the exercise Rmd file should
be a self contained document that includes both the lab course questions and your answers. The
answers therefore should contain Text, R-Code and possible plots.

‘ ‘ ‘{ r }
plot ( ca r s )
‘ ‘ ‘

You can use the R-Console in the main R-Studio window to work with the data and the try
out the different built-in functions for solving the exercises. Both the Rmd script and the console
share the same global variable environment. But make sure that all variables are declared within
the Rmd file4 To render an HTML output you can use the following command on the console:

l ibrary ( rmarkdown )
render ( ”ex .Rmd” )

The R-Studio environment allows you to install additional packages from the CTAN repository.

in s ta l l . packages ( ”mypkg” , dependencies = TRUE)

Additional (installed) libraries need to be loaded before they can be used:

l ibrary (mypkg)

4you can test this when you click on the Knit HMTL button in R-Studio. This will build the output without
using the current Global Environment workspace.



What you should know after this lab

• Know the stastical grammar!

• What is significance, p-value, effect sizes?

• How to read, interpret and present the results of a statistical test?

Lab Experiment 1

R allows there text and code to coexist in one single ”R Markdown”a file. We are using this
ability to have file with both exercises and prototype code you can work on. A PDF version of
the exercises can be found in the the Appendix. Please finish the two experiment documents
ex1_t.Rmd and ex2_mushra.Rmd in the materials directory.

ahttp://rmarkdown.rstudio.com



Part II

Appendix

10 Introduction to R and R-Studio



Lab 1: Introduction to data

Some define Statistics as the field that focuses on turning information into knowledge. The first step in
that process is to summarize and describe the raw information - the data. In this lab, you will gain insight
into public health by generating simple graphical and numerical summaries of a data set collected by the
Centers for Disease Control and Prevention (CDC). As this is a large data set, along the way you’ll also
learn the indispensable skills of data processing and subsetting.

Getting started

The Behavioral Risk Factor Surveillance System (BRFSS) is an annual telephone survey of 350,000 people
in the United States. As its name implies, the BRFSS is designed to identify risk factors in the adult
population and report emerging health trends. For example, respondents are asked about their diet and
weekly physical activity, their HIV/AIDS status, possible tobacco use, and even their level of healthcare
coverage. The BRFSS Web site (http://www.cdc.gov/brfss) contains a complete description of the survey,
including the research questions that motivate the study and many interesting results derived from the
data.

We will focus on a random sample of 20,000 people from the BRFSS survey conducted in 2000. While there
are over 200 variables in this data set, we will work with a small subset.

We begin by loading the data set of 20,000 observations into the R workspace. After launching RStudio,
enter the following command.

source ( "http://www.openintro.org/stat/data/cdc.R" )

The data set cdc that shows up in your workspace is a data matrix, with each row representing a case and
each column representing a variable. R calls this data format a data frame, which is a term that will be used
throughout the labs.

To view the names of the variables, type the command

names ( cdc )

This returns the names genhlth, exerany, hlthplan, smoke100, height, weight, wtdesire, age, and
gender. Each one of these variables corresponds to a question that was asked in the survey. For ex-
ample, for genhlth, respondents were asked to evaluate their general health, responding either excellent,
very good, good, fair or poor. The exerany variable indicates whether the respondent exercised in the
past month (1) or did not (0). Likewise, hlthplan indicates whether the respondent had some form of
health coverage (1) or did not (0). The smoke100 variable indicates whether the respondent had smoked at
least 100 cigarettes in her lifetime. The other variables record the respondent’s height in inches, weight in
pounds as well as their desired weight, wtdesire, age in years, and gender.

Exercise 1 How many cases are there in this data set? How many variables? For each variable,
identify its data type (e.g. categorical, discrete).

We can have a look at the first few entries (rows) of our data with the command

This is a product of OpenIntro that is released under a Creative Commons Attribution-ShareAlike 3.0 Unported (http:
//creativecommons.org/licenses/by-sa/3.0). This lab was adapted for OpenIntro by Andrew Bray and Mine Çetinkaya-Rundel from a
lab written by Mark Hansen of UCLA Statistics.
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head ( cdc )

and similarly we can look at the last few by typing

tail ( cdc )

You could also look at all of the data frame at once by typing its name into the console, but that might
be unwise here. We know cdc has 20,000 rows, so viewing the entire data set would mean flooding your
screen. It’s better to take small peeks at the data with head, tail or the subsetting techniques that you’ll
learn in a moment.

