
An Efficient Computer Program for the Symbolic Construction

of Irreducible Representations of Supersolvable Groups

Meinard Müller Michael Clausen

04.06.2001

Abstract

Baum and Clausen have presented in [1] an algorithm, refered to as BC-Algorithm,
for the construction of a complete list of pairwise inequivalent ordinary irreducible rep-
resentations for a given finite supersolvable group G. This algorithm is almost optimal
in the sense that the running time is proportional to the length of the output up to
some logarithmic factors. In this paper we describe an implementation, which realizes
this algorithm for the first time efficiently concerning the running time as well as the
memory requirements. Extensive tests have shown that the actual running time be-
haviour of the computer program reflects very well the theoretical complexity bounds.
Furthermore, all arithmetic operations of the BC-Algorithm are done symbolically over
Z/Ze, where e denotes the exponent of G.

Introduction

Representation theory is not only one of the most powerful tools for the investigation of
structural properties of groups but has also been applied to real world applications in fields
such as signal processing, coding theory, quantum mechanics and crystallography among
others. Therefore, there is an increased interest in not only investigating representations
theoretically but also to construct them explicitly, e.g., in form of matrix representations.
In computational group theory, there has been much work devoted to the design of efficient
algorithms, which have been implemented in various computer algebra systems such as GAP
and Magma. In this paper we describe a computer program, which realizes the BC-Al-
gorithm for the first time constructing a transversal of irreducible representation (i.e., a
representative of each isomorphism class) for the special class of finite supersolvable groups.

The rest of the paper is organized as follows. In Section 1 we introduce the notation and
sketch the main ideas of the BC-Algorithm. For the implementation a memory efficient data
structure has been designed, which will be described in Section 2. The computer program
has been tested and analysed extensively for several thousand groups. We will summarize
and discuss the results in Section 3.

1

1 BC-Algorithm

Let G denote a group of finite order N := |G|. By Wedderburn’s structure theorem,
the complex group algebra CG := {a|a : G → C} of a finite group G, with convolution
(ab)(x) :=

∑
g∈G a(g)b(g−1x) for a, b ∈ CG and all x ∈ G, is isomorphic to an algebra

of block diagonal matrices, D = ⊕h
k=1Dk : CG −→ ⊕h

k=1C
dk×dk . Here, the number h of

blocks equals the number of conjugacy classes of G and the projections D1, . . . , Dh form a
transversal of irreducible matrix representations of CG, also denoted by Irr(G). Every such
D is called a discrete Fourier transform (DFT) of G. One can show, that D is determined
up to the ordering of the h blocks and the choice of basis in each of these blocks. For the
class of supersolvable groups the BC-Algorithm constructs such a transversal Irr(G), or
equivalently a DFT D. A finite supersolvable group G has by definition a chief series

T = (G = Gn ⊃ Gn−1 ⊃ . . . ⊃ G1 ⊃ G0 = {1}), Gi ⊳ G,

with chief factors Gi/Gi−1 of prime order pi := [Gi : Gi−1]. The input of the BC-Algorithm
is a consistent power-commutator presentation (pc-presentation) corresponding to T :

G = 〈g1, . . . , gn | gpi

i = ui (1 ≤ i ≤ n), [gi, gj] = wij (1 ≤ i < j ≤ n)〉,

with generators gi ∈ Gi \ Gi−1 and words ui ∈ Gi−1 and wij ∈ Gi, all given in normal
form. Analogous to G, define Irr(Gi) and Ti for the subgroups Gi. The central idea of the
BC-Algorithm is based on the following version of Clifford’s Theorem:

Theorem 1.1 (Clifford’s Theorem). Let G and T be as above. Given an irreducible

representation F of CGi−1, 0 < i ≤ n, one of the following two cases holds:

(1) F extends to p := pi pairwise inequivalent irreducible representations D0, . . . , Dp−1 of

CGi of the same degree deg(F). Moreover, if χ0, χ1, . . . , χp−1 are the linear characters

of the cyclic group Gi/Gi−1 in a suitable order, we have Dk = χk ⊗ D0.

(2) The induction of F to CGi is an irreducible representation of degree pi · deg(F).

Up to equivalence, all irreducible representations of CGi can be obtained this way.

