
A Fast Program Generator of Fast FourierTransformsMichael Clausen and Meinard M�ullerUniversit�at Bonn, Institut f�ur Informatik V,R�omerstr. 164, D-53117 Bonn, Germanyclausen@cs.uni-bonn.de, meinard@cs.uni-bonn.deAbstract. Let G be a �nite group of order n. By Wedderburn's The-orem, the complex group algebra CG is isomorphic to an algebra ofblock diagonal matrices: CG ' �hk=1Cdk�dk . Every such isomorphismD, a so-called discrete Fourier transform of CG, consists of a full setof pairwise inequivalent irreducible representations Dk of CG. A resultof Morgenstern combined with the well-known Schur relations in rep-resentation theory show that (under mild conditions) any straight lineprogram for evaluating a DFT needs at least 
(n log n) operations. Thusin this model, every O(n log n) FFT of CG is optimal up to a constantfactor. For the class of supersolvable groups we will discuss a programthat from a pc-presentation of G constructs a DFT D = �Dk of CG andgenerates an O(n log n) FFT of CG. The running time to construct D isessentially proportional to the time to write down all the monomial (!)twiddle factors Dk(gi) where the gi are the generators corresponding tothe pc-presentation. Finally, we sketch some applications.1 IntroductionThis paper is concerned with fast discrete Fourier transforms. From an engineer-ing point of view, there are two types of domains: a signal domain and a spectraldomain. Algebraically, both domains are �nite dimensional vector spaces (overthe complex numbers, say) and, in addition, they are equipped with a multiplica-tion which turns both domains into associative C-algebras. The multiplication inthe signal domain, called convolution, comes from the multiplication in a �nitegroup, whereas the multiplication in the spectral domain is closely related tomatrix multiplication. Fourier transforms isomorphically link these two domainsand thus link convolution and matrix multiplication.To be more speci�c, let G be a �nite group. The set CG := faja : G! Cg ofall C-valued functions (signals) on G becomes a vector space over C by pointwiseaddition and scalar multiplication. A natural basis is given by the indicatorfunctions (G 3 h 7! �gh) of the group elements g 2 G. Identifying each groupelement with its indicator function, CG can be viewed as the C-linear span ofG, i.e., the span of all formal sums Pg2G agg with complex coe�cients. Themultiplication in G extends to the so-called convolution in CG:�Xg2G agg� � �Xh2G bhh� = Xk2G�Xg2G agbg�1k�k:



In this way, CG becomes a C-algebra, the so-called group algebra of G overC. For example, if G = Cn = hX j Xn = 1i is the cyclic group of order n,then CG can be identi�ed with the polynomial ring C[X] modulo the idealgenerated by Xn�1. In this case, convolution in CG means ordinary polynomialmultiplication modulo the relation Xn = 1. If ! is a primitive nth root of unity,then the factorization Xn � 1 = Qn�1j=0 (X � !j) combined with the chineseremainder theorem shows that CCn is isomorphic to the algebra �n�1j=0C1�1 ofn-square diagonal matrices. With respect to natural bases in both spaces thisisomorphism is described by the classical DFT matrix D = (!jk)0�j;k<n.Wedderburn's structure theorem for split semisimple algebras yields the rightgeneralization of the above situation: according to this theorem, the complexgroup algebra CG is isomorphic to an algebra of block diagonal matrices,D = �hk=1Dk : CG �! �hk=1Cdk�dk :Here, the number h of blocks equals the number of conjugacy classes of G andthe projections D1; : : : ; Dh form a complete set of pairwise inequivalent irre-ducible representations of CG. Recall that a representation of CG of degree fis an algebra morphism F : CG! Cf�f . It is irreducible i� F is surjective. Tworepresentations F1; F2 of degree f are equivalent, F1 � F2, if an invertible matrixX exists such that for all a 2 CG : F1(a) = XF2(a)X�1. Every isomorphismDis called a discrete Fourier transform (DFT). If G is non-abelian, there are in-�nitely many DFTs of CG. However, according to the Skolem-Noether theorem,if D and � are DFTs of CG, then there are invertible matrices Xk such that�(a) = �kXiDk(a)X�1k for all a 2 CG. In the sequel, DFT(G) denotes the setof all DFT matrices of G.From an algebraic point of view, performing a DFT, CG 3 a 7! D(a),amounts to evaluating a full set of pairwise inequivalent irreducible representa-tions. In matrix terminology this amounts to multiplying the corresponding DFTmatrix D by an input vector a := (ag)g2G. The linear complexity L(D) of theDFT matrix is the minimumnumber of additions, subtractions, and scalar mul-tiplications1 to compute the matrix-vector product D � a for arbitrary a 2 CjGj.If the program constants are restricted to be of absolute value � 2, then thecorresponding minimum number L2(D) is called the 2-linear complexity of D.The linear complexity L(G) of the �nite group G is de�ned byL(G) := minfL(D) jD 2 DFT(G)g:Similarly, one de�nes L2(G). Trivially, jGj � 1 � L(G) � 2jGj � (jGj � 1), andL(G) � L2(G). A theorem by Morgenstern [7] combined with the classical Schurrelations yield [2]: L2(G) > 14 jGj log jGj. Thus performing a DFT with onlyO(jGj log jGj) additions, subtractions, and scalar multiplications by small pro-gram constants is almost optimal in the L2-model. This justi�es the name FastFourier Transform. (For more details on lower complexity bounds, see Chapter1 In the classical FFT algorithms these program constants are the so-called twiddlefactors.



