
Automatic Synchronization of
Music Data

Vlora Arifi, Michael Clausen, Frank Kurth, and Meinard Müller

Institut für Informatik, Abt. III
Universität Bonn
Römerstr. 164
D-53117 Bonn, Germany
{arifi, clausen, kurth, meinard}@cs.uni-bonn.de

Abstract

Digital music libraries typically contain the same piece of music in differ-
ent data formats such as the score, some MIDI-files, and several interpre-
tations by various musicians in form of CD recordings. Inhomogeneity
and complexity of such music data make content-based browsing and re-
trieval in digital music libraries a difficult task with many yet unsolved
problems. One important step towards a solution are synchronization
algorithms which automatically link data streams of different data for-
mats representing a similar kind of information. In this article we in-
troduce some algorithms which automatically link any two data streams
given in score-, MIDI- or CD-format representing the same polyphonic
piano piece. This involves some steps for extracting note parameters
such as onset times and pitches from CD-data. These discrete param-
eters makes the physical audio data comparable to the purely symbolic
score data. In this context, we also give a summary and specification of
further problems in computational musicology related to the discussed
synchronization problems.



1 Introduction

Modern digital libraries contain many different kinds of information such
as textual, visual, and audio data. Among this multi-media based infor-
mation, music data constitutes a particularly difficult case: music in-
formation is represented in various data formats which, depending on
the application, fundamentally differ in their respective structure. For
example, the score — encoded in a formal language and depicted in a
graphical-textual form — gives a specification of what we commonly refer
to the “piece of music”. In a score the notes are fixed by parameters such
as pitch, relative onset times, and note durations. The global tempo and
local tempo variations are specified by textual notions such as allegro or
moderato and accelerando or ritardando. Similarly, loudness and dynam-
ics are described by terms such as piano, forte, crescendo, or diminuendo.
Hence the score is just a description of the piece of music which leaves
a lot of room for various interpretations not only concerning the tempo
and dynamics but also concerning the notes itself — one just may think
of vague notations such as trills, arpeggios, or grace notes. Fig. 1 shows
some score representation of the beginning of the Aria con Variazioni by
J. S. Bach, BWV 988. These 4 1

3
measures will serve as running example

throughout this article and will simply denoted as Aria.

� � �� � �
�� � �� �� � �� � �� � ��
� � ��� � � � � � � �	 � �


 � ��
� � �� � ��
 � �� � � � �
 � �� �� �� �� � � �

�����

���������	�
���������������	�
���

��� �
�
�

� � � � � � � �

Figure 1: Beginning of the Aria con Variazioni by J. S. Bach, BWV 988.

From a physical point of view, the musician, by means of his voice
or instrument, generates an audio signal. This audio signal has the form
of a sound wave emerging at its source and spreading through the air.
Graphically, such an audio signal may be represented by its waveform
which depicts the amplitude of the air pressure over the time (see Fig. 2
for an example). The PCM-format (Pulse Code Modulation), as used for
CD-recordings, is a discretized and encoded version of such a waveform.

2



In the following, we do not distinguish between the waveform and its
PCM-representation.

0 0.5 1 1.5 2 2.5 3 3.5

x 105

−0.1

−0.05

0

0.05

0.1

0.15

Figure 2: Waveform representation of an Aria interpretation.

As opposed to the score representation, the waveform encodes all
information needed to reproduce the acoustic realization of the specific
interpretation of some piece of music with all its temporal, dynamical,
and tonal micro deviations making music alive. However, in the waveform
note parameters such as onset times, pitches, or note durations are not
given explicitly. Even worse, considering that even a single note of the
score becomes a complex sound when played on some instrument — not
only does it consist of several harmonics but also of noise components
and vibrations — one might guess how hopeless it is to determine note
parameters from the waveform of some polyphonic orchestral piece.

The MIDI-format (see, e.g., Selfridge-Field (1997)) may be thought
of as a hybrid of the score- and the waveform-based PCM-format: it can
encode all relevant content-based information on the notes of the score
as well as agogic and dynamic niceties of some specific interpretation.
However, MIDI is quite limited especially in modeling the timbre of a
sound. MIDI data streams are very often visualized by the piano roll
representation as shown in Fig. 3.

From the above discussion it should be clear that what we simply
refer to as a “piece of music” is something rather complex due to differ-
ent formats as well as various realizations. For example, a digital music
library may contain, for one and the same piece of music, the score given
in Capella or Score format, some MIDI-files, and several interpretations
by various musicians in form of CD recordings which may differ consid-
erably, e.g., in tempo or dynamics. Such inhomogeneity and complexity

3



0 2 4 6 8 10 12 14 16 18
35

40

45

50

55

60

65

70

75

80

85

Time (s)

MI
DI−

Pit
ch

Figure 3: Piano-roll representation of an Aria interpretation.

make content-based browsing and retrieval in digital music libraries a
difficult task with many yet unsolved problems (see Section 2).

One important step towards a solution are synchronization algorithms
which automatically link data streams of different data formats repre-
senting a similar kind of information. In particular, in the framework
of audio by synchronization we mean some procedure which, for a given
position in some representation of a given piece of music (e.g., given in
score format), determines the corresponding position within some other
representation (e.g., given in PCM-format). Such synchronization al-
gorithms have applications in many different scenarios: following some
score-based music retrieval, linking structures can be used to access some
suitable audio CD accurately to listen to the desired part of the inter-
pretation. A further application is the automatic annotation of a piece
of music in different data formats as a basis for content-based retrieval.
As another example, musicologists can use synchronizations for the in-
vestigation of agogic and tempo studies. Furthermore, temporal linking
of score and audio data can be useful for automatic tracking of the score
position during a performance.

In this article we concentrate on the three representative data formats
mentioned above: the purely symbolic score format, the physically based
PCM-format, and the semi-symbolic MIDI-format. Depending on the
formats of the two data streams to be synchronized we speak of Score-

4



to-MIDI (SM) synchronization, Score-to-PCM (SP) synchronization, or
MIDI-to-PCM (MP) synchronization, etc. We refer to Fig. 4 for an
illustration of the various synchronization problems.

Figure 4: Overview on various synchronization problems.

Especially, SP- and MP-synchronization constitute a difficult prob-
lem since the waveform-based PCM-format does not contain any explicit
information on the notes. Here, in a preprocessing step, one first has
to extract information such as note onsets and pitches from the PCM-
recording in order to make it comparable to other symbolic score-like
representations and hence algorithmically usable for the actual synchro-
nization. However, as will be summarized in Section 2, the extraction of
note information from the waveform of polyphonic music constitutes an
extremely difficult problem which is solved only for a few special cases.
Especially, in the most general case of orchestral music the extraction
problem and not to mention the transcription problem are largely open
problems which seem to be unfeasible. In our research, we have concen-
trated on polyphonic piano music. In contrast to many other research
projects we do not restrict ourselves to PCM-data generated by MIDI-
pianos. Instead we allow PCM-data generated by any acoustic piano,
e.g., audio data from a CD containing piano music. This in general ex-
tremely complex data leads to many erroneous extraction results which
would not be acceptable when treated as a transcription of the original
piece of music into some score-like format. However, the extracted data
— even from very complex piano pieces — is of sufficient quality to be
used in the proposed synchronization algorithms.