This allows us to construct the irreducible representations of G iteratively in a bottom-
up fashion along the chief series T , where at each level i, 1 ≤ i ≤ n, a set Irr(Gi) is computed
from Irr(Gi−1). In view of the efficiency the main point is that the BC-Algorithm does not
construct any transversal Irr(Gi) but a very special set of representations with the following
properties: First, the constructed representations of Irr(Gi) are monomial, meaning that
all matrices D(g), g ∈ G, D ∈ Irr(Gi), are monomial (having exactly one non-zero entry
in each column and row). Second, all matrix entries of D(g) are eth roots of unity, where
e denotes the exponent of G (such matrices will be called e-monomial). Since all matrix
manipulations of the BC-Algorithm are matrix multiplications and inversions the arithmetic
operations can be done purely symbolically in the additive group Z/Ze, i.e., there are no
numerical problems. Third, the representations D ∈ Irr(Gi) are “optimally” adapted to the

2

chief series Ti of Gi in the sense that the restriction of D to any subgroup Gℓ, 1 ≤ ℓ < i,
is not only equivalent - as stated in Clifford’s Theorem - but even equal to the direct
sum of representations of Irr(Gℓ). This property is refered to as Ti-adaptivity of D and
ensures that all data already computed up to level i − 1 can be used without modification
for the construction in the following levels i, . . . n. To achieve Ti-adaptivity the so-called
intertwining-spaces come into play, whose computation, as it turns out, are the bottle-neck
of the BC-Algorithm. We summarize the result in the following theorem:

Theorem 1.2. Let G be a finite supersolvable group of order N := |G|, with exponent e and

chief series T . Then the BC-Algorithm constructs from a consistent pc-presentation of G
a transversal Irr(G) of e-monomial T -adapted irreducible representations with O(N log2 N)
operations in the additive group Z/Ze.

As we will see in the next section the output length of the BC-Algorithm is - using
an appropriate data structure - linear in N . Therefore, the running time is - up to the
polylogarithmic factor log2 N - linear in the output lenght N and can in this sense be
considered as almost optimal.

2 Data Structure

In the case of supersolvable groups G of order N := |G| the output data of the BC-Algorithm
can be realized by a compact data structure, denoted by DS(G), since the representations
are e-monomial. Each e-monomial matrix M ∈ C

m×m can be written as

M = π · diag(ωa1 , . . . , ωam) (1)

with a permutation π ∈ Sm and non-trivial coefficients ωa1 , . . . , ωam , where we have fixed
a primitive eth root of unity ω. Therefore M can be described by the 2m positive integers
π(1), . . . , π(m) and a1, . . . , am, which are all bounded by N . In the following we want to
make the assumption, that these integers as well as pointers can each be stored in a 32-bit
word or double (this is no restriction with regard to the applications we have in mind).

The BC-Algorithm computes Irr(G), where each representation D ∈ Irr(G) is given
by its representing e-monomial matrices D(g1), . . . , D(gn) on the generators of the pc-
presentation of G. Using (1) one can easily show that this leads to a memory requirement
of 2N log N doubles. Using the T -adaptivity one can do even better. To this means we
introduce the T -character graph of G, which consits of n + 1 levels. Each node of level i,
0 ≤ i ≤ n, corresponds uniquely to a representation D ∈ Irr(Gi, Ti) (which in turn cor-
responds to an irreducible character). Edges do exist at most between nodes of adjacent
levels. More precisely, there is an edge between D ∈ Irr(Gi) and F ∈ Irr(Gi−1) iff D re-
stricted to Gi−1 contains F as a direct summand. In order to store Irr(G), it suffices to
store the character graph of G, where we need a pointer for each edge, and for each node
corresponding to D ∈ Irr(Gi) we store the e-monomial matrix D(gi) given by 2deg(D) in-
tegers. By Clifford’s Theorem the so defined data structure DS(G) is locally in D of the
following form, where p := pi:

3

F(g)i-1 F (g)1 i-1 p-1F (g)i-1

D(g)i

i-1F(g)

D (g) p-1D (g)i iD(g)= D (g)i i 0 1

Case 1 Case 2

In Case 1 it follows again by Clifford’s Theorem (using the notation of Theorem 1.1) that
Dk(gi) = χk(giGi−1)D0(gi) for 1 ≤ k ≤ p. Therefore it suffices to store the matrix D0(gi)
and for 1 ≤ k ≤ p just the integers χk(giGi−1) and a pointer on D0(gi). A straightforward
analysis of DS(G) leads to the following result:

Lemma 2.1. The data structure DS(G) for a finite supersolvable group G requires at most

12 N doubles for all pointers and integers.

3 Implementation

The BC-Algorithm has been implemented in the programming language C/C++. Tests
were run on an Intel Pentium III, 700 MHz with 128 MByte RAM, which allowed ex-
periments up to group orders N ≈ 107. The following table shows the running times t in
milliseconds (ms) and the memory requirements (MR) in byte needed by the BC-Algorithm.
In this example, the groups G are m-fold direct products of the symmetric group S3 of order
6 for m = 3, . . . , 10. Even though the groups are of very simple nature - the irreducible
representation could simply be computed by forming tensor products - they illustrate very
well the running time behaviour of the implementation of the BC-Algorithm which does
not essentially depend on the complexity of the pc-presentations.