Summaries and tables

The BRFSS questionnaire is a massive trove of information. A good first step in any analysis is to distill all
of that information into a few summary statistics and graphics. As a simple example, the function summary

returns a numerical summary: minimum, first quartile, median, mean, second quartile, and maximum.
For weight this is

summary ( cdc $ weight )

R also functions like a very fancy calculator. If you wanted to compute the interquartile range for the re-
spondents’ weight, you would look at the output from the summary command above and then enter

190 - 140

R also has built-in functions to compute summary statistics one by one. For instance, to calculate the mean,
median, and variance of weight, type

mean ( cdc $ weight )

var ( cdc $ weight )

median ( cdc $ weight )

While it makes sense to describe a quantitative variable like weight in terms of these statistics, what about
categorical data? We would instead consider the sample frequency or relative frequency distribution. The
function table does this for you by counting the number of times each kind of response was given. For
example, to see the number of people who have smoked 100 cigarettes in their lifetime, type

table ( cdc $ smoke100 )

or instead look at the relative frequency distribution by typing

table ( cdc $ smoke100 ) / 20000
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Notice how R automatically divides all entries in the table by 20,000 in the command above. This is similar
to something we observed in the last lab; when we multiplied or divided a vector with a number, R applied
that action across entries in the vectors. As we see above, this also works for tables. Next, we make a bar
plot of the entries in the table by putting the table inside the barplot command.

barplot ( table ( cdc $ smoke100 ) )

Notice what we’ve done here! We’ve computed the table of cdc$smoke100 and then immediately applied
the graphical function, barplot. This is an important idea: R commands can be nested. You could also
break this into two steps by typing the following:

smoke <- table ( cdc $ smoke100 )

barplot ( smoke )

Here, we’ve made a new object, a table, called smoke (the contents of which we can see by typing smoke into
the console) and then used it in as the input for barplot. The special symbol <- performs an assignment,
taking the output of one line of code and saving it into an object in your workspace. This is another
important idea that we’ll return to later.

Exercise 2 Create a numerical summary for height and age, and compute the interquartile
range for each. Compute the relative frequency distribution for gender and exerany. How
many males are in the sample? What proportion of the sample reports being in excellent
health?

The table command can be used to tabulate any number of variables that you provide. For example, to
examine which participants have smoked across each gender, we could use the following.

table ( cdc $ gender , cdc $ smoke100 )

Here, we see column labels of 0 and 1. Recall that 1 indicates a respondent has smoked at least 100
cigarettes. The rows refer to gender. To create a mosaic plot of this table, we would enter the following
command.

mosaicplot ( table ( cdc $ gender , cdc $ smoke100 ) )

We could have accomplished this in two steps by saving the table in one line and applying mosaicplot in
the next (see the table/barplot example above).

Exercise 3 What does the mosaic plot reveal about smoking habits and gender?

Interlude: How R thinks about data

We mentioned that R stores data in data frames, which you might think of as a type of spreadsheet. Each
row is a different observation (a different respondent) and each column is a different variable (the first is
genhlth, the second exerany and so on). We can see the size of the data frame next to the object name in
the workspace or we can type
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dim ( cdc )

which will return the number of rows and columns. Now, if we want to access a subset of the full data
frame, we can use row-and-column notation. For example, to see the sixth variable of the 567th respondent,
use the format

cdc [ 567 , 6 ]

which means we want the element of our data set that is in the 567th row (meaning the 567th person or
observation) and the 6th column (in this case, weight). We know that weight is the 6th variable because it
is the 6th entry in the list of variable names

names ( cdc )

To see the weights for the first 10 respondents we can type

cdc [ 1 : 10 , 6 ]

In this expression, we have asked just for rows in the range 1 through 10. R uses the “:” to create a range
of values, so 1:10 expands to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. You can see this by entering

1 : 10

Finally, if we want all of the data for the first 10 respondents, type

cdc [ 1 : 10 , ]

By leaving out an index or a range (we didn’t type anything between the comma and the square bracket),
we get all the columns. When starting out in R, this is a bit counterintuitive. As a rule, we omit the column
number to see all columns in a data frame. Similarly, if we leave out an index or range for the rows, we
would access all the observations, not just the 567th, or rows 1 through 10. Try the following to see the
weights for all 20,000 respondents fly by on your screen

cdc [ , 6 ]

Recall that column 6 represents respondents’ weight, so the command above reported all of the weights
in the data set. An alternative method to access the weight data is by referring to the name. Previously,
we typed names(cdc) to see all the variables contained in the cdc data set. We can use any of the variable
names to select items in our data set.

cdc $ weight

The dollar-sign tells R to look in data frame cdc for the column called weight. Since that’s a single vector,
we can subset it with just a single index inside square brackets. We see the weight for the 567th respondent
by typing

4



cdc $ weight [ 567 ]

Similarly, for just the first 10 respondents

cdc $ weight [ 1 : 10 ]

The command above returns the same result as the cdc[1:10,6] command. Both row-and-column no-
tation and dollar-sign notation are widely used, which one you choose to use depends on your personal
preference.