The rest of this article is organized as follows. In Section 2, we re-
view several problems in computational musicology which are intimately

5



related to our synchronization problem and give links to some recent lit-
erature. One goal is to give a clear specification of these problems which
are not very well marked-off in the existing literature. In Section 3, we
summarize our system for the extraction of musically relevant param-
eters from PCM-data streams. The actual synchronization algorithms
are described in Section 4. One additional goal is to demonstrate how
problems in computational musicology may be modeled by using a solid
mathematical language. We first give a mathematical definition of funda-
mental notions such musical and physical onset times, tempo functions,
and time flow and then give a rigorous specification of our synchroniza-
tion problems. In Subsection 4.1, we describe a suitable data format
for the score data stream introducing the concept of fuzzy-notes which
handles ambiguities such as trills or arpeggios in the score. Crucial for
the synchronization algorithms, being based on dynamic programming,
is our carefully designed cost function which will be described in Sub-
section 4.2. Since this subsection is of rather technical nature, we hope
that the example in Subsection 4.3 will help the mathematically non-
experienced reader to understand the main underlying ideas. Finally,
Section 5 contains a summary of our experiments, and Section 6 gives
some concluding remarks and an outlook to future work,

2 Synchronization and Related Problems

To define and classify the synchronization problem it is helpful to delimit
this problem to related or complementary problems in computational
musicology such as segmentation, extraction, and music transcription.
In this section we give a short summary of these problems and give links
to some of the relevant literature.

In audio signal processing the notion of segmentation is not very well
specified and is used in many different settings. Generally, by segmen-
tation one means the temporal partition of some acoustic signal into
logically coherent sections. Segmentation of some piece of music may be
based on purely content-based criteria, such as the partition of a sonata
into its movements, or the partition of the first movement into expo-
sition, development, recapitulation, and coda. Also the partition of a
piece of music into measures may be considered as a segmentation. In

6



audio signal processing, however, the segmentation problems deal with
the decomposition into more elementary units. For example, in case of a
speech signal the segments are often chosen to be the phonemes, whereas
in case of monophonic music they may be chosen to be the notes. In
the latter case, the segmentation boundaries consist of the initial and
end points of the corresponding notes (see, e.g., Raphael (1999)). In this
article, we typically deal with audio signals of polyphonic music given in
PCM-format. Even in the case of a single instrument — in the following,
we concentrate on the piano — it is not any longer clear how to define
the segmentation boundaries in the polyphonic scenario in a meaning-
ful way. In this case the corresponding audio signals are complex sound
mixtures of just played and abating notes where, in addition, each real-
ization of a note itself constitutes a complex sound. In combination with
resonance effects, this intermingling and superposition of sounds results
in surprising phenomenons, e.g., a sudden increase of the intensity of cer-
tain harmonics even though no new notes are played (see, e.g., Blackham
(1998)). Due to such phenomenons one needs a more general notion of
segmentation. Segmentation boundaries are defined to be points of time
where sudden changes in the spectrum as well as in the energy of the
signal occur. Then within a segment the signal may be assumed to be
quasi-periodic and the segmentation boundaries are candidates for the
onset times of notes.

The segmentation problem may be considered as part of the more gen-
eral extraction problem. In the scenario of audio signal processing one
tries to extract a suitable set of parameters from some waveform-based
representation of an audio signal which somehow describes the musical
content of the underlying piece of music. Among these parameters are
not only the above mentioned candidates for onsets but also spectral pa-
rameters for the description of pitch, parameters for the description of
note duration or loudness, and so on. In this context, beat- and tem-
potracking can be considered as special cases of the extraction problem
where temporal and dynamical parameters are suitably interpreted (see,
e.g., Cemgil et. al. (2000) or Goto (2001)), or repeating spectral patterns
are used (see Foote et. al. (2001)). For the task of automatic accompa-
niment spectral parameters are used to determine the pitch (see, e.g.,
Dannenberg et. al. (1988) or Raphael (1999)), sometimes in combina-
tion with energy parameters (see Cano et. al. (1999)). At this point we

7



mention that in case of complex polyphonic music the extraction of the
pitch from the corresponding spectral parameters constitutes a more or
less unsolved problem. One reason is that in some mixture of sounds
the harmonics cannot be uniquely assigned to the single notes. Possible
approaches towards a solution of the pitch extraction problem are based
on the usage of note templates (see, e.g., Bobrek et. al. (1998) or Ortiz-
Berenguer et. al. (2002)) or the usage of additional score information
(see Scheirer (1995)). In our approach, described in Section 3, we use a
similar technique as described in Bobrek et. al. (1998).

By music transcription one roughly means the transcription of some
music recording into score notation. In other words, from the audio sig-
nal the score data such as notes, instruments, measure, and annotations
for tempo and dynamics are to be determined. Hence, transcription and
extraction seem to be similar problems which, however, differ in one es-
sential point. The score data are “standardized” parameters which allow
room for various interpretations such as local tempo variations and tim-
bre manipulations, whereas the extracted note parameters of some music
signal include the score information as well as all specific features com-
ing from the particular interpretation of the underlying recording. Hence,
for the transcription problem the following approach seems to be feasible:
in a first step one extracts note parameters such as onset times, pitch,
and note duration; in a second step, this data must be “reassessed” by
suitable quantization and normalization methods. As mentioned above
the extraction of note information from the waveform, not to mention
the transcription problem, is a largely open problem which seems to be
unfeasible in the most general case of orchestral music. Special cases of
music transcription are discussed, e.g., in Cemgil et. al. (2000).

Finally, synchronization may be generally defined as the temporal co-
ordination of two independent processes when coming into interaction.
For example, in multimedia-based applications several data streams of
various formats such as video, audio, and text have to be synchronized
for simultaneous reproduction. In the scenario of this article the syn-
chronization problem refers to temporal synchronization of two different
realizations or variations of the same piece of music which are given as
two independent data streams in possibly different data formats. The
synchronization is realized by some suitable linking structure. As an
example, one data stream could be some CD-recording of a piece of mu-

8



sic, whereas the other one could be the score data represented in some
suitable digital format. In this case, the synchronization problem can be
considered to be complementary to the music transcription. While in
music transcription there is only one data stream from which the score
parameters have to be determined, in the synchronization problem one
starts with two data streams. Furthermore, the goal of music transcrip-
tion is — in order to get “pure” score data — to “iron out” the deviations
in the extracted data resulting from the specific underlying interpreta-
tion. On the other hand, the goal of synchronization (particularly of
SP-synchronization) is to pick up just these local time deviations in the
underlying interpretation of the the PCM-data stream to accomplish the
linking with the uninterpreted score data stream.

