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Chapter1
Introduction to MATLAB

The programming language MATLAB is a versatile and powerful tool for solving var-

ious problems in mathematics and engineering. MATLAB is an acronym for Matrix

Laboratory which already bespeaks its suitability for matrix computations and solving

tasks in linear algebra. Real and complex-valued matrices are thereby the elementary

data types in MATLAB.

This experiment serves as an introduction to the programming language MATLAB.

In particular, an introduction into the user interface, dealing with scalars, vectors and

matrices and the execution of elementary operations will be introduced.

Note: Please create an M–file with all used commands and inputs when solving the

various tasks such that you can reproduce your work-flow later on.

1.1 MATLAB–User Interface

The way to start MATLAB as well as its appearance depend on the operating system

and the GUI (Graphical User Interface) that is being used:

In MS Windows, MATLAB is usually started from the Start Menu or by clicking

on the corresponding Desktop icon,
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in Unix–like operating systems, it is usually started by typing the command

matlab in a Terminal–Window (Shell) or an Application Launcher.

Figure 1.1: Opening window of MATLAB (Version 7).

MATLAB usually starts with a window as shown in Figure 1.1 which comprises of 3

sub-windows:

1. Command Window

In this window, MATLAB commands are entered which are executed immedi-

ately. To do that, the mouse cursor must be positioned after the Prompt (double

arrow) >>. The commands are entered to the right of the double arrow.
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The results and error messages will be shown in this window as well.

The commands in MATLAB are case-sensitive and allow similar operations as the

commands in terminal windows of some operating systems, e.g., to list the current

directory or to change the directory path. Appendix A provides lists with the most

common MATLAB commands.

2. Workspace

Here, all the variables that are used in the current session are displayed by their

name, size, and data type. By entering the command clear in the Command

Window, all variables of the Workspace will be deleted.

Table A.4 in the Appendix comprehends the most important MATLAB–

commands for operations in the Workspace.

3. Command History

Here, all the commands of the current session are displayed. A double click on a

command will execute it again.

Previously used commands can also be called in the Command Window by press-

ing the up arrow key.

MATLAB can be closed by entering the command quit or exit in the Command Win-

dow.

1.2 Data Types, Scalar Variables, Elementary Operations

and Functions

MATLAB can be used as a “pocket calculator”; if a mathematical operation is entered

in the Command Window, it will be evaluated. Each entry is completed by pressing

the “Enter” key. MATLAB obeys the conventional precedence order in mathematics. If

two operations with the same priority are put together, the evaluation follows from left

to right.
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1.2.1 Data Types and Variables

A variable refers to a data object which is linked with a certain data type and whose

value can be changed during the program flow.

MATLAB uses the concept of implicit allocation and type declaration, i.e., a variable is

allocated and its data type determined implicitly by just assigning a value to a variable;

an explicit memory allocation and data type declaration as in many other programming

languages like C or C++ is not needed.

If a value is assigned to an existing variable, the variable takes over the data type of

the assigned value (which may differ from the original data type of the variable). If

a variable does not exist before the assignment, it will be dynamically created and its

data type is determined by the value assigned to it.

MATLAB has several predefined data types. With these types, it is possible to repre-

sent scalars as well as one- and multi-dimensional arrays (see Sec. 1.4). The data types

double and char are of special importance.

MATLAB executes all numeral computations in a double-precision floating-point

format. The data type double is not only used to store real numbers, but also

for complex numbers (see also Sec. 1.4), i.e., there is no dedicated data type for

complex numbers. (A complex number is indicated in MATLAB by assigning the

Attribute ’complex’ to the variable class ’double’.) The real and, if so, complex

part of a double variable is stored in the form of a floating-point number ±M 2E

that consist of a sign, exponent E and the matissa M . In MATLAB, the exponent

can take on integer values in the range of −1024, . . . , 1023, the mantissa M can

take on values given by
∑52

k=1 dk 2
−k with dk ∈ {0, 1}.

In MATLAB, numbers v · 10±x are represented as ve±x, e.g., 3.5 · 105 as 3.5000e+5

(or short 3.5e5). By default, only 4 positions after the decimal point are displayed.

The command format can be used to change this number.

The data type char is used to store single characters or character strings. The

strings are stored as vectors and their elements are single characters counted from

left to right. The number of characters is called the length of the string. Strings are

bordered in single quotes (') such that the space character can be an element of a

string.
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MATLAB offers many other data types besides the above mentioned ones such as the

logical variable logical that takes on only the values 1 for true and 0 for false.

A unique name must be assigned to every data object by which it can be addressed

later. A valid variable name starts with a letter, followed by letters, digits, or under-

scores. German umlauts are not allowed.

Attention: MATLAB is a case sensitive programming language and distinguishes be-

tween upper and lower case letters!

1.2.2 Assignment, Operations and Functions

As already mentioned, a variable is created just by assigning a certain value to it. The

type of the newly defined variable is determined implicitly by the assigned value, i.e.,

the declaration of a data object is done with the help of an assignment of the form:

variable_name = expression

The expression will be evaluated and the resulting value is assigned to the variable

on the left hand side that can be addressed later on by the variable_name. MATLAB

allows arbitrarily many spaces between variables and operations and spaces can im-

prove considerably the readability of the expressions and the whole programm code,

respectively.

If the result of an arithmetic operation should not be displayed, one has to add a semi-

colon (;) after the command. The value of a variable can be shown by simply entering

the name of the variable in the Command Window. If a name is not assigned to the

result of an operation, it will be stored under the variable name ans. The name of an ex-

isting variable can be changed by a value assignment variable_name = expression.

Now, the variable that was before called expression is now stored with the name

variable_name.

The content of the Workspace (available variables and their types) can be listed in the

Command Window by using the commands who or whos which show their name, size

and data type (see Table A.4 in the Appendix for further details).

Variables can also be concatenated with each other by various operations. MATLAB

provides all well-known elementary mathematical operations such as the summation
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(+), subtraction (-), multiplication (*), division (/), etc. (see Table A.7 in the Appendix

for more information).

Relational operations are also available such as larger than (>), less than (<), larger than

or equal to (>=), less than or equal to (<=), equal to (==), not equal to (~=), etc. (see

Table A.7 in the Appendix).

Besides the arithmetical and relational operators, MATLAB provides also a variety of

standard functions such as sine (sin), cosine (cos), natural logarithm (log), exponential

function (exp) and many more (see Table A.8 in the Appendix for more information).

Note: The arguments of trigonometric functions must be given in radians!

Here are some examples of inputs to MATLAB and the corresponding results:

The numbers 2 and 3 are added up and stored in the variable c:

>> c=2+3

c =

5

The result of the computation 3 · 28 − 1923
3

is stored in the variable e:

>> e=3*2^8-1923/3

e =

127

A character string Hello is defined and stored in the variable c:

>> c='Hello'

c =

Hello

The values of the variables a and b are compared and the result (True (1) or False

(0)) is assigned to the variable c:

>> a=1; b=2;

>> c=(a>b)

c =
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0

>> b=0;

>> c=(a>b)

c =

1

1.2.3 MATLAB–Help and Error Messages

Detailed information about all commands available in MATLAB is obtained by means

of the command help. Moreover, the complete MATLAB documentation is available

online. The most important help commands are listed in Table A.5 in the Appendix.

The help functionality can also be helpful when errors occur. If an input with incorrect

syntax is used, MATLAB displays an error message that describes the type of the error

and, if possible, also the location of the error, e.g:

>> a=2**3

??? a=2**3

|

Error: Unexpected MATLAB operator.

>> a=sine(45)

??? Undefined function or method 'sine' for input arguments of type 'double'.

Preparation:

Exercise P-1.1: Explain which of the following variable names are not permitted in

MATLAB and why:

determinant_of_A A 3_D value-1

a value5.8 Ü ThisIsTheResult
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Practical Experiments:

Exercise E-1.1: Have a look at the help texts of

general purpose commands help matlab/general

operators and special characters help matlab/ops

and get familiar with the elementary operations.

Exercise E-1.2: Create a floating point variable with the value π/4. After that, find

the value of cos(π/4) and store it in a second variable.

Exercise E-1.3: Check for several pairs of positive values x and y if the equation

ln(xy) = ln(x) + ln(y) is also valid in MATLAB. What do you observe?
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1.3 Exceptions

Sometimes results may occur that cannot be interpreted or stored as a real (or complex)

floating-point number. The treatment of such exceptional cases is summarized in the

following.

Inf (also: inf):

The "value" Inf is assigned to the result of operations that either yield the value

±∞ (division by zero) or a value which is above the maximum value that can

be represented in MATLAB (overflow). MATLAB distinguishes between Inf and

-Inf.

0:

An exact zero is, among others, displayed if the result of the computation is

smaller than the smallest number that can be represented in MATLAB. Thereby,

MATLAB keeps the sign of the result.

NaN (also: nan):

“Not a Number” is displayed when the result of a computation is mathematically

not defined. Almost all operations provide the result NaN if NaN is given as an

input argument.

The aforementioned ’exceptional values’ Inf and NaN can be assigned to a variable as

any other value (e.g., a=-Inf). It can be checked with the logical operators of Table 1.1

whether the result of an operation or a variable attains an exceptional value. These

functions operate element-wise if they get a matrix as input argument.

Table 1.1: Functions to check exceptional cases

Function Result = true (logical 1), if

isfinite(a) |a| is finite

isinf(a) |a| = ∞
isnan(a) a==NaN
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A variable can only attain one of the three properties isfinite, isinf or isnan.

Practical Experiments:

Exercise E-1.4: Which results do you obtain for the following computations:

1/0 0/0 Inf/Inf Inf+Inf Inf-Inf

isinf(Inf-Inf) isnan(Inf)

Explain the behavior of MATLAB.

Exercise E-1.5: Which results are returned:

1/2^1022 1/2^1024 1/(1/2^1022) 1/(1/2^1024)

sin(nan) sin(inf) max([-inf nan]) sum([-inf inf])
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1.4 Vectors and Matrices

One of the strengths of MATLAB is that it treats scalars, vectors and matrices in the

same manner and does not differentiate between them. Not only scalars can be stored

in a variable, but also vectors (one-dimensional arrays) or matrices (two-dimensional

arrays), and even multidimensional arrays in principle.

Vectors are defined by using a pair of squared brackets ([ ]). If a row vector needs to be

formed, the individual vector elements are inserted into squared brackets next to each

other, separated by the space character:

>> b=[3 4 5]

b =

3 4 5

A column vector is created by listing its elements within squared brackets, separated

by semicolons:

>> b=[3;4;5]

b =

3

4

5

Vectors whose elements begin with a start value Start and can be counted with a con-

stant step-size Step until the final value End is reached, can be created with the help of

the colon (:) operator:

Start:Step:End

creates a row vector

[Start Start+Step Start+2*Step ... End]
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If there does not exist an integer value k for which the statement Start+k·Step=End
is true, then the last element of the vector will be the largest number which is smaller

than End but can be created by the above statement with an integer value k.

For Step = 1, the declaration of the step-size can be omitted (Start:End). For Step < 0,

the values will be counted backwards.