13 of [4].) As an example, the Cooley-Tukey FFT of CG, G a cyclic 2-group,uses only roots of unity as program constants and is thus essentially 2-optimalin the L2-model.Prior to performing a DFT one has to solve a fundamental problem in rep-resentation theory: up to equivalence, all irreducible representations of CG haveto be generated. In general not an easy task! Even worse: as we are interestedin a fast evaluation of D = �Dk we should choose the representatives Dk in theequivalence classes very carefully. In other words, we have to choose the rightXk above.At least for the class of supersolvable groups, it turns out that choosing theright bases is quite easy. Moreover both problems (generating a DFT, performinga DFT) can be solved in an essentially optimal way. Furthermore, the resultslead to fast algorithms not only in theory but also in a practical sense. The aimof this paper is to present these results and some of its consequences withoutgiving too much technical details. For more information we refer to [1, 2, 4, 5, 8,12].The rest of this paper is organized as follows. After some preparations, wedescribe in Section 2 geometrically a monomial DFT for supersolvable groupsand indicate how this yields FFTs for supersolvable groups. Section 3 presentsthe main ideas of the algorithm that constructs monomial DFTs. Furthermore,some implementation details and running times are shown. Section 4 sketchessome applications.2 Monomial DFTs for Supersolvable GroupsA �nite group G is called supersolvable i� there exists a chainT = (G = Gn � Gn�1 � : : : � G1 � G0 = f1g)such that each Gi is a normal subgroup in G and all indices [Gi : Gi�1] =: pi areprime. Thus T is a chief series of G with chief factors Gi=Gi�1 of prime order.For example, all nilpotent groups (especially all groups of prime power order)are supersolvable.In this section we are going to describe the irreducible representations ofsupersolvable groups in a geometric way. This approach will be the theoreticalbasis of the algorithmic approach shown in the next section. We need somepreparations.2.1 Basic De�nitions and ToolsThe character � of a representation D of CG is de�ned by �(g) := Trace(D(g)),for g 2 G. Characters are constant on conjugacy classes and two represen-tations are equivalent i� their characters are equal. Characters correspond-ing to irreducible representations are called irreducible characters. A charac-ter is called linear i� it corresponds to a representation of degree 1. By Irr(G)



we denote the set of all irreducible characters of G. The space CF (G;C) ofall complex-valued class functions on G becomes an inner product space byh�j i := jGj�1Pg2G �(g) (g). For a proof of the following facts we refer to [9]:Theorem 1. For a �nite group G with h conjugacy classes the following is true:(1) Irr(G) = f�1; : : : ; �hg is an orthonormal basis of CF (G;C).(2) Let F and Dk be representations of CG with characters � and �k, respec-tively. If Dk is irreducible, then the multiplicity hDkjF i with which Dk occursin F equals h�kj�i.(3) If ek := e�k := �k(1)jGj Pg2G �k(g�1)g, then e1; : : : ; eh are a basis of the centerof CG. Moreover, 1 = e1 + : : :+ eh and ekej = �kjek. (The ek are calledcentral primitive idempotents in CG.)(4) If M is a left CG-module a�ording the representation F with character �,then M = �hk=1ekM (isotypic decomposition). If Mk is a simple modulea�ording the character �k, then ekM , the isotypic component of type �k, isisomorphic to the direct sum of h�kj�i copies ofMk. Every simple submoduleof M a�ording the character �k is contained in ekM .Let H be a subgroup of G. Then CH can be viewed as a subalgebra of CG.If D is a representation of CG, then its restriction to CH is a representation ofCH denoted by D # H =: F . In turn, D is called an extension of F . Similarly,� # H denotes the restriction of the character �.One important tool in constructing representations is the process of induc-tion, where a representation of a group G is constructed from a representation ofa subgroup H. In terms of modules, the construction is straightforward: let L bea left ideal in CH. Then CGL is a left ideal in CG and with G = tri=1giH oneobtains the decomposition CGL = �ri=1giL as a C-space. In particular, CGLhas dimension [G : H] � dimL. The left CG-module CGL is said to be inducedby L. A look at the corresponding matrix representations leads to the followingde�nition. Let H be a subgroup of the group G, T := (g1; : : : ; gr) a transversalof the left cosets of H in G and let F be a representation of CH of degree f .The induced representation F"TG of CG of degree f � r is de�ned for x 2 G byF"TG(x) := ( _F (g�1i xgj))1�i;j�r 