There are various problems intimately related to the synchronization
problem. In the following we quickly summarize some of the recent ap-
proaches which are partially based on similar techniques as discussed in
this article. However, the discussed problems are somewhat different to
our scenario. In the problem of automatic accompaniment one typically
has a solo part played by some musician which is to be accompanied by
a computer system in real time. Dannenberg et. al. (1984, 1988, 1994)
describe one of the first algorithms for automatic music accompaniment
reducing the synchronization problem to an LCS (longest common sub-
sequence) problem which is solved using dynamic programming. Vercoe
(1984) has developed a system for automatic accompaniment of a trans-
verse flute. Raphael (1999, 2001) has developed a system for automatic
musical accompaniment of an oboe based on Hidden Markov Models. De-
sain et. al. (1997) describe some general sequential and tree-based score-
performance matching algorithms. A similar problem addresses Large
(1993) using dynamic programming to study music production errors. In
all of those approaches the data streams involved in the synchronization
problem either explicitly contain score-like note parameters or only con-
sist of monophonic music so that the note parameters are comparatively
clean and error free. In our scenario, however, we also allow PCM-data
of complex polyphonic piano music where there are no such explicit and
clean parameters.

Finally, we want to mention the comprehensive book by Mazzola
(2002) who gives, among many related topics, a detailed account on local
tempo variations resulting from expressiveness in performances.

9



3 Extraction of Note Parameters

In this section we describe our system for extracting note parameters
from the PCM-data stream. The synchronization algorithms which are
discussed in Section 4 only use the onset times and pitches of the note
objects. One could also think of exploiting note durations or parameters
on the dynamics. However, the restriction to onset times and pitches is
sufficient for obtaining good synchronization results. This is also in ac-
cordance with our experience that a staccato version of a piece of music
contains most of the characteristic information needed for an identifica-
tion of that piece.

Our extraction algorithms in the most parts use established tech-
niques from audio signal processing, which will not be discussed in detail.
Our main contributions outlined below are a refined template matching
algorithm for polyphonic pitch extraction and a two-step algorithm for
note onset detection.

Audio
Generate note

pitches and
onset positions

parameters from

Subband
analysis

Computation of
energy vectors

Pitch extraction
via template
matching

novelity curve:
onset detection

Map onset positions

via LPC method

Refined onset detection

to subband positions

Computation of

objects
noteonsets

pitches

data base
Template

signal

Figure 5: Diagram of the feature extraction algorithm.

The extraction of the note parameters is performed in two stages.
First, the onset times are estimated using suitable attack detection al-
gorithms. Ideally, this yields a sequence of time intervals or segments,
each containing a note event of the underlying piece of music. In this,
a note event denotes a single note, a superposition of several simultane-
ously sounding notes (with possibly different onset times), or chords. In
a second step, we examine each of those note events and try to determine
the pitches of all musical notes contained in the event.

Fig. 5 gives an overview on the components of our feature extrac-
tion algorithm which will now briefly discussed. Several methods have

10



0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

Figure 6: Novelty curve extracted from some interpretation of the Aria
in Fig. 1.

been proposed for detecting attacks or onsets of musical notes. Those
may generally be classified into frequency- and time-domain approaches.
While investigating frequency-domain approaches such as linear predic-
tion, where changes in the frequency-contents of successive time-frames
are tracked, we found that several notes with relatively low energy (mainly
repetitions of notes and chords) could not be detected. Similary, pure
time-domain approaches, such as creating coarse signal-approximations
using sliding windows, resulted in inferior detection results with passages
containing strong variations in dynamics.

Hence, we employed a compromise between time- and frequency-
domain approaches for attack detections. For this, we used novelity
curves (similarly to Foote (2000)), which roughly describe an approxima-
tion of the change of a signal’s frequency contents in time by summing
over the absolute changes of the last two steps’ magnitude spectra. Fig. 6
shows the novelity curve extracted from some interpretation of the Aria
from Fig. 1.

As the time-resolution resulting from this procedure is relatively coarse,
a postprocessing is performed based on the concept of linear prediction.
Using a method proposed by Foster et al. (1982), this step refines the
estimated coarse onset positions to a reasonable time resolution of up to
10 ms. In Fig. 6, the peaks corresponding to the refined onset times are
marked by circles. Fig. 7 shows the detected onset times in the context
of the physical waveform corresponding to the particular interpretation
of the Aria.

11



0 0.5 1 1.5 2 2.5 3 3.5

x 105

−0.1

−0.05

0

0.05

0.1

0.15

Figure 7: Detected onset times in the context of the physical waveform
corresponding to the particular interpretation of the Aria.

As a second stage, polyphonic pitch detection is perfomed using a
template matching algorithm. This algorithm is subsequently applied
to each time segments between two successive detected attack positions.
The idea of template matching is to successively compare the target
interval (in a suitable representation) with a collection of pre-trained
templates (the template data base). In our case, the template data base
consists of one template for each possible musical note (intuitively it
corresponds to the keyboard of the piano). Then, the time interval is
assigned those notes whose templates yield a “good” match w.r.t. some
suitable criterion.

In our setting, the templates are created using fingerprints of the
frequency-energy distributions of the single notes. Technically, we use a
tree structured filterbank as proposed by Bobrek et al. (1998) to trans-
form the signal into a subband representation. The tree structure of
the filterbank — and hence the frequency ranges of the subbands — are
chosen such that the fundamental frequency of at most one piano note
(well-tempered tuning) falls into one subband. This guarantees that in
the template matching algorithm templates can be uniquely assigned to
energy vectors. For further details on the filter bank tree structure we
refer to Arifi (2002) and Bobrek et al. (1998).

Our templates were recorded using a Yamaha GranTouch E-Piano.
We also evaluated templates generated by two acoustic pianos (Steinway
and Schimmel). However, the E-Piano’s templates turned out to be the
most robust for our purposes.

Our template matching algorithm works as follows: starting with an

12



initial energy vector of the signal on the time segment in question, the
algorithm roughly tries to select a template from the TDB which op-
timally fits the energy vector w.r.t. a certain criterion (see below). If
successful, a corresponding energy fraction is subtracted from the energy
vector to yield a modified vector, which is used to recurse the procedure
until the remaining residual energy falls under some lower bound. We
used the following criterion for selecting a template which optimally fits
an energy vector E ∈ RM : find the lowest subband index k such that
E(k) ≥ (c/M)

∑M

i=1 |E(i)| (for some suitable prior constant c). If such a
k exists, search the TDB for a template Sk with fundamental frequency
in this subband. If E contains Sk to a significant extent, select Sk as
a matching template. Bobrek et al. (1998), instead of using the lowest
significant subband, choose the subband containing the highest energy
component for selecting the template. However, in our experiments this
criterion turned out to yield several octave interval errors in pitch detec-
tion, especially when applied to recordings from acoustic pianos.

0 2 4 6 8 10 12 14 16

50

55

60

65

70

75

80

85

Time (s)

MI
DI

−P
itc

h

Figure 8: Piano roll representation on the note parameters extracted
form the interpretation of the Aria.