G |G| n h d1(G) MR (byte) MR/d1(G) t (ms) t/d1(G)
(S3)

3 216 6 27 64 4728 73.9 <1 0
(S3)

4 1296 8 81 256 14476 56.5 2 0.008
(S3)

5 7776 10 243 1024 45704 44.6 18 0.018
(S3)

6 46656 12 729 4096 147516 36.0 74 0.018
(S3)

7 279936 14 2187 16384 485656 29.6 270 0.017
(S3)

8 679616 16 16561 65536 1631084 24.9 1078 0.016
(S3)

9 10077696 18 19683 262144 5591592 21.3 4844 0.019
(S3)

10 60466176 20 59049 1048576 19570204 18.7 22105 0.021

A more careful analysis of the BC-Algorithm and DS(G) reveals, that the upper
bounds O(N log2 N) for the running time and O(N) for the memory requirement are in
general rough upper bounds, which are only sharp in case of G being abelian. In gen-
eral, the complexity of BC-Algorithm depends very much on the number and degrees of
the irreducible representations of Irr(G). On can show that replacing N by the number
d1(G) :=

∑
D∈Irr(G) deg(D) in the upper bounds reflect much better the running time be-

4

haviour. (Note that d1(G) ≤ N and d1(G) = N iff G is abelian.) The table shows that
the running time as well as the memory requirement do not explode with increasing group
order N but are about linear in d1(G).

To test the implementation on more complex groups, we have generated a library of
several thousand consistent pc-presentations defining supersolvable groups of different order
up to 107. This was done by a randomized algorithm using the computer algebra system
GAP. The running time behaviour of the implementation of the BC-Algorithm for groups
of different order is illustrated by the following table. Here LibN (k) denotes the kth pc-
presentation of our library defining a group G of order N and Syl2(S16) is a 2-Sylow group
of the symmetric group S16.

G |G| n h d1(G) MR (byte) MR/d1(G) t (ms) t/d1(G)
Lib1024(1) 1024 10 175 288 23028 80.0 4 0.0139
Lib2187(1) 2187 7 155 351 22612 64.4 3 0.0086
Lib7560(1) 7560 8 2295 4050 434272 107.0 111 0.0274
Lib7560(54) 7560 8 945 2016 58084 28.8 10 0.0050
Lib7776(1) 7776 10 333 1152 42936 37.3 15 0.0130
Lib15625(35) 15625 6 265 1225 32396 26.4 8 0.0065
Lib16000(1) 16000 10 424 2112 100408 47.5 67 0.0317
Lib22287(1) 22287 4 22287 22287 1304644 58.5 96 0.0043
Lib23940(1) 23940 7 3990 6840 483464 70.7 116 0.0170
Syl

2
(S16) 32768 15 230 2064 134760 65.3 144 0.0698

Lib42875(1) 42875 6 1595 4095 223812 54.7 35 0.0086
Lib179894(3) 179894 5 179894 179894 7441040 41.4 253 0.0014

The implementation described in this paper is part of the computer system SUGAR
- SUpersolvable Groups and Algorithmic Representation Theory - which also comprises
routines for fast evaluation of representations (generalized fast Fourier transforms), for
construction of pc-presentations and for signal processing among others. First experiments
have been conducted to apply these generalized discrete Fourier transforms to digital signal
processing for efficient randomized signal compression. For details and further links to the
literature we refer to [3].

References

[1] Baum, U., Clausen, M.: Computing irreducible representations of supersolvable groups.
Mathematics of Computation, Volume 63, Number 207 (1994) 351–359.

[2] Clausen, M., Baum, U.: Fast Fourier Transforms. BI-Wissenschaftsverlag, 1993.

[3] Müller, M.: Beiträge zur Algorithmik verallgemeinerter diskreter Fouriertransformatio-
nen. PhD thesis, Universität Bonn, Institut für Informatik, 2001.

Authors: Meinard Müller, Michael Clausen, Universität Bonn, Institut für Informatik III,
Römerstr. 164, 53117 Bonn, Germany, {meinard, clausen}@cs.uni-bonn.de

5