2 (Cf�f )r�r ;where _F (y) := F (y) if y 2 H, and _F (y) is the f-square all zero matrix, ify 2 G n H. It is easily checked that this de�nes a representation of CG. Tak-ing di�erent transversals gives possibly di�erent, but equivalent representations.Thus in non-critical situations we sometimes write F"G instead of F"TG. Notethat F"TG(x), for x 2 G, is a block matrix, with exactly one non-zero blockin each block row and in each block column. In particular, if F is of degree 1,then, for all x 2 G, the matrix F"TG(x) is monomial. (Recall that a matrix iscalled monomial i� it has exactly one non-zero entry in each row and in eachcolumn. A representation D of CG is said to be monomial i� D(g) is monomial,for all g 2 G.) A group G is called an M -group if every irreducible represen-tation is equivalent to a monomial one. Below we will give an alternative proof



to the well-known fact that supersolvable groups are M -groups. There is a closeconnection between restriction and induction. A more precise statement readsas follows.Theorem 2 (Frobenius Reciprocity Theorem). Let H be a subgroup ofG. Furthermore, let F and D be irreducible representations of CH and CG,respectively. Then the multiplicity hF jD#Hi of F in D#H equals the multiplicityhDjF"Gi of D in F"G: hF jD#Hi = hDjF"Gi.If N is a normal subgroup of G and F a representation of CN , then for g 2 Gwe de�ne a new representation F g of CN by F g(n) := F (g�1ng) for all n 2 N . Fand F g are called conjugate representations. As ff(n)jn 2 Ng = fF g(n)jn 2 Ng,F is irreducible i� F g is irreducible, and G acts on Irr(N ) by conjugation viag� := (N 3 n 7! �(g�1ng)). The last tool needed for our geometric approach isthe following special case of Cli�ord theory.Theorem 3 (Cli�ord's Theorem). Let N be a normal subgroup in G of primeindex p, and let F be an irreducible representation of CN . For a �xed g 2 GnN ,let T denote the transversal (1; g; g2; : : : ; gp�1) of the cosets of N in G. Thenexactly one of the following two cases applies.(1) All F gi are equivalent. Then there are exactly p irreducible representationsD0; : : : ; Dp�1 of CG extending F . The Dk are pairwise inequivalent andsatisfy F"G � D0 � : : :�Dp�1. Moreover, if �0; �1; : : : ; �p�1 are the linearcharacters of the cyclic group G=N in a suitable order, we have Dk = �k
D0for all k, i.e., Dk(x) = �k(xN )D0(x), for all x 2 G.(2) The representations F gi are pairwise inequivalent. In this case, the inducedrepresentation F"G is irreducible.To decide which case in Cli�ord's Theorem applies, we work with intertwiningspaces. Recall that for two representations D and � of CG, both of degree d,the intertwining space is de�ned byInt(D;�) := fX 2 Cd�djXD(g) = �(g)X; for all g 2 Gg:2.2 A Geometric ApproachLet T = (Gn � Gn�1 � : : : � G0) be a chief series of the supersolvable groupG = Gn of exponent e and let � 2 Irr(G) be a �xed irreducible character of G.We are going to associate to � a simple left CG-moduleM a�ording � and a basisin M such that the resulting representation D is monomial, i.e., D is monomialand each non-zero entry of D(g), g 2 G, is an e-th root of unity. To this end,we consider all sequences w = (�0; : : : ; �n = �), with irreducible characters�i 2 Irr(Gi). By Theorem 1 (4) and Frobenius Reciprocity the producte(w) := e�0 � : : : � e�n



of the corresponding central primitive idempotents is non-zero i� all multiplic-ities h�ij�i+1i := h�ij�i+1#Gii are positive. The set of all those sequences willbe denoted by W (�):W (�) := f(�0; : : : ; �n = �) j �i 2 Irr(Gi); h�ij�i+1i > 0g:Theorem 4 ([6]). Let G be a supersolvable group of exponent e, � an irreduciblecharacter of G, and T a chief series of G. Then the following holds.(1) Let w 2 W (�). Then e(w) is a primitive idempotent in CG and CGe(w) isa simple CG-module a�ording the character �. The dimension of CGe(w)equals �(1) = jW (�)j.(2) Let v 2 W (�) and set M := CGe(v). Then M = �w2W (�)e(w)M is adecomposition of M into 1-dimensional linear subspaces e(w)M .(3) G acts transitively on W (�) by g(�0; : : : ; �n) := (g�0; : : : ; g�n).(4) For all g 2 G and all w 2W (�) we have ge(w)g�1 = e(gw).(5) Let U be the stabilizer of v 2 W (�) and L a transversal of the left cosets ofU in G. Then f`e(v)j` 2 Lg is a C-basis of CGe(v) and the correspondingrepresentation D of CG is e-monomial. More precisely, if the 1-dimensionalCU -module e(v)CGe(v) a�ords the linear character �, then e(v) equals thecentral primitive idempotent corresponding to �: e(v) = e�, and D = �"LG.Proof. (1). e� = (Qi<n 1)e� =Qi<n(P�i2Irr(Gi) e�i)e� =Pw2W (�) e(w): Thuse� is the sum of �(1) pairwise orthogonal idempotents e(w); thus all e(w) areprimitive.