Fig. 8 shows the piano roll representation of the note parameters ex-
tracted from the interpretation of the Aria using the proposed algorithms.
The explicit parameters of the first two measures can also be found in

13



Table 2. As explained before, note durations are not included in our
extraction process.

To conclude this section we note that our algorithms require a care-
ful choice of parameters (e.g., thresholds for template extraction, peak
picking, or the minimum inter-onset interval). For a detailed discussion
we refer to Arifi (2002).

4 Synchronization Algorithm

Before we describe the actual synchronization algorithms in this section
we first have to further specify the synchronization problems depicted
in Fig. 4. To this means we dwell on notions of tempo, time flow, and
synchronization following in part Mazzola (2002).

Some annotation such as “M.M. quarter note = 100” at the beginning
of some score gives the instruction to play the piece of music in uniform
tempo of 100 quarter notes per minute. Instead of “quarter-note” one
also could choose a different base unit such as “quaver” or “half-note”.
In general we specify the uniform tempo T by the formula

T =
#beats

minute
.

Independent of such a tempo annotation one can allocate each metric
position within any measure of some score a musical onset time: Suppose
there are b beats per measure and the position in question is the kth beat
in the mth measure, then this position has musical onset time

E = b · (m − 1) + k.

As an example, Fig. 9 shows the onset times of the first few note objects
in the right hand of the Aria where one has b = 3 beats per measure.

If E0 and E are musical onset times with E ≥ E0 then, presupposing
a unifrom tempo T , the physical onset time e(E) corresponding to E
relative to the physical onset time corresponding to E0 is given by

e(E) = e(E0) +
E − E0

T
. (1)

In reality one seldom has a uniform tempo. Slight local tempo deviations
as well as tempo changes prescribed by the score have to be considered.

14



� � �� � � �� � �
� �
� � � �� � � � � � � � � �

�

ith note 1 2 3 4 5 6 7 8 9 10 11 12
Ei 0 1 2 23

4
3 31

2
4 6 7 81

2
83

4
9

Figure 9: Onset times of the first 12 note objects in the right hand of
the Aria.

Closer to reality is in this case a piecewise uniform tempo. Suppose
E0 < E1 < . . . < En = E are the musical onset times, so that the tempo
between Ei−1 and Ei is uniformly given by Ti:

3
TT

1
T

2

0
E  E  

1
E  

2
E  

3

T
n

E  
n-1

E  = E
n

Then the physical onset times of E are given by the formula

e(E) = e(E0) +
n

∑

i=1

Ei − Ei−1

Ti

.

Considering a finer and finer subdivision, the sum
∑n

i=1(Ei − Ei−1)/Ti

may be regarded as a Riemann-sum and Ti may be interpreted as in-
stantaneous tempo. Under suitable assumption the time flow at musical
onset time E ≥ E0 based on the tempo function T is given by

e(E) = e(E0) +

∫ E

E0

dx

T (x)
.

Hence, given time flow e, the tempo in E is the reciprocal value

T (E) =

(

de

dE
(E)

)−1

.

We illustrate the introduced notions by means of two typical examples.
In case T (x) = T is constant, one has the case of a uniform tempo and
e(E) reduces to the above formula e(E) = e(E0) + (E − E0)/T . In case

15



T (x) = α · (x − E0) + T0 (for some α 6= 0, a constant T0 > 0 and all
x ∈ [E0, E]), one gets

e(E) = e(E0) +
1

α
ln

α(E − E0) + T0

T0

.

In other words, for α > 0 one has, starting with the musical onset time
E0, a uniform accelerando, i.e., a tempo acceleration, whereas for α < 0
one has a uniform ritardando.

Now, suppose two given tempo functions T1 und T2 of two different
interpretations of the same piece of music are known leading to the time
flows

e1(E) = e1(E0) +

∫ E

E0

dx

T1(x)
und e2(E) = e2(E0) +

∫ E

E0

dx

T2(x)
.

Then the (ideal) synchronization of the two interpretations consists in
linking the point of time e1(E) with the corresponding point e2(E) of
the second interpretation for each musical onset time E of the score.
This is illustrated by Fig. 10.

Figure 10: Ideal synchronization of two interpretations with time flows
e1(E) and e2(E) via the score.

The reality, however, is far from this idealized scenario. First, in
the score one often has only vague annotations for the tempo such as
“Allegro” or “Largo”. Second, (positive or negative) tempo accelerations
are just adumbrated by notions such as “ritardando” or ”accelerando”.
The exact course of the tempo is not specified and varies greatly from the
respective interpretation. Hence, in general there is no canonical tempo
function, which could be assigned to the score. Each tempo function is
based on the concrete interpretation of the score.

16



We are now able to specify the various synchronization problems in
more detail (see Fig. 4). The problems are listed by increasing degree of
difficulty.

1. In the easiest scenario the score and some MIDI-data stream are
given. Here the SM-synchronization problem boils down to comput-
ing the tempo function of the MIDI-recording. This task is com-
paratively easy since the MIDI-file contains the note parameters
more or less explicitly. Nevertheless, there are still some problems
caused by the vague annotations of the score such as trills, arpeg-
gios or grace notes. To cope with this problem we will introduce
the concept of fuzzy-notes.

2. The score and a CD-recording in PCM-data format are given. Then
the SP-synchronization problem consists of computing the tempo
function of the PCM-data stream. This task is much more difficult
than the previous one since the extraction of the note parameters
from the PCM-file, as shown in Section 3, causes great trouble
leading to erroneous extraction results. We will cope with this
problem using cost-optimal partial matches based on some suitably
designed cost function which takes possible erroneous extraction
parameters into account.

3. The score, a MIDI- and PCM-data stream are given. The MIDI-
and PCM-interpretations are to be synchronized. In this case, the
MP-synchronization can be done by combining the solutions of the
two previous tasks.

4. Only the MIDI- and the PCM-interpretation are given. Score in-
formation does not exists. Then instead of using the missing score
as “pure” reference one takes the MIDI-version instead. Here, the
procedure is similar to the second case; the main difference is the
lack of the musical onset times.

Furthermore, MM-synchronization and PP-synchronization, i.e., the
synchronization of two MIDI-versions respectively two PCM-versions of
the same piece of music may be realized by combing solutions of above
problems via

SM1 & SM2 −→ M1M2

SP1 & SP2 −→ P1P2.

17



Due to space limitation, we consider in the rest of this sectino only the
case of a score- and a PCM-data stream (SP-synchronization). The other
cases such as SM- or MP-synchronization are even easier or can be done
in a similar fashion (see Arifi (2002)). Fig. 11 shows the steps performed
in our algorithm. The extraction step has already been described in
Section 3. Preprocessing of the score will be content of Subsection 4.1
whereas the other steps are the content of Subsection 4.2. A further goal
of these subsections is to show how such concepts may be mathemati-
cally modeled using the concept of sets and partial maps. We refer the
reader to Subsection 4.3 where the abstract, mathematical notions are
illustrated by means of our running example.