The following examples should illustrate the explained relations:

>> a=1:1:6

a =

1 2 3 4 5 6

>> a=1:6

a =

1 2 3 4 5 6

>> a=1:2:6

a =

1 3 5

>> a=4:-1:0

a =

4 3 2 1 0

Individual elements of a vector are accessed by means of an index (subscript). It is

important to note that the counting of vector components starts at "1" (and not at "0"

as for some other programming language like C or C++). For example, the second

element of vector a can be accessed by entering the command a(2) as demonstrated in

the following:

>> a=1:2:10;

>> a(2)

ans =

3
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Several elements of a vector can be accessed by entering the corresponding indexes in

a vector:

>> a=1:2:10;

>> a([2 3 4])

ans =

3 5 7

or a shorter version:

>> a(2:4)

ans =

3 5 7

where the index vector was created by using the increment–operator; compare to:

>> a(1:2:5)

ans =

1 5 9

If the last element of the vector should be addressed, the generic index end can be used:

>> a=1:2:10;

>> a(end)

ans =

9

The whole vector can be addressed either by the statement a, a(1:end) or a(:), where

the latter always creates a column vector:

>> a=1:2:10;

>> a

a =

1 3 5 7 9
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>> a(1:end)

ans =

1 3 5 7 9

>> a(:)

ans =

1

3

5

7

9

The length (number of elements) of a vector can be determined by using the function

length:

>> a=1:2:10;

>> length(a)

ans =

5

Matrices are two-dimensional arrays. Similarly to vectors, they can be generated and

processed in several ways by MATLAB. Matrices are also defined by means of squared

brackets ([ ]) and the rows of matrices are separated by semicolons.

>> A=[1 2 3; 4 5 6; 7 8 9]

A =

1 2 3

4 5 6

7 8 9

In turn, matrices can be used as elements in another matrix:

>> A = [1 2; 3 4];

>> B = [5 6; 7 8];
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>> C = [A B]

C =

1 2 5 6

3 4 7 8

>> D = [A; B]

D =

1 2

3 4

5 6

7 8

An error occurs, if the dimensions of the sub-matrices do not match properly.

Some special matrices can be created by the commands zeros(number) and

ones(number). zeros creates an all-zero matrix and ones creates a matrix where each

element is equal to one, both of dimension number×number. Row and column vectors

containing only ones or zeros can also be created by these commands:

>> Z = zeros(2,3)

Z =

0 0 0

0 0 0

>> O = ones(3,2)

O =

1 1

1 1

1 1

>> o = ones(1,5)

o =

1 1 1 1 1

The command eye creates an identity matrix with the given dimensions:
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>> I=eye(3)

I =

1 0 0

0 1 0

0 0 1

Single elements of a matrix can be addressed by their row and column index, e.g.:

>> A=[1 2; 3 4];

>> A(1,2) %Extract the element in row 1, column 2

ans =

2

>> A(2,2)

ans =

4

The row and column indices of the extracted value shall not exceed the dimensions of

the matrix which can be obtained by the command size(A):

>> A=[1 2 3; 4 5 6];

>> size(A)

ans =

2 3

>> A(1,4)

??? Index exceeds matrix dimensions.

The colon operator is used to select the columns and rows of a matrix. A complete

column/row is selected, if the column/row index is fixed and the row/column index

runs through all the possible values (by means of the colon operator) as demonstrated

in the following:

>> A=[1 2 3; 4 5 6]

A =



1.4 Vectors and Matrices 17

1 2 3

4 5 6

>> row=A(2,:)

row =

4 5 6

>> column=A(:,2)

column =

2

5

All the MATLAB operators can also be applied to matrices (including vectors as spe-

cial case). Thereby, it is important that the dimension of the matrices match properly

according to the calculus rules of linear algebra. For example, both operands (matri-

ces) must be of the same dimension for a summation or subtraction operation. The

multiplication of variables containing matrices results in a matrix multiplication:

>> A = [1 2; 3 4];

>> b = [5; 6];

>> A*b

ans =

17

39

or

>> [1 2 3]*[1; 2; 3]

ans =

14

since the product of a row and column vector is a scalar. On the other hand, the product

of a column and row vector is a matrix:
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>> [1; 2; 3]*[1 2 3]

ans =

1 2 3

2 4 6

3 6 9

The element-wise multiplication and division of matrices is a frequently needed function

and executed by the operators (.*) and (./). The operator (.^) allows to exponentiate

the single elements of a matrix or vector:

>> x = [ 1 2 3 ] .* [ 1 2 3 ]

x =

1 4 9

>> x = [ 1 2 3 ] ./ [ 1 2 3 ]

x =

1 1 1

>> x = [ 1 2 3 ] .^ [ 1 2 3 ]

x =

1 4 27

The largest and smallest elements of a matrix or vector can be found by the commands

max and min, respectively. If x is a vector, the statement max(x) yields the largest ele-

ment of the vector. If A is a matrix, the statement max(A) yields a row vector containing

the largest elements of each matrix column. If two return parameters are specified, the

statement max (min) returns the maximum (minimum) value as well as the index (posi-

tion) of the extremal value within the array. In the case of the vector x = [4 -2 6 1]:

>> max(x) >> min(x)

ans = ans =

6 -2

>> [value,index] = max(x)

value =
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6

index =

3

sum(x) and prod(x) return the sum and the product of the vector elements of x, respec-

tively. Using the previously defined vector x:

>> sum(x) >> prod(x)

ans = ans =

9 -48

Practical Experiments:

Exercise E-1.6: Create the variables x and y in your Workspace. The variable x

shall be a row vector containing values from 0 to 10 with a step-size of 2 and the

variable y shall be a row vector containing values from 0 to 100 with a step-size of

5. What are the lengths of the vectors x and y?

Exercise E-1.7: Create the following sums:

Sum of all natural numbers from 1 to 100.

Sum of all even numbers between 1 and 100.

Sum of all numbers divisible by 5 between 1 and 1000.

1.5 M–Files and Creating Functions

MATLAB is not only able to process commands entered in the Command Window, but

can also read in a command or a sequence of commands from a (program) file, which

is essential to solve more complex tasks. Files containing MATLAB–commands are

termed as M–files due to the file extension “.m”.
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M–files consist of a sequence of regular MATLAB–commands. Comments in the pro-

gram code are essential to keep it understandable and to ease its maintenance. They

start with the percent symbol (%) such that MATLAB does not interpret the statements

that are right to the comment symbol. Accordingly, comments can be added at the end

of a command line or they can be written in a separate line.

There are two types of M–files: Script files and function files commonly referred to as

scripts and functions:

Scripts:

Scripts contain a sequence of MATLAB–commands that is executed consecutively

as if the single commands therein would have been entered directly in the Com-

mand Window. To execute a script, its file name is entered in the Command Win-

dow without the extension (.m), for example, by typing myscript a file named

myscript.m will be executed (if it is available in the current working directory).

An M–file compute.m with the content

A = [1 2; 3 4];

B = [5; 6];

A*B

executes the 3 instructions and results in

>> compute

ans =

17

39

Functions:

A function is marked by the keyword function at the beginning. The main dif-

ference to a script is that they accept input arguments and can return one or more

output arguments. Moreover, all the variables that are used within the function

are local variables, i.e, they do not appear in the base Workspace of MATLAB and

they are removed from the workspace upon the termination of a function.

Functions help the user to taylor MATLAB according to his needs. For example,

if a function is needed that calculates the sine of an angle in degree, the resulting

function can look like this (saved as sindeg.m):
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function y = sindeg(x)

%

% sindeg(x) Sine values of x entered in degrees

%

y = sin(pi*x/180);

A call of the function returns

>> sindeg(90)

ans =

1

The use of multiple input and output arguments can be realized as follows:

function [s, c] = sincos(x,A)

%

% sincos(x,A) A*sin(x) and A*cos(x) of x entered in degrees

%

s=A*sin(pi*x/180);

c=A*cos(pi*x/180);

A call of this function returns

>> [s,c] = sincos(90,2)

s =

2

c =

1.2246e-16



22 1. Introduction to MATLAB

Preparation:

Exercise P-1.2: Draft a function that returns the sum of all integer values from 1 to

n where n serves as input argument for this function.

Exercise P-1.3: Draft a function reverse.m that returns the elements of an input

vector in reversed order.

Practical Experiments:

Exercise E-1.8: Write the function drafted in P-1.2 and test it for some examples.

Exercise E-1.9: Write and test the function drafted in P-1.3.
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1.6 Conditional Statements and Flow Control

MATLAB offers several possibilities to control the program flow of an M–file. There are

five constructs available for that:

if conditionally execute statements

switch switch among several cases based on the expression

for repeat statements a specific number of times

while repeat statements an indefinite number of times

break terminate execution of a while or for loop

1.6.1 if–Statement and switch

It is often needed to execute commands in dependence of a variable value for which the

if-statement comes in handy. A logical expression follows the keyword if. If this log-

ical expression is true, the commands in the next block are executed until the keyword

end is reached:

...

if i>0 , % i larger than 0?

... % if true, execute commands entered here

end;

...

The optional else-statement can be used to execute a set of commands for the case that

the logical expression of the if-statement is false:

...

if i>0, % i larger than 0?

... % if true, execute commands entered here

else,

... % otherwise execute commands entered here

end;

...
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A program flow that is dependent on multiple logical expressions can be realized by

means of the elseif-statement:

...

if i>0, % i larger than 0?

... % if true, execute commands entered here

elseif i<0, % i smaller than 0?

... % commands to be executed if i<0

else,

... % otherwise (i==0) execute commands entered here

end;

...

Note: (==) is a logical operator that tests for equality, whereas (=) assigns a value to a

variable.

The conditional execution of statements for a number of different cases can be real-

ized with the switch-statement more efficiently than with the elseif-statement. The

corresponding syntax is as follows:

a = ...

switch a

case 1, % a == 1

...

case 2, % a == 2

...

case 3, % a == 3

...

otherwise, % otherwise

...

end;

1.6.2 for–loop

A for–loop allows to execute operations repeatedly in a loop for the various values

of a variable (mostly a counter). The part that needs to be executed in a loop ends
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with keyword end. For example, the calculation of the first 10 squared numbers can be

realized by means of a for-loop in the following way:

...

for i=1:10,

i^2

end;

...

The expression i=Start:Increment:End causes that the loop will be executed for the

variable i taking on values from Start in steps of Increment until End is reached. If

Increment=-1 (e.g. i=10:-1:1), the values are counted “backwards”.

Loops can also be nested:

...

for i=1:10,

...

for j=10:-1:i, ... end;

end;

...

1.6.3 while–loops and break–statements

A while–loop allows to execute a set of operations while the condition stated at the

beginning of the loop is fulfilled. The keyword end marks again the set of operations to

be executed within the loop.