(2). Let M = CGe(v) and w 2 W (�). Then e(w) applied to M causessuccessive isotypic decompositions ofM along T : e�0 � (e�1 � (: : : � (e�n�1M ) : : :)).As h�ij�i+1i = 1 (by Cli�ord's Theorem), e(w)M is a simple CG0-module, henceone-dimensional.(3). By Cli�ord's Theorem, G acts transitively on the irreducible constituentsof � # Gn�1. Observing that Gn�1 acts trivially on Irr(Gn�1), an induction onn yields our claim.(4). This follows from ge�ig�1 = eg�i , for all �i 2 Irr(Gi).(5). By (3) and (4), G acts transitively on the set of lines fe(w)M jw 2W (�)gaccording to ge(w)M = e(gw)gM = e(gw)M . Choosing any nonzero vectorxw 2 e(w)M yields a basis (xw)w2W (�) of M , and, by (2), the correspondingmatrix representation is monomial. Now we choose the xw in such a way that thenon-zero entries in the representation matrices to the group elements are all ethroots of unity. To this end, let U � G denote the stabilizer of v 2W (�) and L aleft coset transversal of U in G. As for g 2 G, 0 6= ge(v) = e(gv)ge(v) 2 e(gv)Mand G acts transitively on W (�), the set fge(v)jg 2 Lg is a C-basis of M . AsU stabilizes the line e(v)M = Ce(v), there exists a linear character � of U suchthat ue(v) = �(u)e(v), for all u 2 U . Now let e� = jU j�1Pu2U �(u�1)u 2 CUdenote the central primitive idempotent corresponding to �. Then e�e(v) =e(v) = e(v)e� , and hence CGe(v) � CGe�. Thus e� = ae(v), for some a 2 CG.But then, e(v) = e�e(v) = ae(v)e(v) = ae(v) = e�. ut



The above result suggests to introduce the T -character graph of G. Thisgraph has n+ 1 levels. The nodes of level i are the irreducible characters of Gi.Edges do exist at most between nodes of adjacent levels. More precisely, thereis an edge between �i 2 Irr(Gi) and �i+1 2 Irr(Gi+1) i� h�ij�i+1i > 0 (notethat h�ij�i+1i = 1 for supersolvable groups). In addition, it is very convenientto know the action of G on each level. For this it su�ces to take one elementgj 2 Gj nGj�1 for each j and specify the action of gn; : : : ; gi+1 on Irr(Gi). (Notethat all gk, k � i, act trivially on Irr(Gi).) Figure 1 in Subsection 3.3 shows thecharacter graph of a group of order 128.2.3 FFTs for Supersolvable GroupsAccording to the last subsection we already know that a supersolvable group Gof exponent e has an e-monomial DFT D = �hk=1Dk. The construction of theDk was along T . Now we look at such a DFT D from a more algorithmic pointof view.De�nition 1. Let T = (G = Gn � : : :G0 = f1g) be a chain of subgroups of the�nite group G. A representation D of CG is called T -adapted i� for all 0 � i � nthe following conditions hold:(1) The restriction D#Gi is equal to the direct sum of irreducible representationsof CGi, i.e., D#Gi = �qFiq, with irreducible representations Fiq.(2) Equivalent irreducible constituents of D#Gi are equal, i.e., if Fiq � Fit thenFiq = Fit (but not necessarily q = t).If D is T -adapted then for all i � n, D#Gi is Ti-adapted, where Ti denotes thechain (Gi � : : : � G0). It is not hard to show that the above constructed mono-mial DFTs for supersolvable groups are in fact T -adapted, see, e.g. [BCS,p.337].Now we can state the main result of this subsection.Theorem 5 (Baum [1]). If G is a supersolvable group with chief series T ,then any T -adapted DFT of CG is monomial and can be evaluated with at most � jGj � log jGj operations, where 1:5 �  � 8:5 depends on the prime divisors ofjGj.Proof. (Sketch) Let [Gn : Gn�1] = p and Dn = �Dk a T -adapted monomialDFT of CGn. Let F1; : : : ; Fr be the distinct irreducible constituents of D#Gn�1.Then Dn�1 = �r̀=1F` is a monomial, Tn�1-adapted DFT of CGn�1. As copyingis free in our model, L(Dn#Gn�1) = L(Dn�1).Instead of evaluating Dn at a 2 CGn directly, we rewrite a according tothe coset decomposition Gn = tj<pgjGn�1. Then for suitable aj 2 CGn�1 wehave a = Pj<p gjaj. Hence Dn(a) = Pj<pDn(gj)(Dn#Gn�1)(aj). This for-mula suggests a divide-and-conquer strategy. In the divide-step, we evaluate thep \smaller" DFTs Dn�1(aj). By a tricky application of Cli�ord's Theorem com-bined with local FFTs of size p to handle simultaneously the cases of p extensions,the conquer-step is managed in such a way that altogether an O(jGj log jGj) up-per bound is obtained. ut