Figure 11: Synchronization algorithm for a score and PCM-data stream.

4.1 Preprocessing of Score Data

First, we discuss how to preprocess the score data which is assumed to
exist in electronic form (e.g., as a file in the Capella format). In view
of the synchronization algorithm we only use the musical onset time
and pitch; other parameters such as duration or dynamical annotations
are not used. As defined before the musical onset time of some the
kth beat in the mth measure is given by E = b · (m − 1) + k, where
b denotes the number of beats per measure. Hence E ∈ Q, where Q

denotes the set of rational numbers. Furthermore, we identify a pitch p
with the corresponding MIDI pitch given by an integer between 0 and
127. Defining [0 : 127] := {0, 1, . . . , 127} one writes p ∈ [0 : 127]. For
example, the standard pitch a of frequency 440 Hz is represented by the
number p = 69.

We distinguish between two kinds of note objects: explicit and implicit
ones. We first consider explicit objects where all note parameters are

18



given explicitly. Then all explicit note objects at a given onset time E
will be represented by a pair (E,H0) which consists of the onset time E
and a set of pitches H0 ⊆ [0 : 127] containing precisely all the pitches of
the corresponding notes. For example, the explicit notes at onset times
E = 0 and E = 1 of the Aria in Fig. 1 are represented by (0, {55, 79})
and (1, {59, 79}), respectively.

By an implicit note object we understand notes or a group of notes
with some additional specification such as a trill, an arpeggio or grace
notes. Implicit objects allow different realizations, depending on the
epoch and the actual interpretation. To get this ambiguity under control
we introduce the concept of a fuzzy note. A fuzzy note is defined to be
a tuple (E,H1) consisting of some musical onset time E ∈ Q and some
set of alternative pitches H1 ⊆ [0 : 127]. Then an implicit note object,
such as a trill, is represented by the musical onset time of a certain main
note and the set of all pitches appearing in a possible realization of this
object. Fig. 12 illustrates the definition. Here, the two fuzzy notes are
given by (0, {67, 69}) and (1, {71, 72, 74}).

� �
� � �
�(�

� � ��� � � � � � � � � � �� ���
(a) (b) (c)

Figure 12: Appoggiatura and trill, (a) notation, (b) possible realization,
(c) fuzzy note.

To simplify the further discussion we assume that there is at most
one implicit note object at a given musical onset time E. It is a straight-
forward generalization to also admit several implicit note objects a time.
Then after preprocessing we may assume that a score is given by some
subset S ⊂ Q×2[0:127]×2[0:127], where 2[0:127] denotes the set of all subsets
of [0 : 127]. Here, in a triple (E,H0, H1) ∈ S the subset H0 ⊆ 2[0:127]

consists of all pitches of explicit note objects having musical onset time
E and similarly the subset H1 ⊆ 2[0:127] consists of all pitches of implicit
note objects having musical onset time E. We want to emphasize that
H0 is a set of pitches which certainly appear in some interpretation of the
score at onset time E, whereas H1 represents just a set of alternatives
of possible or likely pitches. Table 1 shows the encoding of the first few

19



notes of the Aria from Fig. 1.

(0, {55, 79}, ∅), (1, {59, 79}, ∅), (2, {62}, {79, 81}), (2 3
4
, {83}, ∅),

(3, {54, 81}, ∅), (3 1
2
, ∅, {78, 79}), (4, {57}, {74, 76}), (5, {62}, ∅).

Table 1: First two measures of the Aria in Fig. 1 after preprocessing.

4.2 Matching and Cost Function

In this subsection we describe the SP-synchronization algorithm based
on dynamic programming. The decisive ingredient for our approach is a
carefully designed cost function which will be explained in detail.

After having preprocessed the score, we now turn to the data stream
given in PCM-format. As described in Section 3, we extract a set of pos-
sible candidates of note objects given by their physical onset times and
pitches (including in general erroneous objects). In view of the synchro-
nization it is useful to further process this extracted data by quantizing
the onset times. Simply speaking, we pool all note objects by suitably
adjusting those physical onset times which only differ by some small value
— e.g., smaller than some suitably chosen ∆ > 0 — since these note ob-
jects are likely to have the same musical onset time in the corresponding
score format. After quantization we also may assume that the extracted
PCM-data is given by some subset P∆ ⊂ Q × 2[0:127]. Note that in the
PCM-case there are only explicit note objects.

Altogether, we may assume that the score and the ∆-quantized ex-
tracted PCM-data are given by the sets

S = [(s1, S01, S11), . . . , (ss, S0s, S1s)]

and
P∆ = [(p1, P01), . . . , (pp, P0p)].

Here, the si, 1 ≤ i ≤ s, denote the musical onset times and the pj, 1 ≤
j ≤ p, denote quantized physical onset times. Furthermore, S0i, S1i, P0j ⊆
[0 : 127] are the respective sets of pitches for the explicit and implicit
objects.

20



On the basis of S and P∆ we now accomplish the SP-synchronization.
Since the score and the PCM-data represent the same piece of music, it
is reasonable to assume s1 = p1 = 0 by possibly shifting the onset times.
Now, the goal is to partially link the onset times s1, . . . , ss to p1, . . . , pp by
maximizing the matches of the corresponding pitch sets. In the following,
we formalize this approach.

Definition 4.1. A Score-PCM-match (SP-match) of S and P∆ is defined
to be a partial map µ : [1 : s] → [1 : p], which is strictly monotonously
increasing on its domain satisfying (S0i ∪ S1i) ∩ P0µ(i) 6= ∅ for all i ∈
Domain(µ).

This definition needs some explanations. The fact that objects in S
or P∆ may not have a counterpart in the other data stream is modeled
by the requirement that µ is only a partial function and not a total one.
The monotony of µ reflects the requirement of faithful timing: if a note
in S precedes a second one this also should hold for the µ-images of these
notes. Finally, the requirement (S0i ∪ S1i) ∩ P0µ(i) 6= ∅ prevents that
onset times are linked which are completely unrelated with respect to
their pitches.

Obviously, there are many possible SP-matches between S and P∆.
By means of some suitable cost function we can compare different matches.
The goal is then to compute an SP-match minimizing the cost function.
To simplify the notation we identify the partial function µ with its graph
Graph(µ) := {(i1, j1), · · · , (i`, j`)}, where {i1 < · · · < i`} ⊆ [1 : s] and
{j1 = µ(i1) < · · · < j` = µ(i`)} ⊆ [1 : p]. In the following definition we
assign costs to each SP-match µ. In doing so, we make use of a param-
eter vector π := (α, β, γ, δ, ζ, ∆) ∈ R6

≥0 consisting of six real parameters
which will be specified later.

Definition 4.2. Let π := (α, β, γ, δ, ζ, ∆) ∈ R6
≥0 be a parameter vector.