For example, if a value should be doubled repeatedly until an upper limit is reached, it

can be implemented in MATLAB as follows:

i = ...

while i<upperlimit, % i smaller than the upper limit?

i=i*2; % yes

end;

...
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Sometimes it is necessary to check after the while–loop, how the variable changed dur-

ing the iterations. For example, a given number should be divided by 3 as long as the

difference from the previous value is smaller than a given threshold.

i = ...

diff = Limit + 1;

while diff > Limit, % Difference larger than the threshold?

i_prev=i;

i=i/3;

diff=abs(i-i_prev);

end;

...

With the help of the break–command, for and while-loops can be terminated once the

break-command is reached. Such a termination is usually only reasonable if a certain

condition is fulfilled as exemplified in the following:

i = ...

while 1, % Infinite loop

i_prev = i;

i = i/3

diff = abs(i-i_prev);

if diff <= Limit, % condition to abort the loop

break;

end;

end;

...

An infinite loop is given, since the logical expression after the while command is always

true, and the loop only terminates if the break-command within the if-statement is

reached. It can be reasonable to terminate a loop based on a set of conditions which can

be linked by logical AND and OR operators (see Table A.7).

Preparation:

Exercise P-1.4: The roots of a given function f(x) (available in MATLAB under the

name myfun) should be found with the help of nested intervals.
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If one knows that the continuous function f(x) has a single root within the inter-

val [a, b], where f(a) and f(b) have opposite signs, the root can be localized by

means of iterative interval bisection with steadily increasing precision.

Draft a function interval.m that performs the interval bisection for a given func-

tion and starting interval. Proceed as follows:

1. The interval [a, b] whose center is given by c = (a + b)/2 is divided into two

sub-intervals [a, c] and [c, b].

2. Calculate the value f(c).

3. An interval is chosen that definitely contains a root: The interval [a, c] con-

tains a root of f(x), if f(a) and f(c) have different signs, otherwise the root

lies within the interval [c, b]. (The iteration terminates of course if f(c) = 0

and the root c is returned.)

4. The procedure is repeated until the found interval length is smaller than a

given threshold and a sufficient approximation for the root is obtained.
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Practical Experiments:

Exercise E-1.10: Implement the function interval.m and test it for the following

functions:

f1(x) = e−x − 5, root search within the interval [−2, −1]

f2(x) = −0.25x3 + 1.25x, root search within the interval [−3, −1]

The function myfun (can be arbitrarily named) can be defined as a so-called inline

function, e.g., myfun = inline('exp(-x)-5'); and used as a regular MATLAB–

function, e.g., y = myfun(0);.

Note: In order to check the found root you can plot the function as follows:

x=-3:.01:3; plot(x,myfun(x)); grid on;

Literature to Experiment 1

[1] The MathWorks Inc. MATLAB 7.0 (R14SP2), The MathWorks Inc., 2005

[2] A. Gilat. MATLAB: An introduction with Applications, John Wiley & Sons, 2004.

[3] J. Michael Fitzpatrick and J. D. Crocetti Introduction to Programming with Matlab,

Vanderbilt University Nashville (TN),2010

[4] D. Houcque Introduction to Matlab for Engineering Students, Northwestern Univer-

sity, 2005

[5] R. L. Spencer Introduction into Matlab, Brigham Young University, 2000
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Chapter2
Graphics in MATLAB

The graphical representation of results is, besides the numerical computation, an essen-

tial feature of mathematical software tools. This experiment provides an introduction

into the basic functionality of MATLAB to plot functions.

2.1 Two-dimensional Representation

2.1.1 Representation of Functions with One Variable

This kind of representation is used to represent the values of a function

y = f(x) (2.1)

for an argument x within the interval

x ∈ [x1, x2]. (2.2)

In order to represent this function by MATLAB, it needs to be evaluated for a discrete

set of data points which are usually (but not necessarily) uniformly spaced.
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This shall be illustrated for the following function

y = 3 sin(x) (2.3)

with

x ∈ [0, 4π]. (2.4)

In a first step, a vector x is needed which contains the data points at which the function

shall be represented and plotted, respectively. The function values are also arranged in

a corresponding vector.

Preparation:

Exercise P-2.1: Specify the MATLAB–command that creates a vector of data points

x. The distance of the data points should be π
4

and the values in the vector should

be given in an ascending order.

Exercise P-2.2: How can the values of the function y = 3 sin(x) be determined from

the given vector x?

The desired graphical representation of the function can be obtained by using the

MATLAB–command plot. This is done by using the vectors x and y as input argu-

ments of the plot-function:

plot(x,y);
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The representation is done such that the function values for the discrete data points are

connected via a line (linear interpolation). Accordingly, it is important that the data

points are arranged in the correct order to produce the desired result. The figure is

scaled automatically such that all function values are visible.

Practical Experiments:

Exercise E-2.1: Visualize the function y = 3 sin(x) for the interval x ∈ [0, 4π]. The

distance of data points should be π
4
.

Note: All the used commands and inputs should be stored in an M–File such that

the work-flow can be easily reproduced later on.

Exercise E-2.2: Interprete the result and propose an approach to improve the rep-

resentation.

Figure 2.1 provides an example for the plot of a function using the plot–command.

There is a possibility to activate the zoom function by clicking on the symbol . If

the zoom-mode is activated, one can view certain parts of the figure in greater detail by

selecting the zoom area with the mouse pointer.

Figure 2.1: Example for a graphical output.
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When working with 3-dimensional graphs, one can use the button to change the

view, which will be explained later on in more detail.

A correct graphical representation comprises the function values as well as a correct

labeling of axes. For this, the commands xlabel and ylabel are provided and a title

can be added to a figure by the command title. All these commands require a string

as input argument, e.g.:

xlabel('x-name');

Practical Experiments:

Exercise E-2.3: Label the figure created within E-2.2.

Frequently, functions need to be visualized whose input and output arguments have

units. The correct display of such functions should be exemplified by means of a sine

wave.

Practical Experiments:

Exercise E-2.4: Generate a figure that depicts a sine wave with a frequency of 1 kHz

and an amplitude of 1 V. The time axis shall be in the range of [−1 ms, 3 ms]. Pay

attention to the correct labeling (x-axis in ms, y-axis in V).

2.1.2 Representation of Loci (X-Y Representation)

Besides representing a single function over its argument, it is also possible to plot two

functions that have a common argument (e.g., t) in a single figure. The function values

of one function are used for the abscissa (x-axis) and those of the second function for

the ordinate (y-axis).

x = f1(t) (2.5)

y = f2(t) (2.6)
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The graph created by such a function is termed as locus. To illustrate this, the represen-

tation of a circle is used as an example in the following.

Preparation:

Exercise P-2.3: Specify the functions f1(t), f2(t) such that a circle is created by

varying the variable t. What is the range of values that needs to be taken for t?

Practical Experiments:

Exercise E-2.5: Create a variable vector t and also the vectors x and y corresponding

to your considerations in P-2.3.

The representation is now done in the same way as in the case of a simple function with

the only difference that the vector x contains now a set of function values and not a set

of data points as before. As before, the order of the value pairs is also important here

such that the connecting line is properly plotted. Thereby, the correct order has to be

insured by an appropriate choice for the variable vector t.

Practical Experiments:

Exercise E-2.6: Plot a figure with the already created vectors x and y.

Exercise E-2.7: Interpret the result. Why is the desired result not obtained?

In addition to the labeling of plots, the scaling of the coordinate axis is also of great

importance and can be changed by using the command axis. By entering
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help axis

in the Command Window, a detailed overview about the different options is given.

Practical Experiments:

Exercise E-2.8: Which options offers the command axis for a correct (undistorted)

representation of the circle and how do they differ?

Exercise E-2.9: Correct the previously generated figure accordingly.

2.1.3 Representation of Multiple Functions in a Single Plot

The different methods to plot multiple functions in a single figure are treated in the

following. The easiest option in MATLAB is to use the command plot. Representing

the two functions

y1 = f1(x) , y2 = f2(x)

in a single figure can be done the by the statement

plot(x,y1,x,y2);

It is also possible to use different variable vectors x1 and x2:

y1 = f1(x1) , y2 = f2(x2)

as follows

plot(x1,y1,x2,y2);

The extension to more than two functions is simply done by adding more (x, y)–pairs.

In such a way, it is also possible to plot multiple loci in a single figure.

MATLAB assigns automatically different colors to the different curves within a plot.

However, the differentiation between curves by means of different line colors can be
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insufficient, e.g., if a figure is plotted in a black-white or gray color scheme. For such

cases, additional markers for the curves are needed.

The choice of color and other line properties can be specified by additional parameters

within the plot-function. The available colors, line styles and marker symbols are listed

below (obtained by the command help plot):

Color Marker Line style

y yellow . point - solid

m magenta o circle : dotted

c cyan x x-mark -. dashdot

r red + plus -- dashed

g green * star

b blue s square

w white d diamond

k black v triangle (down)

^ triangle (up)

< triangle (left)

> triangle (right)

p pentagram

h hexagram

An attribute can be chosen from every column. If one of the columns is not used,

MATLAB takes a default property. The combination of the wanted attributes is con-

nected to a string. For example, 'co--' draws a dashed cyan line with circles at the

positions of the data points and 'b-' results a continuous blue line. Such param-

eters can be added to any (x,y)–pair as a third parameter, e.g., plot(x,y,'b-') or

plot(x1,y1,'b-',x2,y2,'c--').

This shall be exemplified for the previously discussed example y = 3 sin(x).

Practical Experiments:

Exercise E-2.10: Plot the function y = 3 sin(x) for data points at spacing of π
8
. Use

different combinations for the attributes and observe the results.
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Exercise E-2.11: Plot the functions 3 sin(x) and 2 cos(x) in the same figure. Use a

distance of π
8

for the data points. Play around with different combinations for the

line attributes.

The previously discussed options to display multiple curves in a single figure do not

allow to label them individually. This problem can be solved by creating a legend with

the help of the command legend. Its input arguments are strings containing the desrip-

tion (label) for each line, e.g., legend('Function 1','Function 2').

Practical Experiments:

Exercise E-2.12: Choose a combination of attributes that is suitable to print out

the figure of E-2.11 in black-and-white with both lines being distinguishable. A

possible solution is illustrated in Figure 2.2.
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0

1

2

3

x

y
1
, 
y
2

y1=3*sin(x)

y2=2*cos(x)

Multiple Sine Functions

Figure 2.2: A possible solution of E-2.12.

2.1.4 Variants of plot and Auxiliary Functions

In addition to the previously discussed methods for plotting a figure with MATLAB,

there is a variety of further commands and options available for this purpose. In the

following, some of them are briefly introduced.
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Practical Experiments:

Exercise E-2.13: Create the vectors x and y as done in Taks E-2.10. Compare the

results obtained by using either plot, stem, stairs and bar. For these functions,

only x and y are needed as input parameters (as for the introduced plot function).

For which application scenarios would you prefer plot, stem, stairs or bar?

A variety of auxiliary functions is provided to change the appearance of a figure.

First, the creation and hiding of the coordinate grid is introduced.

Practical Experiments:

Exercise E-2.14: Create a figure of your choice and use the commands grid on and

grid off. Observe the results.