According to Theorem 4 and Theorem 5, a T -adapted DFT D = �hk=1Dkof CG is essentially unique. In the sequel, we sometimes write Irrep(G; T ) =fD1; : : : ; Dhg and similarly Irrep(Gi; Ti).3 E�cient Construction of monomial DFTsIn this section we give a summary of the algorithm in [3] which constructsa monomial DFT of a supersolvable group G given by a pc-presentation withO(jGj log jGj) operations. One can even show, that the running time is essentiallyproportional to the output length. For a detailed description and analysis of thisalgorithm we refer to [3].3.1 PC-PresentationsLet G be a supersolvable group with chief series T as above. For 1 � i � n letgi be an element in Gi not in Gi�1. With respect to (g1; : : : ; gn) each elementg 2 G can be expressed uniquely in normal formg = genn � gen�1n�1 � : : : � ge11 (0 � ei < pi):The multiplication in G is completely described, if the normal forms of all powersgpii and all commutators [gi; gj] := g�1i g�1j gigj are known. More formally, everysupersolvable group has a power-commutator presentation (pc-presentation) ofthe formG = hg1; : : : ; gn j gpii = ui (1 � i � n); [gi; gj] = wij (1 � i < j � n)i;with primes pi as well as words ui 2 Gi�1 and wij 2 Gi, all given in normalform. Moreover, we require the presentation to be consistent, i.e., that everyword in the generators has a unique normal form. Consistent pc-presentationsof this kind exactly describe the class of supersolvable groups.With respect to such a pc-presentation, an irreducible representation ofthe group Gi is fully described by the representing matrices of the generatorsgi; : : : ; g1.As an example, we give a consistent pc-presentation of a supersolvable groupwith 128 elements denoted by G128. In the presentation, trivial commutatorrelations are omitted.G128 = hg7; g6; g5; g4; g3; g2; g1 j g21 = g22 = g24 = g25 = g26 = 1; g23 = g1; g27 = g4;[g2; g6] = [g2; g7] = [g3; g4] = [g3; g5] = [g3; g6] = g1; [g3; g7] = g2;[g4; g5] = g2 � g1; [g4; g6] = g3 � g1; [g5; g7] = g3; [g6; g7] = g5i3.2 The AlgorithmBefore describing the algorithm, we want to mention the following importantpoints. First, the pc-presentation of G already contains all the information onthe group needed in the algorithm, so no group operations are required at all.



Second, even though the irreducible representations are computed over C,it turns out that the algorithm uses just integer arithmetic. Hence, we neverrun into numerical problems! More precisely, all matrices to be processed bythe algorithm are e-monomial and all matrix manipulations are multiplications.Therefore, we can compute in the additive group ZZe, which is isomorphic to thegroup of eth roots of unity in C. (One can show that the algorithm works overany �eld K containing such a primitive eth root of unity, but, for simplicity, wejust consider the case K = C.)The central idea of the algorithm is based on Cli�ord's Theorem. In ournotation it says that given an irreducible representation F of CGi�1, 0 < i � n,then there are two cases:Case 1. F extends to pi = [Gi : Gi�1] pairwise inequivalent irreducible repre-sentations of CGi of the same degree deg(F ).Case 2. The induction of F is an irreducible representation of CGi of degreepi � deg(F ).Furthermore, up to equivalence all irreducible representations of CGi can beobtained this way. This allows us to construct the irreducible representationsof CG iteratively in a bottom-up fashion along the chief series T . However,constructing an arbitrary DFT is not what we want. We are interested in theconstruction of a very special set of irreducible representations - namely repre-sentations resulting in e-monomial matrices when evaluated at group elements.Suppose, we already have constructed a full set of nonequivalent irreducible e-monomial representations of CGi�1 denoted by F . In order to construct an e-monomial D 2 Irrep(Gi; Ti) of level i from a given e-monomial F 2 F of leveli � 1, we need to know the relation between the conjugate representation F giand the corresponding ~F 2 F with F gi � ~F . That is the reason, why the in-tertwining spaces Int(F gi ; ~F ) come into play. It turns out that all intertwiningmatrices in Int(F gi ; ~F ) are scalar multiples of an e-monomialmatrix. In a secondphase, the algorithm computes such intertwining matrices. To cut a long storyshort, we now give a summary of the algorithm. At level i the algorithm takesthe following input:Phase 1. F = Irrep(Gi�1; Ti�1), i.e., a full set of nonequivalent irreducible e-monomial representations of CGi�1 such that LF2F F is Ti�1-adapted.Phase 2. For every i � 1 < j � n a permutation �j of F such that F gj � �jFfor all F 2 F as well as e-monomial matrices XjF 2 Int(F gj ; �jF ), F 2 F .The following output is computed:Phase 1. D = Irrep(Gi; Ti), i.e., a full set of nonequivalent irreducible e-mono-mial representations of CGi such that LD2D D is Ti-adapted.Phase 2. For every i < j � n a permutation �j of D such that Dgj � �jD forall D 2 D as well as e-monomial matrices YjD 2 Int(Dgj ; �jD), D 2 D.Note that the input of level 0 is trivial, all intertwining matrices being set to 1.Level i of the algorithm consists of two phases.