Then the SP-cost of an SP-match µ w.r.t. π between some score S and
some ∆-quantized set P∆ of the corresponding PCM-document is defined

21



as

CSP
π (µ|S, P∆) := α ·

∑

(i,j)∈µ

(

|S0i \ P0j| + λ(i, j)
)

+β ·
∑

(i,j)∈µ

(

|P0j \ (S0i ∪ S1i)| + ρ(i, j)
)

+γ ·
∑

k 6∈Domain(µ)

(

|S0k| + σ(k)
)

+δ ·
∑

t6∈Image(µ)

|P0t|

+ζ ·
∑

(i,j)∈µ

∣

∣

∣
si − pj · `(S)/`(P )

∣

∣

∣
.

This definition also requires some explanations. The sum correspond-
ing to the factor α represents the cost of the non-matched explicit and
implicit note objects of the score S. To be more accurate, the cardinality
|S0i \ P0j| measures the cost arising from the difference of the set S0i of
explicit note objects at the ith onset time of S and the set P0j of explicit
quantized note objects at the jth onset time of P∆. Furthermore, λ(i, j)
is defined to be 1 if and only if the score S has an implicit note object
at the ith onset time and P∆ has no counterpart at the jth onset time,
i.e., S1i 6= ∅ and S1i ∩ P0j = ∅. In all other cases λ(i, j) is defined to be
0. Next, we consider the sum corresponding to the factor β. The first
summand in the brackets measures the cost of (possibly erroneously) ex-
tracted notes at the jth physical onset time whose pitches do not lie in
S0i∪S1i. Furthermore, ρ(i, j) is defined to be |P0j∩S1i|−1 if P0j∩S1i 6= ∅.
Otherwise ρ(i, j) is defined to be 0. In other words, for the implicit note
objects only one match is free of cost whereas each additional match is
penalized. (This is motivated by the idea that all notes belonging to
some realization of a fuzzy note are expected to have pairwise distinct
physical onset times.) The sum corresponding to γ accounts for all onset
times of the score which do not belong to the match µ. The first term
within the brackets counts the number of explicit note objects at the kth
onset time, k 6∈ Domain(µ). Furthermore, σ(k) is defined to be 1 if there
is a non-matched implicit note object and 0 if there is no implicit note
object at the kth onset time. (The idea is that a non-matched fuzzy note

22



should only be penalized by 1 since it only represents a set of alterna-
tives.) The sum corresponding to δ accounts for the cost of those notes
in P∆ which do not have a counterpart in S. Finally, the last sum cor-
responding to ζ measures some kind of adjusted `1-distance (also known
as Manhattan-distance) of the vector pairs (si, pj)(i,j)∈µ, where `(S) and
`(P ) denote the differences of the last and the first musical respectively
physical onset times (a kind of musical and physical duration). By this
sum one penalizes matches with large relative time deviations thus pre-
venting large global deviations in the synchronization.

In the following we fix some parameter vector π, a preprocessed score
S, and quantized extracted PCM-data P∆. Note that if µ is an SP-match
then also µ′ := µ\{(i, j)} for some (i, j) ∈ µ. An easy computation shows

CSP
π (µ|S, P∆) − CSP

π (µ′|S, P∆) = α ·
(

|S0i \ P0j| + λ(i, j)
)

+β ·
(

|P0j \ (S0i ∪ S1i)| + ρ(i, j)
)

−γ ·
(

|S0i| + σ(i)
)

(2)

−δ · |P0j|

+ζ ·
∣

∣

∣
si − pj · `(S)/`(P )

∣

∣

∣
.

Now, one can determine a cost-minimizing SP-match by means of
dynamic programming. We recursively define a matrix C = (cij) with
i ∈ [0 : s] and j ∈ [0 : p]. First, initialize c0j := ci0 := CSP

π (∅|S, P∆) for
all i ∈ [0 : s], j ∈ [0 : p]. Note that this accounts for the costs that there
is no match at all between S and P∆. At position (i, j) ∈ [1 : s] × [1 : p]
the value cij expresses the cost for a cost-minimizing SP-match within
the subset [1 : i] × [1 : j] ⊂ [1 : s] × [1 : p]. Hence, csp expresses the
minimal cost of a global SP-match. For (i, j) ∈ [1 : s] × [1 : p], the value
cij is defined as

cij := min{ci,j−1, ci−1,j , ci−1,j−1 + dSP
ij },

where

dSP
ij :=

{

right hand side of Eq. (2), if (S0i ∪ S1i) ∩ P0j 6= ∅,
0, otherwise.

Using the resulting matrix C, the procedure of Fig. 13 computes a cost-
minimizing SP-match.

23



SCORE-PCM-SYNCHRONIZATION(C,s,p)
1 i := s, j := p, SP-Match := ∅
2 while (i > 0) and (j > 0)
3 do if c[i, j] = c[i, j − 1]
4 then j := j − 1
5 else if c[i, j] = c[i − 1, j]
6 then i := i − 1
7 else SP-Match := SP-Match ∪ {(i, j)},

i := i − 1, j := j − 1
8 return SP-Match

Figure 13: Procedure for computing the cost-minimizing SP-match.

In the next section we give an example to illustrate this procedure
and report some of our experiments. As we mentioned before, SM- and
MP-synchronization can be done similarly to the SP-case. Furthermore,
other synchronization problems such as synchronization of two PCM-data
streams P1 and P2 (P1P2-synchronization) may be achieved by using
a score S as a reference and carrying out both an SP1- and an SP2-
synchronization.

We conclude this section with some comments on the parameter vec-
tor π := (α, β, γ, δ, ζ, ∆). In most of our experiments we set the quantiza-
tion constant to ∆ = 50 ms. This threshold was chosen since it represents
a good compromise between psychoacoustically distinguishable asynchro-
nisms of chords and the shortest possible musical note durations. By the
parameters α and β one can weight the cost for the symmetric difference
of pitch sets corresponding to matched onset times, whereas by the pa-
rameters γ and δ one can weight the cost of those note objects which
do not have a counterpart in the other data stream. One meaningful
standard choice of the parameters is α = β = γ = δ = 1. However, if
one wants to penalize non-matched onset times, for example, one may in-
crease γ and δ. In the case ζ = 0 the last sum of the cost function remains
unconsidered. Increasing ζ will hamper matches (i, j) whose onset times
si and pj differ too much with respect to their relative positions in their
respective data stream. In other words, excessive global time divergence

24



in the synchronization of the two data streams can be controlled.

4.3 An Example

We illustrate the SP-synchronization by means of the Aria shown in
Fig. 1. After the preprocessing step the score is given by the data
stream S = [(s1, S01, S11), . . . , (ss, S0s, S1s)] with s = 23. For example,
the set S01 = {55, 79} contains the two pitches at musical onset time
s1 = 0 corresponding to the first note g with MIDI-pitch 55 in the left
and the first note g2 with MIDI-pitch 79 in the right hand. As another
example, the trill in the right hand of the first measure is modeled by a
fuzzy note (implicit note object) at musical onset time s3 = 2 given by
S13 = {79, 81}. Here the MIDI-pitches 79 and 81 correspond to the two
possible notes a2 and h2 involved in the trill. Table 2 shows all the note
objects of S corresponding to the first two measures of the Aria.