It is often desirable to have an axis scaling that is different to the default setting of

MATLAB. This can be realized with the help of the previously mentioned axis func-

tion, where the desired limits of the axes are provided as a vector.

Practical Experiments:

Exercise E-2.15: Create a plot of your choice and try out different scalings by using

the function

axis([xmin xmax ymin ymax]);

Thereby, the values xmin, xmax, ymin and ymax need to be replaced with your desired

values.

For the representation of functions whose domain and/or codomain span over multiple

powers of ten, it is often beneficial to use a logarithmic scaling for the coordinate axes

instead of a linear one. Different methods for this are examined in the following.
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The functions semilogy, semilogx and loglog allow for a logarithmic scaling of the

axis. Their input arguments are the same as for plot. In the case of semilogy and

semilogx, one axis has a linear scaling and the second one a logarithmic scaling,

whereby both axes feature a logarithmic scaling if the function loglog is used.

Practical Experiments:

Exercise E-2.16: Plot the function y=exp(x) within the range x ∈ [−5, 10] by using

plot, semilogy, semilogx and loglog. What do you observe? Which representa-

tion would you prefer?

So far, the call of the plot function has cleared all existing lines and plotted the new

one in the current figure window. The behavior can be changed by using the command

hold on such that new lines can be added to the existing ones. The original behavior

can be reestablished by the command hold off.

MATLAB offers also the functionality to open several figure windows. A new empty

figure window can be created by the command figure. The active window, where the

plot commands are executed, can be selected in two ways. The most recently created

window remains active until one clicks with the mouse pointer on another one. A

window can be directly selected by using its so-called figure handle figure(h), e.g.,

figure(2) activates the figure window with handle 2. (The figure handle is displayed

by default in the top of the figure window.) A specific figure windows can be closed

by the command close(h) and the command close all closes all figure windows that

are currently open.

Practical Experiments:

Exercise E-2.17: Create several figure windows and experiment with the explained

options to activate them. Note that commands like plot, axis, grid etc. only

apply to the currently activated figure.

It is also possible to display multiple subplots in a single figure window. For this, the

function subplot(m,n,p) creates m× n subplots in the current figure and activates the

subplot at position p. The subplots are thereby counted line-by-line.
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Practical Experiments:

Exercise E-2.18: Create a new figure window with 6 subplots in 2 columns and

3 rows and experiment with the activation of the single subplots. Add titles and,

if needed, a legend to the subplots.

2.2 Three-dimensional Representation

In the following, a function f(x, y) shall be visualized where f is here dependent on

two argument variables x and y which shall lie within the interval x, y ∈ [−1, 1]. For

this, data points (x, y) are needed which are available by two matrices of the same

dimensions. For example, a matrix X contains all the x-coordinates of the data points

and a matrix Y comprises the corresponding y-coordinates.

For a representation of the function at equidistant data points ∆x = ∆y = 0.1, the

following matrices would be suitable:

X =





















−1 −0.9 −0.8 · · · 0.8 0.9 1

−1 −0.9 −0.8 · · · 0.8 0.9 1
...

...
...

...
...

...
...

...

−1 −0.9 −0.8 · · · 0.8 0.9 1

−1 −0.9 −0.8 · · · 0.8 0.9 1





















Y =





















−1 −1 −1 · · · −1 −1 −1

−0.9 −0.9 −0.9 · · · −0.9 −0.9 −0.9
...

...
...

...
...

...
...

...

0.9 0.9 0.9 · · · 0.9 0.9 0.9

1 1 1 · · · 1 1 1





















The matrices X and Y can be created very efficiently in MATLAB as follows:

>> [X, Y] = meshgrid(-1:.1:1, -1:.1:1);
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With the help of these matrices, the matrix F containing all function values can be com-

puted in the following way:

F = function(X,Y);

A three-dimensional surface plot of this function can be created by the command

surf(X,Y,F);

Practical Experiments:

Exercise E-2.19: The function

f(x, y) = sinc(2x) + sinc(2y) with sinc(x) =
sin(π x)

π x

shall be plotted.

Create the matrices X and Y that have data points with a spacing of ∆x = ∆y =

0.1. Compute with these matrices and the MATLAB function sinc the matrix F

containing the function values f(x, y). (Why is the direct use sin(πx)/(πx) not

feasible?)

Note: Use the element-wise matrix multiplication instead of the regular matrix

multiplication.

Visualize the function by means of the surf function. As before, you can change

the viewing angle by clicking on the button and dragging the plot with the

mouse pointer.

Visualize the functions

g(x, y) = sinc(2
√

x2 + y2) , h(x, y) = sinc(2x) · sinc(2y)

by the same procedure as before.

Which conceptual difference do you notice between the graphs for f(x, y), g(x, y)

and h(x, y)? (Pay attention to the symmetry of the functions!)
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MATLAB allows to choose from several built-in colormaps that determine the color

scheme of a figure. This is done with the command

colormap('name of the colormap');

for which the following colormaps are available:

default, hsv, hot, gray, bone, copper, pink, white, flag, lines,

colorcube, vga, jet, prism, cool, autumn, spring, winter, summer.

Practical Experiments:

Exercise E-2.20: Use different colormaps for the previous figure.

The introduced command surf visualizes a function as a three-dimensional surface.

The individual points are connected with black lines and the grid created by this is filled

with colored surfaces where the color value depends on the corresponding function

value.

Sometimes it is desirable to color only the grid which connects the function values and

to leave the space in-between the grid lines white. This behavior is achieved by the

command

mesh(X,Y,F);

which has essentially the same syntax as the function surf.

Practical Experiments:

Exercise E-2.21: Visualize the function f(x, y) by a mesh plot and try out different

colormaps.
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2.3 Representation of Images

The representation and manipulation of images by means of MATLAB is now treated.

For this, it is exploited that a digital image can be represented by a matrix. For the

representation of a digital color image, 3 matrices are needed for its RGB-values (red,

green and blue). A digital gray image can be represented by a single matrix containing

values between 0 (black) and 1 (white), where the values in between correspond to gray

values. In the next exercises, the representation and manipulation of black-and-white

images is treated first, followed by the treatment of color images.

Practical Experiments:

Exercise E-2.22: Load with the command load('some_images.mat') the following

matrices into the Workspace: lena, einstein, noise, peppers, A, B, C.

a) Display the matrices lena and einstein as images by means of the commands

imshow(lena) and imshow(einstein).

b) Transpose the matrices lena and einstein and display them. What do you ob-

serve?

c) Multiply the matrices lena and einstein with a scalar and display the scaled

matrices as images. Experiment with different scalar values in the range from 0.1

to 2.0. How does the scaling effect the images?

d) Add a scalar to the matrices lena and einstein. Experiment with different scalars

in the range from−1.0 to 1.0. How does adding a scalar influence the images?

e) Add up the two matrices lena and einstein, and visualize the result. What does

it look like?

f) Visualize the matrices einstein, noise and einstein+noise as images. How does

the addition of noise change the image of einstein?

g) Visualize the matrices A, B, C, B · A and A · C as images. Explain the observed results?

Hint: Since the matrices A, B and C have values that are considerably larger than

1.0, the values must be normalized to represent them as an image. This can be
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done by using imshow(A/max(max(A))), where max(max(A)) returns the maximal

value of A.

Color images can be represented in the RGB (red, green, blue) color space by means of

3 matrices: one for red, a second one for green and a third one for blue. These matrices

can be concatenated to a three-dimensional array. A color image with 256 × 256 pixels

can be represented by an array of dimensions 256× 256× 3. The first plane in the third

dimension represents the red pixel intensities, the second plane represents the green

pixel intensities, and the third plane represents the blue pixel intensities.

The command imshow(B) checks if B is a two-dimensional array (matrix) or a three-

dimensional array. In the first case, imshow(B) displays the image in black-and-white,

while a color image is displayed in the second case. The following exercises should

teach you the treatment and manipulation of color images in MATLAB.

Practical Experiments:

Exercise E-2.23: The 3-dimensional array peppers (that was loaded in the

Workspace in the previous exercise) contains the RGB-representation of an im-

age.

a) Visualize peppers as a color image by using imshow(peppers).

b) Scale the color channels by using the following commands and visualize the mod-

ified 3-dimensional array as a color image. Experiment with different values. For

example, display only the green parts of an image.

% multiply individual color channels

mod_peppers = peppers;

value_red = 0.8;

value_green = 1.2;

value_blue = 0.2;

%Red

mod_peppers(:,:,1) = peppers(:,:,1)*value_red;

%Green
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mod_peppers(:,:,2) = peppers(:,:,2)*value_green;

%Blue

mod_peppers(:,:,3) = peppers(:,:,3)*value_blue;

%Display image

figure

imshow(mod_peppers)

c) In a similar way, add various constants to each of the three color channels and

display the modified 3-dimensional array as a color image. Experiment with dif-

ferent values and explain your observations.
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Matrices and Systems of

Linear Equations

In this experiment, you should apply some basic knowledge about linear algebra ob-

tained in your undergraduate studies. First, some basic operations with vectors and

matrices are recapped. Subsequently, efficient methods for solving a system of linear

equations are treated. In the end, the Gaussian elimination algorithm needs to be im-

plemented.

3.1 MATLAB–Commands in Linear Algebra

This section reviews some basic MATLAB operations to solve tasks in linear algebra.

3.1.1 Generating Vectors

In order to create a row vector v = [1, 2, 3, 4, 5], the command

v = [1 2 3 4 5]
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can be used.

A column vector is obtained by transposing (vT):

u = v.'

It is important to note that in case of a complex vector, the command u = v' (without

the dot) results the complex conjugate transpose of a vector, i.e., the Hermitian vector of

v, usually denoted as vH.

Certain elements of a vector can be accessed, e.g., with the command v(1:3). In this

case, the first three elements of the given vector are selected: ans = [1 2 3]. The com-

mand v(1:2:5) selects every second element of the vector v starting with the first and

ending with the fifth element: ans = [1 3 5]. If only one element (in this case the

second) should be chosen, the command v(2) can be used.

3.1.2 Generating Matrices

Besides the previously discussed vectors, matrices can also be efficiently created and

manipulated. A new row of the matrix is started with a semicolon (;). The statement

A=[1 2 3; 4 5 6; 7 8 9] creates a (3× 3) matrix:

A =











1 2 3

4 5 6

7 8 9











(3.1)

In order to select certain rows or columns in a matrix, the colon (:) operator can be

employed: B=A(1:2,2:3) generates the matrix

B =





2 3

5 6



 (3.2)

that consists of the first 2 rows and the columns 2 and 3 of the matrix A. Single elements

of a matrix can be addressed by the statement
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A(1,3)

In addition to the possibilities to define matrices as described above, there are also some

other built-in operations for special matrices:

rand(p) generates a (p× p)-matrix of random numbers with uniform distribution

in the range of (0, 1).

eye(p) generates a (p × p)-identity matrix with ones on the main diagonal and

zeros elsewhere.

zeros(p) generates a (p× p)-matrix of zeros.

ones(p) generates a (p× p)-matrix of ones.