Phase 1 (Computation of D). Consider F 2 F and its gi-conjugate repre-sentation F gi .Case 1. F � F gi , i.e., �iF = F . Then, by Cli�ord's Theorem, there are exactlyp := pi pairwise nonequivalent irreducible extensions D0; : : : ; Dp�1 of F to CGisatisfying Dk=�k 
D0, where �0; �1; : : : ; �p�1 are the irreducible characters ofthe cyclic group Gi=Gi�1. Since Dk # Gi�1 = F , k = 1; : : : ; p� 1, in this steponly the Dk(gi) have to be computed. One can show that Dk(gi) 2 Int(F gj ; F )and cpXpiF = F (gpi ) with a constant c 2 C�. The last equation has p distinctsolutions c0; : : : ; cp�1 2 C�, which can be proven to be even eth roots of unity.Thus the desired e-monomial matrices Dk(gi), 0 � k < p, just di�er by a factor,which is a power of a pith root of unity, and are given by Dk(gi) := ckXiF .Case 2. F 6� F gi , i.e., �iF 6= F . Again, by Cli�ord's Theorem, the inducedrepresentation F " Gi is irreducible and (F " Gi) # Gi�1 = Lp�1k=0F gki . AsF gki � �ki F , we know the existence of a unique irreducible representation D ofCG, sucht that D # Gi�1 = Lp�1k=0 �ki F . This Ti-adapted representation is nowto be computed. We already know D(g1); : : : ; D(gi�1) from level i � 1. Thus itremains to specify D(gi). Here, the intertwining spaces constructed in level i�1are to be used. If Xk := Xi�k�1i F � : : : �XiF , 0 � k < p, thenD(gi) = 2666664 ZX1X�10 X2X�11 . . . Xp�1X�1p�2 3777775where Z := X0F (gpi )X�1p�1, as shown in [3].By these two constructions, all irreducible representations ofGi up to isomor-phism are obtained, and Phase 1 is complete. In addition, during the constructionin Phase 1 a bipartite graph is built up in which F 2 F and D 2 D are linkedif and only if F is a constituent of D # Gi�1. This \traceback" information isneeded in the next phase. Furthermore, this information, collected over all levelsi = 1; : : : ; n, is nothing else but the T -character graph of the group G.Phase 2 (Computation of �j and YjD). Let F 2 F and i < j � n. We haveto consider the same two cases as in Phase 1.Case 1. �iF = F . In Phase 1, the p extensions D0; : : : ; Dp�1 have been com-puted. As Dk is an extension of F , one can show that �jD must be an extensionof �jF . Let �0; : : : ;�p�1 be the extension of �jF . Then it can be shown thatYjDk := XjF must be set for all k and �j(fD0; : : : ; Dp�1g) = f�0; : : : ;�p�1g.Using YjDk one can determine �j as is explained in [3].Case 2. �iF 6= F . In this case, �j(D) can be immediately determined, since itequals the unique � 2 D such that � # Gi�1 contains �jF (this information isencoded in the bipartite graph built up in Phase 1). We don't want to discusshere the construction of YjD, which is a bit delicate, but refer to [3].



3.3 An Example: G128Figure 1 shows the character graph of the group G128 given by its pc-presen-tation in Subsection 3.1. Each node represents an irreducible character and itscorresponding irreducible representation. The numbers on the left hand side in-dicate the levels and the numbers on the top are the degrees of the correspondingreprentations of the top level. To illustrate the above algorithm, we describe theconstruction of the irreducible representation of level 7, denoted by D, corre-sponding to the circled node in Figure 1.