A little more on subsetting

It’s often useful to extract all individuals (cases) in a data set that have specific characteristics. We accom-
plish this through conditioning commands. First, consider expressions like

cdc $ gender == "m"

or

cdc $ age > 30

These commands produce a series of TRUE and FALSE values. There is one value for each respondent, where
TRUE indicates that the person was male (via the first command) or older than 30 (second command).

Suppose we want to extract just the data for the men in the sample, or just for those over 30. We can use
the R function subset to do that for us. For example, the command

mdata <- subset ( cdc , cdc $ gender == "m" )

will create a new data set called mdata that contains only the men from the cdc data set. In addition to
finding it in your workspace alongside its dimensions, you can take a peek at the first several rows as
usual

head ( mdata )

This new data set contains all the same variables but just under half the rows. It is also possible to tell R
to keep only specific variables, which is a topic we’ll discuss in a future lab. For now, the important thing
is that we can carve up the data based on values of one or more variables.

As an aside, you can use several of these conditions together with & and |. The & is read “and” so
that

m_and_over30 <- subset ( cdc , cdc $ gender == "m" & cdc $ age > 30 )

will give you the data for men over the age of 30. The | character is read “or” so that
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m_or_over30 <- subset ( cdc , cdc $ gender == "m" | cdc $ age > 30 )

will take people who are men or over the age of 30 (why that’s an interesting group is hard to say, but
right now the mechanics of this are the important thing). In principle, you may use as many “and” and
“or” clauses as you like when forming a subset.

Exercise 4 Create a new object called under23 and smoke that contains all observations of
respondents under the age of 23 that have smoked 100 cigarettes in their lifetime. Write the
command you used to create the new object as the answer to this exercise.

Quantitative data

With our subsetting tools in hand, we’ll now return to the task of the day: making basic summaries of the
BRFSS questionnaire. We’ve already looked at categorical data such as smoke and gender so now let’s turn
our attention to quantitative data. Two common ways to visualize quantitative data are with box plots and
histograms. We can construct a box plot for a single variable with the following command.

boxplot ( cdc $ height )

You can compare the locations of the components of the box by examining the summary statistics.

summary ( cdc $ height )

Confirm that the median and upper and lower quartiles reported in the numerical summary match those
in the graph. The purpose of a boxplot is to provide a thumbnail sketch of a variable for the purpose
of comparing across several categories. So we can, for example, compare the heights of men and women
with

boxplot ( cdc $ height ~ cdc $ gender )

The notation here is new. The~ character can be read “versus” or “as a function of”. So we’re asking R to
give us a box plots of heights where the groups are defined by gender.

Next let’s consider a new variable that doesn’t show up directly in this data set: Body Mass Index (BMI).
BMI is a weight to height ratio and can be calculated as.

BMI =
weight (lb)
height (in)2 ∗ 703†

The following two lines first make a new object called bmi and then creates box plots of these values,
defining groups by the variable cdc$genhlth.

bmi <- ( cdc $ weight / cdc $ height ^ 2 ) * 703

boxplot ( bmi ~ cdc $ genhlth )

†703 is the approximate conversion factor to change units from metric (meters and kilograms) to imperial (inches and pounds)
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Notice that the first line above is just some arithmetic, but it’s applied to all 20,000 numbers in the cdc data
set. That is, for each of the 20,000 participants, we take their weight, divide by their height-squared and
then multiply by 703. The result is 20,000 BMI values, one for each respondent. This is one reason why we
like R: it lets us perform computations like this using very simple expressions.

Exercise 5 What does this box plot show? Pick another categorical variable from the data set
and see how it relates to BMI. List the variable you chose, why you might think it would have
a relationship to BMI, and indicate what the figure seems to suggest.

Finally, let’s make some histograms. We can look at the histogram for the age of our respondents with the
command

hist ( cdc $ age )

Histograms are generally a very good way to see the shape of a single distribution, but that shape can
change depending on how the data is split between the different bins. You can control the number of bins
by adding an argument to the command. In the next two lines, we first make a default histogram of bmi
and then one with 50 breaks.

hist ( bmi )

hist ( bmi , breaks = 50 )

Note that you can flip between plots that you’ve created by clicking the forward and backward arrows in
the lower right region of RStudio, just above the plots. How do these two histograms compare?

At this point, we’ve done a good first pass at analyzing the information in the BRFSS questionnaire.
We’ve found an interesting association between smoking and gender, and we can say something about the
relationship between people’s assessment of their general health and their own BMI. We’ve also picked up
essential computing tools – summary statistics, subsetting, and plots – that will serve us well throughout
this course.
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