3.2 Basic Arithmetic Operations for Matrices

Operators like +, -, * (multiplication), / (division) and ^ (exponentiation) can be used

to build arithmetical expressions as for conventional programming languages. The op-

erators have the usual precedence and parentheses have accordingly the highest prece-

dence.

When dealing with vectors and matrices, one has to pay attention that the dimensions

of the operands match properly, i.e., for a summation or subtraction, the operands must

be of same dimensions or one of them needs to be a scalar. The multiplication of vectors

and matrices refers to a matrix multiplication.

For a (m× p)–matrix A = [ aij ] (m rows and p columns) and a (p× n)–matrix

B = [ bjk ], the elements cik of the product matrix C = [ cik ]
def
= AB (m× n) are defined

as cik =
∑p

j=1 aijbjk. This calculation rule is illustrated by the sketch of the matrices

A, B and C in Figure 3.1. This illustration also helps to track the dimensions of the

involved matrices. The elements cik are the scalar products of the i-th row of A and the

k-th column of B; easy to remember as ’row times column’ (element-wise multiplication

followed by a summation).
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a11

ai1

am1

a1p

aip

amp

b11

bp1

b1k

bpk

b1n

bpn

c11

cm1

c1n

cmn

cik
A =

B =

= C

· · ·
· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
...

...
...

...

...
...

...

Figure 3.1: Multiplication of matrices.

Preparation:

Exercise P-3.1: The row vector a = [3 2 1] and column vector b = [6 5 4]T are

given. Compute

ab and ba

What are the dimensions of the results?

Practical Experiments:

Exercise E-3.1: Confirm your results of Task P-3.1.
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The division operation has a special meaning in the context of vectors and matrices:

The operators “/” and “\” perform different division operations:

x = A \ b is the solution of A * x = b, where x and b are column vectors

and

y = c / A is a solution of y * A = c, where y and c are row vectors.

Thus, A\b computes the expression A
−1 ·b and c/A evaluates the expression c ·A−1. The

division operators allows to solve a systems of linear equations directly,i.e., without an

explicit matrix inversion. This is advantageous in terms of precision and efficiency (see

also the exercise in Sec. 3.3).

Applying the introduced division operators to

A =





1 2

3 5



 and b =





1

4



 , c = b
T

results in

>> A\b

ans =

3.0000

-1.0000

>> c/A

ans =

7 -2

Preparation:

Exercise P-3.2: Verify the results of the previous example.
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The frequently needed element-wise multiplication and division of vectors and matri-

ces can be performed by the operators “.*” and “./”, respectively. The operator “.^”

allows to exponentiate each element of a vector or matrix (see also Sec. 1).

As mentioned before, the transpose of matrices and vectors is obtained by the opera-

tor .' (aT) and the complex conjugate transpose by the operator “'” (aH, Hermitian

matrix). These operators turn column vectors into row vectors and vice versa:

>> a=[1 2 i]

a =

1.0000 2.0000 0 + 1.0000i

>> a'

ans =

1.0000

2.0000

0 - 1.0000i

>> a.'

ans =

1.0000

2.0000

0 + 1.0000i
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or

>> A=[1 2 3; 4 5 6]

A =

1 2 3

4 5 6

>> A'

ans =

1 4

2 5

3 6

Table A.10 and Table A.11 in the Appendix list the most important MATLAB operators

for vectors and matrices.

The relational operators >, <, >=, <=, ~= (inequality) and == (equality) perform an

element-wise comparison. Hence, they can only applied if the operands have the same

dimensions (as for the summation and subtraction of matrices). The resulting matrix

contains ones for the elements where the comparison is true and zeros elsewhere.

MATLAB provides several functions to perform basic arithmetic operations used in

linear algebra. A small selection is given in the following:

det(A) returns the determinant of the square matrix A.

inv(A) returns the inverse of the square matrix A.

rank(A) returns the rank of the matrix A, i.e., returns the number of linearly inde-

pendent rows or columns of A.

[V,D]=eig(A) returns the diagonal matrix D with the eigenvalues and the matrix

V whose columns are the corresponding eigenvectors.

norm(A,p) returns the norm of A (dependent on the choice of p), where A can be

a vector or a matrix.



54 3. Matrices and Systems of Linear Equations

The command help matlab/elmat provides an overview of all operations for creating

and manipulating matrices.

Practical Experiments:

Exercise E-3.2: Use the MATLAB–command rand to generate (4× 4)–random ma-

trices A and B. Calculate the following expressions for the matrices A1, A2, A3, A4

and check (by calculating the difference) which matrices are identical. Explain the

observed result!

A1 = A*B A2 = B*A

A3 = (A'*B')' A4 = (B'*A')'

A1 = A'*B' A2 = (A*B)'

A3 = B'*A' A4 = (B*A)'

A1 = inv(A*B) A2 = inv(A)*inv(B)

A3 = inv(B*A) A4 = inv(B)*inv(A)
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3.3 Systems of Linear Equations and Gaussian Elimina-

tion

A system of linear equations with n equations and n unknowns

x1, x2, . . ., xn

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

an1x1 + an2x2 + · · ·+ annxn = bn

(3.3)

can be expressed in the more compact matrix form

Ax = b (3.4)

Such a system is termed as regular, if its coefficient matrix A = [aij] is invertible. A

regular system has a unique solution x = [xi] which can be found in MATLAB with

either the array left division

x=A\b

or by a multiplication with the inverted matrix

x=inv(A)*b

Essentially, both operations achieve the same results but the first method should be

prefered since its calculaiton is more efficient. In the following, the methods to solve

a linear system of equations should be explored by looking at a simple version of the

Gaussian elimination procedure. First of all, the solution for a system of linear equa-

tions should be illustrated graphically.

Preparation:

Exercise P-3.3: Recapitulate the principles of the Gaussian elimination method as

known form basic math courses.
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Exercise P-3.4: Use this method to find the solutions to the following system of

linear equations:

2x1 + 3x2 + x3 = −4

4x1 + x2 + 4x3 = 9

3x1 + 4x2 + 6x3 = 0

(3.5)

Practical Experiments:

Exercise E-3.3: Consider the following system of linear equations (a ∈ R)

2x1 + + x3 = −1

1
4
x1 + 15

4
x2 + x3 = −3

(3 + 6a2)x1 + (1− 16a2)x2 + x3 = 10a− 3

(3.6)
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whose solution(s) should now be illustrated graphically .

Consider only the first equation of the system. Solve it for x3 and create a

3D–plot of x1 and x2, e.g., using

>> [x1, x2] = meshgrid( -2:.1:2, -2:.1:2 );

>> x3_Eq1 = ...

>> surf( x1, x2, x3_Eq1, 1*ones(size(x3_Eq1)) ); shading flat;

>> hold on; axis(2*[-1 1 -1 1 -1 1]); caxis([1 3]);

Which geometric figure can you see?

Consider now the second equation of the system. Solve it for x3 and plot x3

also in the previously created figure:

>> x3_Eq2 = ...

>> surf( x1, x2, x3_Eq2, 2*ones(size(x3_Eq2)) ); shading flat;

Where are the points [x1, x2, x3]
T that fulfill both equations simultaneously?

Consider now only the third equation of the system. Solve it for x3 and add

the plot x3 for a = 0 in your figure. Where is the solution of the system of

equations?

Change the value of a in small steps from 0 to 1 and display the result in

3D-plot. What do you observe? Where lies the solution? Which special case

is obtained for a = 1?

Change the value of a in small steps from 0 to −1 and display the result in a

3D plot. What do you observe? Where lies the solution? Which special case

is obtained for a = −1?
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3.3.1 Implementation of an Elimination Step

For the Gaussian elimination, the system of linear equations of (3.3) is rearranged such

that the coefficient aii does not disappear (aii 6= 0).

By dividing the i-th row with aii, the coefficient of the i-th row and i-th column is

normalized to one. Finally, the i-th row multiplied with −aji will be added to the j-th

row for j = 1, . . . , i−1, i+1, . . . , n. After these steps, the i-th column is filled with zeros,

only the coefficient of the i-th row is 1. The set of equations has now the following form:

a′11x1 + . . . + a′1,i−1xi−1 + 0 + a′1,i+1xi+1 + . . . + a′1nxn = b′1
...

...

a′i1x1 + . . . + a′i,i−1xi−1 + xi + a′i,i+1xi+1 + . . . + a′inxn = b′i
...

...

a′n1x1 + . . . + a′n,i−1xi−1 + 0 + a′n,i+1xi+1 + . . . + a′nnxn = b′n

(3.7)

Practical Experiments:

Exercise E-3.4: Implement a function [As, bs] = elim(A,b,i) that performs the

elimination step described above for the i-th row/column of the matrix A and

vector b. It is assumed here that aii 6= 0. Proceed as follows:

1. Create a matrix [A|b] that contains the matrix A and the column vector b in

its (n+ 1)-th column. .

2. Divide the i-th row of the matrix [A|b] by the element aii.

3. Add the i-th row multiplied by −aji to the j-th row (j = 1, . . . , n, j 6= i) of

the matrix [A|b].

4. This results the new matrix [Ã|b̃]. Extract the matrix Ã and the vector b̃ and

return them as output of your function elim.

Test your function using the matrix A and vector b of the system of linear equa-

tions (Eq. 3.5) mentioned in Exercise P-3.4 as inputs of elim. Vary the column

number i.
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3.3.2 Elimination through Pivoting

A system of linear equations in the form of Eq. 3.3 can be solved by applying the above

treated elimination step successively to the rows/columns from 1 to n. At the end of the

elimination process, an identity matrix is obtained on the left hand side and the vector

on the right contains the solution of the system of linear equations.

It can also happen that the coefficient in the i-th row and i-th column is equal to zero.

The function elim encounters a division by zero in this case. This can be avoided by

using the so-called row-pivoting. In this case, it is recommended to exchange the rows

i to n in the i-th elimination step such that the coefficient with the largest magnitude

value of the i-th column appears in the the i-th row. This procedure is also useful to

improve the accuracy of the result.

Practical Experiments:

Exercise E-3.5: Implement the function x=gausselim(A,b) that solves the system of

linear equations Ax = b by means of the Gaussian elimination method. Proceed

as follows:

1. Create a loop with the column index i as counter.

2. Find the row j = i, . . . , n that contains the element with the largest magni-

tude aji. Swap this row with the i-th row. (Note: The elements of the column

vector b need to be rearranged accordingly).

If the magnitude of the largest element is below a threshold (e.g., 1e-14), the

system of equations is nearly singular and the function gausselim should

abort with the MATLAB–command return) and the value NaN should be re-

turned.

3. Execute the elimination in the i-th column by using the function elim.

4. Display the solution x after the n-th step (i.e., the last value of the loop

counter).

The following core code is available for creating the function gausselim:
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function x = gausselim(A,b)

%

[m,n] = size(A);

% Loop through all the rows/columns

for i=...,

% Find the absolute maximum in the i-th column

% going through rows i,..,m

[value, index] = ...;

% Abort if < 1e-14

...

% Swap rows i and index (of both A and b)

...