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Fig. 1. Character graph of G128.The representation D is induced, let's say by the representation F of level 6,and is constructed in Phase 1 Case 2 of the algorithm. Suppose the algorithmhas already constructed all data up to level 6 including F and the intertwiningmatrix X7F . Since p = p7 = 2, we have D # G6 = F � �7F and D is known atthe generators g1; : : : ; g6. We can compute D(g7) by the formulaD(g7) = � F (g27)X�11X1X�10 � = � F (g4)X�17FX7F � = 2664 1 !41 1 3775 ;where ! denotes an 8th root of unity, e = 8 being the exponent of G128. Here wehave used that X0 is always the identity, X1 = X7F is in our speci�c examplealso the identity matrix of dimension 2. F (g27) = F (g4) = �1 !4 � has to becomputed using the power-relation g27 = g4 of the pc-presentation.



3.4 ImplementationThe presented algorithm has been implemented in the programming language C.The tests were run on an Intel Pentium II with 300 MHz. As we have mentionedpreviously, no �eld arithmetic is needed but only computations in the additvegroup ZZe. For simplicity, we have assumed e to be known, even though one canshow that this is not necessary.The e�ciency of the implementation is based on the fact, that e-monomialmatrices of size N can be multiplied or inverted with only N operations in ZZe.Since any e-monomial matrix M 2 CN�N can be written in the formM = �diag(!a1 ; : : : ; !an)with a permutation � 2 SN and non-zero coe�cients !a1 ; : : : ; !an , just the 2Nintegers �(1); : : : ; �(N ) and a1; : : : ; aN have to be stored for M . For the groupG and any r 2 IN de�ne dr(G) := Phk=1 drk, where h denotes the number ofconjugacy classes of G and d1; : : : ; dh the degrees of the irreducible charactersof G. One easily checks, that the running time to write out the result of thealgorithm, i.e., all matrices Di;k(gl), 1 � i � n, 1 � k � hi (hi denoting thenumber of conjugacy classes of Gi), 1 � l � i, is proportional toPni=1 i � d1(Gi),which is bounded from above by Pni=1 log(jGij) � d1(Gi).One can show that the number of operations of the algorithm is of thismagnitude O(Pni=1 log(jGij) � d1(Gi)) with a moderate constant � 20. In thissense the algorithm is nearly optimal. The following table shows the runningtimes for some small supersolvable groups to construct all the matrices Di;k(gl)as above. Here jGj is the order of G, h the number of conjugacy classes of G, o.l.the output length of the algorithm (i.e.,Pni=1 log(jGij) �d1(Gi)), r.t. the runningtime in milliseconds and r.t./o.l. the quotient of the last two quantities. Thegroups in the �rst three examples are direct products of the symmetric groupS3, the group in the forth example is G128 from subsection 3.3 and the lastexample is concerned with a Sylow 2-subgroup of the symmetric group S16.G jGj h o.l. r.t. (ms) r.t/o.l.(S3)5 7776 243 13235 266 0.020(S3)6 46656 729 63528 1125 0.018(S3)7 279936 2187 296464 4250 0.014G128 128 40 280 15 0.054Syl2(S16) 32768 230 30960 2156 0.069Of course, the �rst three groups are of a very simple nature. However, the run-ning time of the algorithm does not essentially depend on the complexity of thepc-presentation, but mainly on the number and degrees of the irreducible repre-sentations constituting the DFT. This is veri�ed by the more complex exampleSyl2(S16). Therefore, the actual running times for constructing a monomial DFTof CG reect very well the theoretical result concerning the output length.