S P∆

i si S0i S1i j pj P0j

1 0 {55, 79} ∅ 1 0 {55, 67}
2 1 {59, 79} ∅ 2 1.23 {59, 79}
3 2 {62} {79, 81} 3 2.44 {55, 62}

4 2.56 {62, 79}
5 2.68 {62, 81}

4 2.75 {83} ∅ 6 3.58 {83}
5 3 {54, 81} ∅ 7 3.86 {54, 66}
6 3.5 ∅ {78, 79} 8 4.47 {79}

9 4.75 {78}
7 4 {57} {74, 76} 10 5.06 {57, 76}

11 5.71 {74}
8 5 {62} ∅ 12 6.39 {57, 62}

Table 2: Matching of the preprocessed score data stream S and the data
stream P∆ consisting of the quantized note parameters extracted from
the PCM-data stream for the first two measures of the Aria.

The PCM-version P represents a recording of the Aria performed on
a Steinway grand piano. The physical length is `(P ) = 13 sec. After

25



extraction of the note parameters (shown in Fig. 8) and ∆-quantization
with ∆ = 50 ms one obtains P∆ = [(p1, P01), . . . , (pp, P0p)] with p = 38
note objects. Note that the number p = 38 of note objects in P∆ is
much greater than the number s = 23 in S. The reason is that P∆ not
only contains for each trill and appoggiatura several note objects (which
correspond in S to a single implicit note object, respectively) but also
erroneous extraction results. Table 2 shows all the note objects of P∆

corresponding to the first two measures of the Aria. Here, pj denotes the
physical note onset time for the positions j = 1, 2, . . . , 38 measured in
seconds.

This example also illustrates several typical phenomena appearing in
the extraction step. For example, at position j = 1 the set P01 = {55, 67}
contains the MIDI-pitch 67 instead of the expected pitch 79. This may
be explained as follows: at onset time p1 the notes g of MIDI-pitch 55 and
g2 of MIDI-pitch 79 are played. Note that the sound corresponding to
the note g contains the harmonics g1 and g2 with high energy. Because of
the complex interaction of all the harmonics of all played notes at a given
time, it is nearly impossible to decide whether g1 or g2 are fundamental
frequencies of independent notes or just harmonics of g. At position
j = 1 the extraction algorithm has, instead of g2, mistakenly interpreted
g1 of MIDI-pitch 67 as an independent note. Such “octave errors” are
typical for the extraction step. (To tackle this problem one may restrict
oneself to only considering pitches which are reduced modulo 12 when
using the note parameters as input for the synchronization algorithm.)

Furthermore, the “erroneous” extraction of the note g of MIDI-pitch
55 at position j = 3 may be ascribed to the fact that this note has been
played at onset time p1 and still continues to sound at time p3. The
extraction algorithm mistakenly rediscovers this note as a “new” note
object at time p3.

As a final example, we want to mention that the trill over a2 in the
first measure, corresponding to the fuzzy note S13 = {79, 81} in the score,
has several counterparts on the PCM-side, namely P03, P04, and P05. In
passages with many short notes having similar spectral components the
extraction algorithm is error-prone leading to many additional pitches.

In spite of such “erroneously” extracted note parameters the SP-syn-
chronization works quite well. Using the cost function CSP

π (µ|S, P∆) from
Definition 4.2 with prototypical parameter vector π = (1, 1, 1, 1, 0, 50)

26



leads to the cost matrix C = (cij), which is shown in Fig. 3 for the note
objects corresponding to the first two measures.

0 1 2 3 4 5 6 7 8 9 10 11 12

0 102 102 102 102 102 102 102 102 102 102 102 102 102

1 102 98 98 98 98 98 98 98 98 98 98 98 98

2 102 98 94 94 94 94 94 94 94 94 94 94 94

3 102 98 94 90 90 90 90 90 90 90 90 90 90

4 102 98 94 90 90 90 88 88 88 88 88 88 88

5 102 98 94 90 90 88 88 85 85 85 85 85 85

6 102 98 94 90 88 88 88 85 83 83 83 83 83

7 102 98 94 90 88 88 88 85 83 83 79 79 79

8 102 98 94 90 88 86 86 85 83 83 79 79 77

Table 3: Cost matrix C = (cij) for the note objects of S (row index
i = 0, . . . , 8) and P∆ (column index j = 0, . . . , 12) corresponding to the
first two measures of the Aria.

We recall that the number cij expresses the costs for a cost-minimizing
SP-match of the note objects of S up to position i with the note objects
of P∆ up to position j. (For cij all note objects above the positions i
and j respectively are not considered and remain unmatched.) For ex-
ample, the number c00 = 102 is the cost for the empty match, i.e., the
cost where there is no match at all. Hence c00 is maximal among all
numbers cij. When the first note object S01 at position i = 1 of S is
matched with the first note object P01 at position j = 1 of P and all
other note objects are left unconsidered, one gets the cost c11 = 98
which is lower than c00, and so on. Now, using dynamic program-
ming, one gets the cost minimizing global match µ. In Table 3 the
matrix entries cij corresponding to a matched pair (i, j) (i.e., µ(i) = j)
are written in boldface, i.e., the matches of the first two measures are
{(1, 1), (2, 2), (3, 3), (4, 6)}, {(5, 7), (6, 8), (7, 10) and (8, 12)}. In this ex-
ample, the fuzzy note S13 is matched with the “first note” P03 of the
three note objects belonging to the trill realization of the interpreted
PCM-version. Furthermore, the SP-algorithm has matched the appog-
giatura of the score S modeled by the fuzzy notes S16 at position i = 6
with the corresponding first note object P08 of the appoggiaturas of P∆

at position j = 8, and similarly S17 with P0,10.
In Fig. 14 the computation of an optimal SP-match is illustrated

27



by means of a 3D-plot which visualizes the cost matrix C. The right
coordinate represents the indices j for the onset times sj, 1 ≤ j ≤ s,
s = 38. The middle coordinate represents the indices i for the onset
times pi, 1 ≤ i ≤ p, p = 23. Finally, the vertical coordinate shows the
values cij of the matrix C. The path indicates the cost minimizing match
representing the solution of the synchronization problem.

Figure 14: The cost matrix C and a cost-minimizing SP-match for the
Aria.

5 Experiments

We have implemented a prototype of the extraction algorithms from Sec-
tion 3 and the synchronization algorithms in the MATLAB programming
language and tested our algorithms for SM-, SP-, and MP-synchronization
on a variety of classical polyphonic piano pieces of different complexity
and length (ranging from 10 to 60 seconds) played on various instru-
ments. Furthermore, we have systematically generated a library of more

28



than one hundred test pieces both in MIDI- and PCM-format played on
a MIDI-piano, a Steinway grand piano, and a Schimmel piano. In some
of those pieces our player has deliberately built in excessive accelerandi,
ritartandi, rhythmic distortions, and wrong notes. Even in these ex-
treme situation, where one unsurprisingly has many “erroneously” ex-
tracted note objects which considerably differ from the score-data, our
SP-synchronization algorithm resulted in good overall global matches
which are sufficient for the applications mentioned in the introduction.
Even more, in case of rather accurate extracted note parameters our syn-
chronization algorithms could resolve subtle local time variations in some
interpreted version of the piano piece. For further details and results of
our experiments we refer to Arifi (2002).