% Carry out the elimination

[...] = elim(...);

end;

% Return value

x = ...;

Test your function with the system of linear equations introduced in P-3.4

Exercise E-3.6: Solve the system of linear equations using gausselim

2x1 + 3x2 − 8x3 = 10

−4x1 + 5x2 + x3 = −8

5x1 + x2 = 11

(3.8)

Compare the result with that obtained by a matrix left division x=A\b.

Exercise E-3.7: Solve the system of linear equations using gausselim

2x1 + 3x2 + 1x3 = 1

−4x1 + 4x2 + 2x3 = 2

4x1 + x2 = 3

(3.9)

Interpret the result!
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Chapter4
Complex Numbers

Complex numbers are a vital mathematical tool for engineers. For example, they are

of fundamental importance for solving equations as well as for the analysis of oscilla-

tion processes. In electrical engineering, these numbers are needed, among others, for

the complex analysis of AC circuits as well as the complex representation of baseband

signals.

4.1 Complex Numbers in MATLAB

Computations by MATLAB are done without differentiating between real and complex

numbers and all arithmetical operators and standard functions are defined for real and

complex numbers alike. The imaginary unit is given in MATLAB by either i or j. For

example, the variable a is assigned to a complex number 1 + 2i as follows:

>> a=1+2i

a =

1.0000 + 2.0000i

and i2 is given by
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>> a=i^2

a =

-1

Alternatively, the symbol j can also be used.1 MATLAB always uses the symbol i to

display complex numbers:

>> a=1+2j

a =

1.0000 + 2.0000i

The real and imaginary part of a complex number is obtained by the functions real and

imag. For the example of a=1+2i, this looks as follows:

>> real(a)

ans =

1

>> imag(a)

ans =

2

Magnitude and phase (in radians) of a complex number (in its polar form) can be ob-

tained by the functions abs and angle:

>> abs(a)

ans =

2.2361

>> angle(a)

ans =

1.1071

1In electrical engineering, the symbol j instead of i is commonly used to denote the imaginary unit

since the variable i is usually used to describe the current.
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The complex conjugated number is obtained by the function conj:

>> conj(a)

ans =

1.0000 - 2.0000i

The most important functions related to complex numbers in MATLAB are summarized

in Table A.12 in the Appendix.
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Preparation:

Exercise P-4.1: Recap the main calculation rules for complex numbers taught in

your undergraduate math course.

Let z1 = a1 + ib1 and z2 = a2 + ib2, ai, bi ∈ R, be complex numbers. What are the

real and imaginary parts

of a) z1 + z2, b) z1 − z2, c) z1 · z2 and d) z1/z2,

of the complex conjugate of z1 (find z∗1),

and of 1/z∗1?
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Exercise P-4.2: Determine the real and imaginary part of

z =
1

√
2
2
+ i

√
2
2

Exercise P-4.3: How is the complex number z = a + ib represented in its polar

form? Express z as a complex exponential function (exponential form)!
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Write the numbers z = 1+i, z = i and z = −1 in its polar form (exponential form).

Let z be given in a polar form. How is 1/z∗ represented in a polar form? Interpret

the result on the complex plane.
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Practical Experiments:

Exercise E-4.1: Calculate with the help of MATLAB the real and imaginary parts

of

a) z =
1

√
2
2
+ i

√
2
2

b) z =
2 + 3i

4− i
+

2− 3i

1− 4i
c) z = ii d) z = log(−1).

Exercise E-4.2: Determine with MATLAB the polar form of the following complex

numbers:

a) z = (1− 3i)3 + (1 + 3i)3 b) z =
(2− i)7

|−1 + i| · (−1 + i)

c) z =

(

1

2
+ i

√
3

2

)50

d) z = 5−1+2i + (−1 + 2i)5.

Exercise E-4.3: Create a MATLAB–function that converts complex numbers from

a Cartesian form to a polar form and vice versa. The input argument for this

function shall be a vector with two numerical values, which are either the real

and imaginary part or the magnitude and phase of the complex number, and a

distinguishing letter 'C' (Cartesian form) or 'P' (polar form). The ouput of the

function is the converted complex number.

If, for example, the complex number z = 1 + i should be converted to its polar

form the function call could be as follows:

>> complex( [1, 1], 'C' )

ans =

1.4142 0.7854

Test your function with the help of the following examples and explain the results:

z = 1 + i, z = −5i, z = 3ei3π/4, z =
√
2ei5π/4.

What is the result of your function for a call

complex(complex([1 p], 'P'), 'C'), where p takes values between 0 and

2π? Explain the result!
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Exercise E-4.4: Consider the function

f(x) =
eix + e−ix

2
, x ∈ R.

Plot the real and imaginary part of f(x) over x! What do you observe? Which

function is given by f(x)?

Hint: Which part of a complex number z is in general given by (z + z∗)/2?

4.2 Visualization of Complex Numbers

Complex numbers can be graphically represented in the complex plane. The function

cplot (which is only available in the CIP–Pool for this lab course) visualizes complex

numbers as pointers in the complex plane.

Practical Experiments:

Exercise E-4.5: Enter the following MATLAB–commands and explain the results:

>> a = 1+2i;

>> b = 1+i;

>> c = a+b;

>> plot( 0,0 ); axis([-3 3 -3 3]); grid; axis square; hold on;

>> cplot( a, 'r' );

>> cplot( b, 'b' );

>> cplot( c, 'g' );

Repeat this for

c = a-b;

c = a*b;

c = a/b;

c = conj(a);

c = a*conj(a);

c = a*conj(b);

c = 1/conj(b);

c = (a+conj(a))/2;

c = (a-conj(a))/2;
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Preparation:

Exercise P-4.4: State all complex solutions of the following equation:

z3 = −2 + 2i (Hint: −2 + 2i =
√
2
3
ei3π/4)

Practical Experiments:

Exercise E-4.6: Represent all the solutions determined in P-4.4 graphically! Pay

attention to the fact that MATLAB only returns one possible solution for the roots.

Moreover, give the solutions for the following equations:

a) z2 = i b) z4 = 1 + 2i c) z6 = −1

If a complex function of a real variable (e.g., time) should be represented, a three-

dimensional representation is needed. This can be done with the help of the function

plot3(x,y,z) which displays a three-dimensional plot for a set of data points given by

the vectors x, y and z.
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Preparation:

Exercise P-4.5: Figure 4.1 shows a helix that can be described by its function values

(y and z values) in dependence of time t (x values).

0

20

40

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

xy

z

Figure 4.1: Example of a helix function.

Write down the real coordinate functions y(t) and z(t) of the helix in dependance

of time t = x, t ∈ [0, 12π]. (Hint: The pitch of the helix is ∆t = 2π.)
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Consider now the y-coordinate as the real part and the z-coordinate as the imag-

inary part of a complex number c(t) that depends on the time t (x-coordinate).

Write down the resulting function c(t) in a compact form! Which mathematical

function describes the helix that is depicted on Figure 4.1?

Exercise P-4.6: Consider the following complex function that depends on a (real)

time variable t and another real parameter d ≥ 0:

c(t) = e(i−d)t , d ≥ 0

How do you expect the graph to look if (as seen in Figure 4.1) the time runs along

the x-axis, and the real and imaginary parts of the function run along the y- and

z-axis, respectively?
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Practical Experiments:

Exercise E-4.7: Create a plot of the helix as seen in Figure 4.1 by using the function

plot3. Pay attention to the proper scaling of the axes (for which the command

axis ij can be useful).

After that, use the button in order to vary the viewing angle of the plot. Es-

pecially, the following views are of interest

x-y-plane (real part over time),

x-z-plane (imaginary part over time) and

y-z-plane (imaginary part over real part).

Explain the different representations!

Exercise E-4.8: Represent the complex function c(t) from Exercise P-4.6 with var-

ious parameters 0 ≤ d ≤ 1. How can the parameter d be interpreted? What

happens if d takes on a value d < 0 contrary to its defintion?
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4.3 Complex Analysis of AC Circuits

Now we will have a look at another example that exemplifies the use of complex num-

bers. For this purpose, the course of an impedance of an AC current in dependence on the

frequency is analyzed. In AC circuit analysis, sine- or cosine-shaped current and voltage

waveforms are easily represented with the help of complex numbers. This allows for

an elegant representation of both, oscillation amplitude/RMS value (magnitude value

of the complex number), and also the phase (phase of the complex number). Formally,

the oscillation frequency f0, the RMS-value Vrms and the phase ϕ

√
2Vrms · cos(2πf0t+ ϕ) =

√
2Vrms · Re

{

ej(2πf0t+ϕ)
}

=
√
2 · Re

{

Vrms e
jϕ · ej2πf0t

}

(4.1)

are represented by the complex pointer (phasor) V = Vrms e
jϕ.

Similar to Ohm’s law, the complex ratio of the voltage and the current is specified as

complex resistance or impedance, i.e.,

Z =
U

I
, where Z is a complex number. (4.2)

The complex resistance Z does not only describe the ratio of amplitudes (via |Z|), but

also the phase shift between current and voltage (via arg(Z)). An ideal resistor has the

(real valued) impedance that is equal to its resistance value ZR = R, whereas an ideal

capacitor with capacity C has an (frequency-dependent) impedance of ZC = 1
jωC

, and

an ideal inductor with inductance L has an impedance of ZL = jωL. Thereby, ω = 2πf0

is the angular frequency of the voltages and currents.

Networks of (common) impedances are analyzed in the same way as networks of resis-

tors, with the only difference that complex impedance values must be used instead of

real-valued resistance values.

Practical Experiments:

Exercise E-4.9: A parallel circuit consisting of a resistor R = 1000 Ω and a capacity

C = 2 µF is considered.

Represent the real and imaginary part of the parallel circuit over its angular fre-

quency ω in a 3D–plot with ω covering a range [0 s−1, 104 s−1]. Rotate the diagram
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such that you can follow the course of the imaginary part over the real part of the

signal (locuse). How would you interpret the behavior of this impedance?

Repeat this procedure for a parallel circuit with an inductance of L = 0, 1 H and a

capacity of C = 2 µF.

Exercise E-4.10: Now a series circuit of a resistance R = 100 Ω with capacity C =

400 nF and an inductance L = 0, 1 H is considered. The serial RLC circuit is

excited with an AC voltage having an amplitude of 1 V and an angular frequency

ω. We are interested in the voltage and capacity.

Display the pointer (real and imaginary part) of the voltage over the capacitor

over the angular frequency in a 3D–plot for the same range of frequencies as be-

fore. Moreover, create a 2D–plot showing the magnitude and phase of the voltage

over the angular frequency. What kind of behavior do you observe?

Create another graph by using cplot which shows the complex pointers for the

overall voltage as well as the voltage for the resistance and the capacity for a

given angular frequency. (Select suitable steps for the angular frequency between

3000 s−1 and 7000 s−1). Interpret the result!
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Fourier Transform

The Fourier transform, which is used to convert a time-dependent signal to a frequency-

dependent signal, is one of the most important mathematical tools in signal processing.