4 Applications4.1 Related WorkThe fast DFT-generation algorithm has been used as a subroutine to solve othercomputational problems. Th�ummel [12] has designed an algorithm that computesfrom a pc-presentation of a �nite p-group G in time O(p �h � jGj) its h conjugacyclasses as well as the character table. Omrani and Shokrollahi [8] have combinedthe fast DFT-generation algorithm with Galois theory to construct a full setof irreducible representations of a supersolvable group G over a �nite �eld K,charK 6 j jGj, which is not assumed to contain a primitive eth root of unity.4.2 Fast ConvolutionFFT-algorithms allow a fast convolution in the group algebra CG along theformula:a�b = D�1(D(a)�D(b)), for a; b 2 CG. (Note that the linear complexitiesof a DFTD and its inverse do not di�er substantially, for jL(D)�L(D�1)j � jGj,see [2].) Let D = �hk=1Dk be a DFT of CG and dk the degree of Dk. Then theconvolution in CG can be performed with at most 2L(D)+L(D�1)+2Phk=1 d3karithmetic operations. Thus ifD, and hence D�1, allows a fast Fourier transform,and d := maxk dk, then convolution can be done in time O(jGj log jGj+ djGj).As 1 � d � jGj1=2, this constitutes a substantial improvement over the naiveconvolution algorithm, which performs this task in time quadratic in the orderof G. Even in a very special case, a variant of this FFT-based fast convolutionin CG might shed new light onto a classical problem in computational grouptheory. A sketch of this will be the last topic of this paper.4.3 DFT-based CollectionAs already mentioned, every element a in a pc-presented supersolvable group Gcan be expressed as a normal word: a = g� := g�nn � g�n�1n�1 � : : : � g�11 . The normalform problem is to compute on input (�; �) the unique  with g� � g� = g .Classical techniques for solving this problem involve various kinds of collectionprocesses (see, e.g., [10]) or Hall polynomials combined with interpolation tech-niques (see, e.g., [11]). To the best of our knowledge, there is no strategy that isalways superior to all other strategies.As an alternative to classical collection strategies we propose DFT-basednormalization. To simplify our notation, we start with a pc-presented p-groupG with corresponding chief series T = (Gn � : : : � G0) and complete listsIrrep(Gi; Ti) of Ti-adapted e-monomial irreducible representations of CGi. Di;0always denotes the trivial representation of CGi,Di;1 always a non-trivial exten-sion of Di�1;0 satisfying Di;1(gi) = �, where � is a primitive p-th root of unity.On input (�; �), the algorithm proceeds in n steps (n downto 1) to compute .After Step i + 1, the numbers n; : : : ; i+1 are known. To get i in Step i, wework in G=Gi�1 by replacing gj by 1, for all j < i. Consider the wordwi := g�i+1i+1 � � �g�nn � g�nn � � �g�ii � g�nn � � �g�ii :



By de�nition, wi 2 Gi and wi � gii modGi�1. We want to compute Di;1(wi),since i is determined by Di;1(wi) = Di;1(gii ) = �i . However, since wi isexpressed in all generators g1; : : : ; gn, this cannot be done directly at level i. Tothis end we choose a suitable representation F 2 Irrep(Gn; Tn) whose restrictionto CGi contains Di;1 as its �rst irreducible constituent. Then all what remainsto do is to compute the �rst position of the diagonal matrix F (wi), which equalsDi;1(wi) = Di;1(gii ) = �i . AsF (wi) = F (gi+1)�i+1 � � �F (gn)�n � F (gn)�n � � �F (gi)�i �F (gn)�n � � �F (gi)�iis a product of monomial matrices and we are interested in only one entry of the�nal result, each factor F (gj) causes only one addition in ZZe. Altogether, weobtain the following.Theorem 6. Let G be a pc-presented p-group of order pn and exponent e, withcorresponding chief series T . Then, given (suitable parts of) the T -adapted DFT,normalization of the product of two normal words in G can be done with at most2 � p � n2 additions in ZZe.Finally, we want to remark that a similar result holds for the normalization ofany formula in the generators g1; : : : ; gn of G.References1. Baum, U.: Existence and e�cient construction of fast Fourier transforms for super-solvable groups. Computational Complexity, 1 (1991), 235{256.2. Baum, U., Clausen, M.: Some lower and upper complexity bounds for generalizedFourier transforms and their inverses. SIAM J. Comput., 20 (1991), 451{459.3. Baum, U., Clausen, M.: Computing irreducible representations of supersolvablegroups. Mathematics of Computation, Volume 63, Number 207 (1994) 351{359.4. B�urgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory.Grundlehren der mathematischen Wissenschaften, Volume 315, Springer Verlag,Berlin, 1997.5. Clausen, M., Baum, U.: Fast Fourier Transforms. BI-Wissenschaftsverlag, Mann-heim, 1993.6. Clausen, M., Baum, U.: Ein kombinatorischer Zugang zur Darstellungstheorie�uberau�osbarer Gruppen. Bayreuther Mathematische Schriften, 44 (1993), 99{107.7. Morgenstern, J.: Complexit�e lin�eaire de calcul. Th�ese, Univ. de Nice, 1978.8. Omrani, A., Shokrollahi, M.A.: Computing irreducible representations of supersolv-able groups over small �nite �elds. Mathematics of Computation, Volume 66, Number218 (1997) 779{786.9. Serre, J.P.: Linear Representations of Finite Groups. Graduate Texts in Mathemat-ics, Springer, 1986.10. Sims, C.C.: Computation with �nitely presented groups. Cambridge UniversityPress, 1994.11. Sims, C.C.: Fast multiplication and growth in groups. ISSAC'98, Rostock, Germany(1998), 165{170.12. Th�ummel, A.: Computing character tables of p-groups. pp. 150{154 in ProceedingsISSAC'96, Z�urich, Switzerland.