We close this section by describing one of our experiments where
we started with an uninterpreted score-like MIDI-version and an inter-
preted PCM-version of some piano piece. Using the results of our MP-
synchronization, we automatically modified the onset times of the MIDI-
stream to correspond to the PCM-stream in view of the global tempo
and the local tempo variations. This resulted in some “expressive” MIDI-
version which represented a sonification of our synchronization results. In
case of good extraction parameters the so modified MIDI-version sounded
rhythmically like a real interpretation of the underlying piano piece.

6 Conclusions

In this paper we have discussed algorithms for the automatic synchro-
nization of different versions of some polyphonic piano piece given in
different data formats (score, MIDI, PCM). Our implementation yields
good synchronization results even for complex PCM-based polyphonic
piano CD-recordings. One of the decisive features is a carefully designed
cost function which not only penalizes non- or partially matched note ob-
jects but also large relative global time deviations (in case ζ > 0). The
parameter vector π allows to weight different aspects in the matching
process and leaves room for experiments.

Our cost function may further be improved and extended in various
ways. One improvement may result if one allows that a fuzzy note of
the score data stream S may be assigned to several note objects of P∆.

29



For example, in Table 2 a simultaneous match of the trill S13 at position
i = 3 with all three note objects P03, P04, P05 (leading to the matches
(3, 3), (3, 4) and (3, 5)) would better reflect the correspondence of the
score parameters and the extracted note parameters of the PCM-data.
In this case the match µ would be a relation rather than a partial func-
tion. Another improvement may be achieved by exploiting “safe” note
objects, i.e., note objects which can be detected correctly by the extrac-
tion algorithm with high probability. Such “safe” note objects may be
low notes whose fundamental pitch cannot be mixed up with harmonics
of other notes; or notes with some “rare” spectral components sticking
out from the overall harmonic structure of the underlying piece. Here,
the prior knowledge of the score may be used to determine such safe
note objects which should then be matched with preference. This can be
achieved by modifying the cost function in such a way that non-matching
of safe notes leads to disproportionally higher costs. In the Aria, for ex-
ample, the first notes of each measure in the left hand seem to be good
candidates for such safe notes.

Finally, we note that our current system works off-line, where the
bottle-neck lies in the preprocessing step needed to extract note para-
meters from the PCM-files (where we up to now did not use any score
information). An ongoing research project is to exploit the score infor-
mation already in the extraction step. (See also Scheirer (1995) for a sim-
ilar approach.) This prior knowledge allows to use prediction methods
(in particular Kalman-filtering) which in connection with time-varying
comb filters may result in extraction algorithms running in real-time.
Such fast algorithms may be at the expense of the quality of the ex-
traction parameters. However, even low quality and coarse parameters
may be sufficient for a successful synchronization when using a suitably
designed cost function which is robust under erroneous parameters.

References

Arifi, Vlora. Algorithmen zur Synchronisation von Musikdaten im Paritur-,
MIDI- und PCM-Format. PhD thesis, Universität Bonn, Institut
für Informatik, 2002.

Blackham, E.D. “Klaviere” in Die Physik der Musikinstrumente, 2. Au-

30



flage, Spectrum, Akademischer Verlag, 1998.

Bobrek, Miljko, and Koch, Daniel. “Music Signal Segmentation Using Tree-
Structured Filter Banks,” Journal of Audio Engineering Society,
Vol. 46, No. 5 (1998), 412–427.

Cano, P., Loscos, A., Bonda, J. “Score-Performance Matching using HMMs,”
Proceedings of ICMC. (1999), 441–444.

Cemgil, A. T., Desain, P., Kappen, B. “Rhythm Quantisation for Tran-
scription,” Computer Music Journal, Vol. 24 No. 2 (2000), 60–76.

Cemgil, A. T., Kappen, B., Desain, P., Honing, H. “On tempo tracking:
Tempogram Representation and Kalman filtering,” Proceedings of
ICMC (2000), 352-355.

Dannenberg, R. B. “An On-Line Algorithm for Real-Time Accompani-
ment,” Proceedings of ICMC (1984).

Dannenberg, et al. Automated musical accompaniment with multiple in-
put sensors. US Patent #5521324 (1994).

Dannenberg, R. B., Mukaino, H. “New Techniques for Enhanced Qual-
ity of Computer Accompaniment,” Proceedings of ICMC (1988).

Desain, P., Honing, H., Heijink, H. “Robust Score-Performance Match-
ing: Taking Advantage of Structural Information,” Proceedings of
ICMC (1997), 377–340.

Foote, J. “ARTHUR: Retrieving Orchestral Music by Long-Term Struc-
ture,” Proceedings of the International Symposium on Music Infor-
mation Retrieval (ISMIR) (2000).

Foote, J., Uchihashi, S. “The Beat Spectrum: A New Approach To Rhythm
Analysis,” Proc. International Conference on Multimedia and Expo
(ICME) (2001).

Foster, S., Schloss, W.A., Rockmore, A.J. “Towards an Intelligent Edi-
tor of Digital Audio: Signal Processing Methods” Computer Music
Journal, Vol. 6, No. 1 (1982).

31



Goto, M. “An Audio-based Real-time Beat Tracking System for Music
With or Without Drum-sounds,” Journal of New Music Research,
Vol.30, No.2 (2001), 159–171.

Large, E. W. “Dynamic programming for the analysis of serial behaviours,”
in Behaviour Research Methods, Instruments, & Computers (1993).

Mazzola, Guerino. The Topos of Music. Birkäuser, 2002.

Ortiz-Berenguer, L. I., Casajús-Quirós, F. J. “Pattern recognition of pi-
ano chords based on physical model,” AES Convention Paper, Pre-
sented at the 112th Convention (2002), 10–13.

Raphael, C. “Automatic Segmentation of Acoustic Musical Signals Us-
ing Hidden Markov Models,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, Vol. 21, No. 4, (1999).

Raphael, C. “A Probabilistic Expert System for Automatic Musical Ac-
companiment.” Jour. of Comp. and Graph. Stats., Vol. 10, No. 3
(2001), 487–512.

Scheirer, E. D. Extracting Expressive Performance Information from Re-
corded Music. M. S. thesis, MIT Media Laboratory, 1995.

Scheirer, E. D. “Tempo and Beat Analysis of Acoustic Musical Signals,”
J. Acoust. Soc. Am. Vol. 103, No. 1 (1998), 588–601.

Selfridge-Field, Eleanor (ed.). Beyond MIDI, The Handbook of Musical
Codes. MIT Press, 1997.

Vercoe, B. “The Synthetic Performer in the Context of Live Performance,”
Proceedings of ICMC (1984).

32