Applying the Fourier transform to local sections of a time-dependent signal (e.g., an

audio signal), one obtains the short-time Fourier transform (STFT). In this course, we

study a discrete version of the STFT. To work with the discrete STFT in practice, one

needs to correctly interpret the discrete time and frequency parameters. Using basic

MATLAB functions, we generate discrete-time signals, compute a discrete version of

the Fourier transform and the STFT, and visualize the various representations. Further-

more, we study how to convert the discrete time and frequency axes to obtain physi-

cally meaning units given in seconds and Hertz.

5.1 Discrete Signal

When using digital technology, only a finite number of parameters can be stored and

processed. To this end, analog signals need to be converted into finite representations—

a process commonly referred to as digitization. One step that is often applied in an

analog-to-digital conversion is known as equidistant sampling. Given an analog signal

f : R → R and a positive real number T > 0, one defines a function x : Z → R by
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setting

x(n) := f(n · T ) (5.1)

for n ∈ Z. Since x is only defined on a discrete set of time points, it is also referred to as

a discrete-time (DT) signal. The value x(n) for some n ∈ Z is called a sample taken at time

t = n · T of the original analog signal f . This procedure is also known as T -sampling,

where the number T is referred to as the sampling period. The inverse

Fs := 1/T (5.2)

of the sampling period is also called the sampling rate of the process. It specifies the

number of samples per second and is measured in Hertz (Hz).

Practical Experiments:

Exercise E-5.1: Let [0, D] := {t ∈ R : 0 ≤ t ≤ D} be a time interval of duration D ∈
R>0 (given in seconds). Furthermore, let us consider the analog signal f : R → R

defined by

f(t) := A sin(2π(ωt− ϕ)) (5.3)

for t ∈ [0, D]. This signal is a sinusoid, where the parameter A corresponds to the

amplitude, the parameter ω to the frequency (measured in Hz), and the parameter ϕ

to the phase (measured in normalized radians with 1 corresponding to an angle of

360◦). Write a MATLAB script to do the following:

Based on a sampling rate of Fs = 22050 Hz, generate a DT-signal x by sam-

pling f , where the following parameters are to be used: A = 0.5, ϕ = 0,

ω = 440, D = 2.

Plot the signal x once using a time axis based on samples and once using a

time axis based on seconds. Explain what you see in the plots.

Use the command xlim to plot the signal only for the time interval [0.05, 0.06]

(given in seconds).

Save the resulting plots as an image file in png format using the MATLAB

command print.
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Familiarize yourself with the MATLAB command sound and use it to listen

to the signal x. Explain what happens if you do not specify the the sampling

rate Fs.

5.2 Practical Issues

In the above definition, we allowed a DT-signal to have infinite length (by considering

samples indexed by n ∈ Z). In practice, one typically considers only a finite number

of samples x(n) for n ∈ [0 : L− 1] for some parameter L ∈ N (often assuming that all

other samples are zero). The parameter L is also called the length of the signal x.

Using a programming language such as MATLAB, a DT-signal is usually represented

as a vector, where each entry of the vector corresponds to one sample. Note that there

are two kinds of vectors in MATLAB, namely row and column vectors. Often, it does not

matter whether one represents a DT-signal as a row or a column vector. However, for

certain MATLAB operations, this may become important—often a confusion between

row and column vectors leads to fatal errors. In this lab, to avoid confusions, we always

represent a DT-signal as a row vector. Note that it is easy to transform a column vector

into a row vector by applying a transposition. For example, in MATLAB, the vector x.’

is the transposed version of the vector x.

There is another issue that is a frequent source of confusion. The indexing schemes used

in theory and in programming languages such as MATLAB often differs. For example,

let us consider the DT-signal x : Z → R defined by

x(n) :=



























3 for n = 0

2 for n = 1

1 for n = 2

0 otherwise

(5.4)

for n ∈ Z. When representing this signal in MATLAB, one typically defines a vector

x = [3 2 1];
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Note that in this case the first entry x(1) of the vector corresponds to the sample x(0).

In other words, the index of the vector differs from the actual argument of the signal.

As a second example, let us consider the autocorrelation Rxx of x defined by

Rxx(n) =
∞
∑

k=−∞

x(k) · x(k − n) (5.5)

for k ∈ Z. Using the values from (5.4), we obtain

Rxx(n) =



















































3 for n = −2

8 for n = −1

14 for n = 0

8 for n = 1

3 for n = 2

0 otherwise

(5.6)

for n ∈ Z. When computing the autocorrelation in MATLAB of the vector x (using the

command xcorr), we obtain

>> Rxx = xcorr(x,x); disp(Rxx);

3 8 14 8 3

Note that, in this case, the first entry Rxx(1) of the result vector Rxx corresponds to

Rxx(−2). In most programming languages, vectors have a fixed indexing scheme. In

MATLAB, a vector x is always indexed starting with the index 1. As shown above,

this may not correspond to the indexing scheme as in the mathematical definitions. To

account for this fact, it is useful to define an additional index vector along with a DT-

signal that encodes the relation between the “mathematical” and the“practical” world.

For the above cross correlation example, we can define

index_Rxx = [-2 -1 0 1 2];

The index vector index_Rxx indicates that Rxx(1) corresponds to Rxx(index_Rxx(1)),

and so on. Such index vectors are also useful when it comes to plotting DT-signals. As

an example, compare the two plots obtained by the following MATLAB code:
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x = [3 2 1]

Rxx = xcorr(x,x);

index_Rxx = [-2 -1 0 1 2];

figure;

plot(Rxx);

axis tight;

set(gcf,'PaperPosition',[0 0 10 5]);

print('FT_Indexing_1','-dpng');

figure;

plot(index_Rxx,Rxx);

axis tight;

set(gcf,'PaperPosition',[0 0 10 5]);

print('FT_Indexing_2','-dpng');
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5.3 Discrete Fourier Transform (DFT)

Audio signals can be complex mixtures consisting of a multitude of different sound

components. A first step in better understanding a given signal is to decompose it

into building blocks that are better accessible for the subsequent processing steps. In

the case that these building blocks consist of exponential functions, such a process is

also called Fourier analysis. The Fourier transform maps a time-dependent signal to a

frequency-dependent function which reveals the spectrum of frequency components of
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the original signal. Loosely speaking, a signal and its Fourier transform are two sides

of the same coin. On the one side, the signal displays the time information and hides

the information about frequencies. On the other side, the Fourier transform reveals

information about frequencies and hides the time information.

For discrete time signals, one often computes the Fourier transform only for a finite

number of samples x(0), x(1), . . . , x(N − 1) for some suitable number N ∈ N. Further-

more, similar to the sampling of the time axis, one also samples the frequency axis

only considering a finite number of frequencies. This leads to a discrete version of

the Fourier transform also referred to as discrete Fourier transform (DFT). The DFT of

the samples x(0), x(1), . . . , x(N − 1) yields Fourier coefficients X(k) for k ∈ [0 : K] :=

{0, 1, . . . , K} with K := N/2 (assuming that N is even), which are defined by

X(k) =
N−1
∑

n=0

x(n) exp(−2πikn/N). (5.7)

Given the sampling rate Fs of the DT-signal x, the index k of the coefficient X(k) corre-

sponds to the physical frequency

Fcoef(k) :=
k · Fs

N
(5.8)

given in Hertz. Note that the largest index K = N/2 corresponds to the Nyquist fre-

quency, which is half of the sampling rate Fs of the discrete signal.

Practical Experiments:

Exercise E-5.2: Write a MATLAB script that determines the physical frequencies

Fcoef(k) (given in Hertz) of the DFT coefficient X(k) for k ∈ [0 : K] as well as the

Nyquist frequencies when using the following parameter settings:

(A) Fs = 22050, N = 1024

(B) Fs = 48000, N = 1024

(C) Fs = 4000, N = 4096

To this end, compute three vectors FcoefA, FcoefB, and FcoefC (for the three pa-

rameter settings), where each vector contains the frequency values (in Hertz) of
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the frequency indices for the respective setting. Then, plot the vectors in one fig-

ure using an index–frequency representation. To this end, use the MATLAB com-

mand hold on and use a different color for each of the vector’s representation.

Explain the figure in words.

Hint: In the above indexing of the frequency values, the indexing starts with the

index k = 0. When programming in MATLAB, indexing typically starts with the

index 1. Be aware of this fact (see also Section 5.2).

The DFT can be computed efficiently by using an algorithm known as the fast Fourier

transform (FFT). The FFT algorithm, which was discovered by Gauss and Fourier two

hundred years ago, has changed whole industries and is now being used in billions of

telecommunication and other devices. The FFT exploits redundancies across sinusoids

of different frequencies to jointly compute all Fourier coefficients by a recursion. This

recursion works particularly well in the case that N is a power of two. As a result,

the FFT reduces the overall number of operations from the order of N2 to the order of

N log2 N .

Practical Experiments:

Exercise E-5.3: In this task, we experiment with the FFT in MATLAB. First, based

on (5.3) and using a sampling rate Fs = 22050, generate the following two DT-

signals x and y (see Task 1):

signal x with A = 1, ϕ = 0, ω = 1, D = 5

signal y with A = 0.7, ϕ = 0, ω = 5, D = 5

Next, create the DT-signals u and v as follows:

signal u by concatenating x and y (i.e., v=[x y])

signal v by superimposing x and y (i.e., v=x+y)
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Plot both signals on a time axis based on seconds.

Now, we compute the Fourier transform of the signals u and v. Familiarize your-

self with the MATLAB command fft and use it to compute the Fourier transforms

of u and v, respectively. Plot the two resulting spectra using a frequency axis given

in Hertz. To compute the frequency axis, you need (5.8) (see also Task 2). Note

that applying the FFT yields a complex-valued vector of length N . (What is N

for u and v, respectively?) We are only interested in the first K + 1 entries of

this vector. (Why?) When visualizing a frequency spectrum, we only consider

the magnitude of the complex-valued Fourier coefficients. To get the magnitude

spectrum from a complex spectrum, you can use the MATLAB function abs.

Plot only the frequency range from zero to seven Hertz of the two spectra using

the MATLAB command xlim. As result, your plots should look like as follows:

What are your observations when comparing the two spectra? Explain your find-
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ings in words.

Practical Experiments:

Exercise E-5.4: In this task, you are given a rather long audio signal (around eight

minutes) which is zero almost everywhere (silence). At some point in the signal,

there is a very short tone of a certain frequency. Your task is to estimate both

the time of occurrence (in seconds) as well as the frequency of this tone (in Hertz).

You can load the signal in MATLAB by calling [x,Fs]=wavread(’FT_HiddenTone.

wav’).

5.4 Short-Time Fourier Transform (STFT)

As mentioned before, the Fourier transform reveals the frequency content of a signal

while hiding the time information. To obtain back the hidden time information, Den-

nis Gabor introduced in the year 1946 the modified Fourier transform, now known as

short-time Fourier transform (STFT). This transform is a compromise between a time- and

a frequency-based representation by determining the sinusoidal frequency and phase

content of local sections of a signal as it changes over time. In this way, the STFT does

not only tell which frequencies are “contained” in the signal but also at which points of

time or, to be more precise, in which time intervals these frequencies appear.

We now review the definition of the discrete STFT. Let x : Z → R be a real-valued

discrete signal obtained by equidistant sampling with respect to a fixed sampling rate

Fs given in Hertz. Furthermore, let w : [0 : N − 1] := {0, 1, . . . , N−1} → R be a discrete-

time window of length N ∈ N and let H ∈ N be a hop size parameter. With regard to

these parameters, the discrete STFT X of the signal x is given by

X (m, k) :=
N−1
∑

n=0

x(n+mH)w(n) exp(−2πikn/N) (5.9)

with m ∈ Z and k ∈ [0 : K] and K = N/2 (assuming that N is even). The complex

number X (m, k) denotes the kth Fourier coefficient for the mth time frame. Each Fourier
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coefficient X (m, k) is associated with the physical time position

Tcoef(m) :=
m ·H
Fs

(5.10)

given in seconds and with the physical frequency

Fcoef(k) :=
k · Fs

N
(5.11)

given in Hertz (Hz). For example, using Fs = 44100 Hz as for a CD recording, a window

length of N = 4096, and a hop size of H = N/2, we obtain a time resolution of H/Fs ≈
46.4 ms and a frequency resolution of Fs/N ≈ 10.8 Hz.

Practical Experiments:

Exercise E-5.5: Using Fs = 22050, N = 2048 and H = 1024, write a short MATLAB

script to compute the physical meaning of the Fourier coefficients X (1000, 1000),

X (17, 0), and X (56, 1024)?

When computing the STFT, there are many choices for the window function w. For

example, one often uses the so-called Hamming window of length N , which is defined

by

w(n) = 0.56− 0.46 · cos
(

2πn

N − 1

)

(5.12)

for n ∈ [0 : N − 1]. In the following, we assume that the DT-signal x has finite length

L ∈ N only considering the samples x(n) for n ∈ [0 : L− 1]. Furthermore, let

xm(n) :=







x(n+mH) for n ∈ [0 : N − 1],

0 otherwise.
(5.13)

denote the mth frame of the signal. Note that the mth frame is only defined for m ∈
[0 : M − 1] for

M := ⌊(L−N)/H⌋+ 1 (5.14)

(Why? Give an explanation!), where ⌊·⌋ denotes the floor operator, which yields the

largest integer that is smaller or equal to its argument. Furthermore, one often uses the

window overlap O (instead of a hop size H), where

O := N −H. (5.15)
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Based on this notation, the STFT of a signal x of length L can be computed by the

following procedure:

Algorithm: STFT

Input: Samples x(n) for n ∈ [0 : L− 1]

Window function w of length N (assuming N is even)

Window overlap O

Output: STFT coefficients X (m, k) for m ∈ [0 : M − 1] and k ∈ [0 : K]

Procedure: Compute H = N − O, M = ⌊(L − N)/H⌋ + 1, and

K = N/2. Then perform in a loop for m = 0, . . . ,M − 1 the

following steps:

(1) Compute the frame xm.

(2) Compute the pointwise product w · xm.

(3) Compute the DFT of the pointwise product w · xm.

(4) Consider the first K + 1 entries of the result to define X (m, k)

for k ∈ [0 : K].

Practical Experiments:

Exercise E-5.6: Following the above procedure, write a MATLAB function X=FT_

STFT(x,w,O). Given a vector x that encodes a DT-signal x of length L, a vector

w that encodes a window function of length N and a window overlap O, your

function should compute a matrix X that encodes the STFT coefficients X .

Hint: Again be aware of indexing issues (see Section 5.2). The MATLAB function

should output a ((K+1)×M) matrix X, where the first column of X (having length

K + 1) corresponds the Fourier coefficients X (m, k) for m = 0 and k ∈ [0 : K].

The STFT is often visualized by means of a spectrogram, which is a two-dimensional

representation of the squared magnitude:

Y(m, k) = |X(m, k)|2. (5.16)
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When generating an image of a spectrogram, the horizontal axis represents time, the

vertical axis is frequency, and the spectrogram value at a particular time–frequency

point is represented by the intensity or color in the image.

Practical Experiments:

Exercise E-5.7: In this task, we test the STFT implementation from Task 6.

Use the function wavread to read the file FT_TwoSineTwoImpulse.wav. This

defines a vector x that represents the audio signal as well as the sampling rate

Fs. In the case that the signal is stereo, only use the first channel. Following

our conventions, make sure that the DT-signal x is represent as a row vector

x (possibly by applying the MATLAB transposition operator).

Listen to x by using the sound command.

Initialize a window length parameter N=1024, a hop size parameter H=256

and derive the window overlap O.

Compute a vector w that represents a Hamming window function of length

N as defined in (5.12).

Compute the matrix X encoding the discrete STFT X using the function FT_

STFT from Task 6.

Alternatively, you can also compute X using the predefined MATLAB func-

tion X=spectrogram(x,w,O).

Compute a matrix Y that encodes the spectrogram Y(m, k) as in (5.16).

Using (5.10), compute a vector Tcoeff that contains the physical time posi-

tions (in seconds) of the time indices.

Using (5.11), compute a vector Fcoeff that contains the frequency values (in

Hertz) of the frequency indices.

Visualize the spectrogram in various ways using the functions image,

imagesc, axis xy, colorbar, and so on. Doing so, use the various visualiza-

tion parameters and tools of MATLAB treated in the previous experiments.
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Plot the spectrogram using a time and a frequency axis based on indices.

Plot the spectrogram using a time and a frequency axis given in seconds and

Hertz, respectively. This can be done by applying the functions image or

imagesc using Tcoeff and Fcoeff as additional parameters.

Next, use a logarithmic decibel-scale for visualizing the values Y(m, k). (Re-

call that, given a value v ∈ R, the decibel value is 10 log10(v).) When plotting

the spectrogram, restrict the visible frequency range from 300 Hz to 1000 Hz

using the MATLAB command ylim.

Compute a spectrogram of the same recording using N=8192 and H=2048.

Note, that you also need to recompute O and w! Again, restrict the plot of

the spectrogram to the frequency range from 300 Hz to 1000 Hz. Discuss the

trade-off between time resolution and frequency resolution.

Try out other audio files.

Literature to Experiment 5

[1] Meinard Müller. Fundamentals of Music Processing. Springer Verlag, 2015.
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AppendixA
MATLAB–Reference

In the following some important commands, operations, characters etc. are categorized

and summarized.

Table A.1: Data input and output in Command Window.

Command Meaning

clc Clear Command Window

disp Display value of a variable

input Request user input

pause Halt execution temporarily

diary creates a log of keyboard input and the resulting text output

(saves Command Window text to file)
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Table A.2: Special characters in MATLAB.

Character Meaning

(sequence)

( ) Parentheses are used to enclose arguments of functions

[ ] Brackets are used to form vectors and matrices

. Decimal point

... Continuation (often used to continue the current function

on the next line)

, Used to separate matrix subscripts and function arguments

; Used inside brackets to end rows of a matrix

; Suppress printing on the display

% Denotes a comment; indicates a logical end of line

= Used in assignment statements

Table A.3: System Commands.

Command Meaning

quit, exit Terminate MATLAB

cd Change current folder

pwd Identify current folder (print working directory)

dir List current folder contents

.. Change to parent folder

delete Delete files or objects

path View or change search path
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Table A.4: Workspace operations.

Command Meaning

who List variables in workspace

whos List variables in workspace, with sizes and types

clear Remove variables from current workspace

load Load variables from file into workspace (mat–file in special

MATLAB–format)

load -ascii Treats filename as an ASCII file, load data from file

save Save Workspace variables to a mat–file

save -ascii Save data to an ASCII file

save -append Append a variable to an existing (mat–file

Table A.5: Help functions.

Command Meaning

help Online Help

help fun Help text for the functionality specified by fun

help general Help text for general commands

help ops Help text for operators

help elmat Help text for matrices and their manipulation

help elfun Help text for elementary functions

help matfun Help text for special functions in linear algebra

helpwin Online–Help in a separate Help Window

helpdesk Detailed Hypertext–Documentation

demo MATLAB Demo–Programs
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Table A.6: Special Variables and Constants.

Command Meaning

ans Default name for most recent answer

eps Floating-point relative accuracy, eps = 2.2204e-16

realmax Largest positive floating-point number, realmax = 1.7977e308

realmin Smallest positive normalized floating-point number,

realmin = 2.2251e-308

pi Floating-point number nearest the value of π

i, j i =
√
−1 (imaginary unit)

Inf Infinity

NaN Not a Number

Table A.7: Arithmetic, relational and logical operators.

Command Meaning

+ Addition

- Subtraction

* Multiplication

a^b ab

> Greater than

< Less than

== Equal to

>= Greater than or equal to

<= Less than or equal to

~= Not equal to

& Logical AND

| Logical OR
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Table A.8: Standard Functions.

Command Meaning

sin Sine

cos Cosine

tan Tangent

cot Cotangent

exp Exponential function

log Natural logarithm

log10 Common logarithm (base 10)

sqrt Square root

fix Round toward zero

floor Round toward negative infinity

ceil Round toward positive infinity

round Round to nearest decimal or integer

sign Indicate sign of input

Table A.9: Operations with matrices (column by column).

Command Meaning

min Minimum

max Maximum

sum Sum of array elements

prod Product of array elements
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Table A.10: Elementary matrix manipulations and definitions.

Command Meaning

zeros Create array of all zeros

ones Create array of all ones

eye Identity matrix

diag Create diagonal matrix or get diagonal elements of matrix

rand Uniformly distributed random numbers (range (0, 1))

randn Normally distributed random numbers (mean 0, variance

1)

triu Upper triangular part of matrix

tril Lower triangular part of matrix
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Table A.11: Basic operations with matrices.

Command Meaning

.* Element-wise multiplication

/ \ Matrix left and right division

.' Non-conjugate transpose

' Complex conjugate transpose

(Hermitian transpose)

size Matrix dimensions

length Vector dimension

find Find indices and values of nonzero elements

inv Invert matrix

det Determinant of matrix

trace Trace of matrix

norm Norm of matrix/vector

rank Rank of matrix

eig Eigenvalues and eigenvectors of matrix

svd Singular value decomposition

cond Condition number of matrix

orth Orthonormal basis for range of matrix
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Table A.12: Operations with complex numbers.

Command Meaning

real Real part

imag Imaginary part

abs Absolute value

angle Phase angle

conj Complex conjugate

Table A.13: MATLAB–Functions for searching and editing.

Command Meaning

edit Opens a new M–file called Untitled in the Editor

lookfor Search for keyword in all help entries

which Locate functions and M–files

Table A.14: Special keyboard shortcuts.

Key combina-

tion

Meaning

Ctrl-P Move up in Command History

Ctrl-N Move down Command History

Ctrl-B Move one position to the left

Ctrl-F Move one position to the right

Ctrl-A Move to the beginning of the row

Ctrl-E Move to the end of the row

Ctrl-U, Ctrl-Z Delete one row

Ctrl-C Terminate the currently running script


