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Abstract

In this paper, we investigate erasure-resilient codes coming from Steiner 2-designs
with block size k which can correct up to any k erasures. In view of applications
it is desirable that such a code can also correct as many erasures of higher order
as possible. Our main result is that the erasure-resilient code constructed from an
affine space with block size q – a special Steiner 2-design – can not only correct up to
any q erasures but even up to any 2q − 1 erasures except for a small set of so-called
bad erasures if q is a power of some odd prime number. This gives a new family
of erasure-resilient codes which is asymptotically optimal in view of the check bit
overhead.
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1 Introduction

To avoid high rates of data loss in large disk arrays, also known as redundant
arrays of independent disks (RAID), Hellerstein et al. [4] introduced data
redundancy in form of erasure-resilient codes to allow information to survive
hardware failures. In view of this application, they point out that in a k-
erasure-resilient code the fraction of sets of k+1 erasures that can be corrected
has a significant effect on the overall reliablility of the code. However, in a k-
erasure-resilient code with minimal update penalty it is impossible to correct
any (k +1)-erasure consisting of an information bit and its k associated check
bits, which is also referred to as bad erasure. Hence, in view of maximizing the
reliability it is of interest to find k-erasure-resilient codes with minimal update
penalty which can correct any (k +1)-erasure except for the bad ones. Among
others, Hellerstein et al. [4] constructed a 3-erasure-resilient code based on a
Steiner triple system which can correct any 4-erasure except for the bad ones.
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Chee et al. [2] extended this concept by introducing the notion of (k, �)-erasure-
resilient codes, k < �. By definition, such codes are k-erasure-resilient codes
which can correct up to any � erasures except for the bad ones. In their paper,
Chee et al. investigated (k, �)-erasure-resilient codes from a set systems point
of view, gave several constructions based on combinatorial designs and proved
some upper and lower bounds concerning the asymptotical behaviour of the
check bit overhead.

In this paper, we investigate erasure-resilient codes coming from Steiner 2-
designs extending the results mentioned above of Hellerstein et al. [4]. Our
main result is that affine spaces, which constitute a special class of Steiner 2-
designs, over some ground field of odd order q lead to q-erasure-resilient codes
which can correct up to any 2q−1 erasures except for the bad ones (Theorem
4.2). This gives a new family of erasure-resilient codes which, as it turns out,
satisfies the upper asymptotic bound concerning the check bit overhead given
in the paper by Chee et. at. [2] and, hence, is optimal in this respect.

For some background information concerning the RAID-application and a
detailed account on erasure-resilient codes we refer the reader to the literature
[2–4]. In Section 2, we summarize the necessary coding theoretic background
and introduce in Section 3 the codes coming from Steiner 2-designs. In Section
4, we prove our main result (Theorem 4.2), which is based on affine spaces
over some ground field of odd order. We conclude this paper by proving that
this construction does not work any longer when the ground field is of even
order (Theorem 4.6). In this case there are actually (q +1)-erasures which are
not bad.

2 Background from Coding Theory

In this section, we summarize the necessary facts from coding theory. Further
details and references can be found in [2,4]. Let m, c ∈ N and let GF(2) denote
the field with two elements. A systematic binary linear (m + c, m)-code is a
linear injection γ : GF(2)m → GF(2)m+c such that an information x ∈ GF(2)m

appears unchanged in the first m bits – the so-called information bits – of the
corresponding code vector γ(x). The remaining c bits are referred to as check
bits which can be computed as the parity of subsets of information bits. Each
such code can be defined in terms of a c × (m + c)-control matrix or parity
check matrix, H = [C|I ], where I denotes the c × c identity matrix and C
is a c × m matrix. The codewords in the code are the vectors y ∈ GF(2)m+c

satisfying the equation Hy = 0.

An unreadable bit of a codeword is called an erasure, i.e., an erasure is a
defective bit or error where the position of this bit is known. It is a well known

2



fact that a code can detect up to any k errors, k ∈ N, iff it can correct up to
any k erasures. In terms of the parity check matrix H this is equivalent that
any set of k columns from H are linearly independent considered as vectors
over GF(2) (see [4]). A code with this property is called a k-erasure-resilient
code and will be abbreviated as [m, c, k]-ERC or just k-ERC if the parameters
m and c are not important in the context.

In view of the RAID-application one important metric in erasure-resilient
codes is the update penalty. In terms of the matrix H it can be defined as
the maximum over the weights of the colums of H . It follows easliy that the
update penalty of an k-ERC is at least k. Hence, with respect to this metric, a
k-ERC with parity check matrix H = [C|I ] is optimal if all columns of C have
precisely weight k. From here on we consider only those k-ERC for which the
the update penalty is k, i.e., the minimum possible. Note that in such codes
it is impossible to correct the set of all (k +1)-erasures. In particular, because
every information bit is associated with k check bits, it is impossible to correct
the set of (k+1)-erasures consisting of an information bit and its k check bits.
This leads to the following defintion.

Definition 2.1 A t-erasure, t ≥ k + 1 is bad if it includes the failure of an
information bit and all of its k associated check bits.

In view of a high reliability of the code it is desirable that a k-ERC can correct
as many �-erasures, � > k, as possible. This leads to the following definition
introduced in [2].

Definition 2.2 Let � ≥ k. An [m, c, k, �]-ERC is an [m, c, k]-ERC which can
correct all t-erasures, for k + 1 ≤ t ≤ �, except for the bad t-erasures.

Again we write (k, �)-ERC for [m, c, k, �]-ERC if the parameters m and c are
not of importance. In terms of the parity-check matrix an (k, �)-ERC can be
characterized as in the following Lemma whose proof can be found in [2].

Lemma 2.3 H = [C|I ] is the parity-check matrix of a (k, �)-ERC if and only
if for every t columns, c1, . . . , ct of C, where 2 ≤ t ≤ �, the vector x = ⊕t

i=1ci

has weight at least � + 1 − t.

3 Erasure-Resilient Codes from Steiner 2-Designs

Erasure-resilient codes are closely related to combinatorial designs. To fix the
notation we summarize the required facts from design theory and refer for
further details to the standard literature such as [1]. In particular, we introduce
Steiner 2-designs which are the basis for the erasure-resilient codes we are
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interested in.

Let X be a finite set. A set system is a pair (X,A), where A ⊆ 2X . The
order of the set system is |X |. The elements of X are called points and the
elements of A are called blocks. A set system (X,A) is called k-uniform if for
any block A ∈ A, |A| = k holds. The replication number of a point x ∈ X
is rx := |{A ∈ A|x ∈ A}|. The following definition will be used extensively
throughout the rest of this paper.

Definition 3.1 Let (X,A) be a set system. A point x ∈ X is called odd (even)
if the replication number rx is odd (even). With odd(X,A) we will denote the
number of odd points in X.

If the underlying set X is clear from the context, we will often speak of a set
system A and write odd(A) instead of odd(X,A). With a given a parity-check
matrix H = [C|I ] of an [m, c, k]-ERC one can associate a set system (X,A),
where X = {1, . . . , c}, |A| = m, and A contains precisely the supports of the
columns of C as blocks. We also call (X,A) the set system of the erasure-
resilient code which is obviously k-uniform. In terms of set systems Lemma
2.3 can be reformulated as follows (see also [2]).

Lemma 3.2 (X,A) is the set system of a (k, �)-ERC if and only if for every t
blocks, A1, . . . , At of A, where 2 ≤ t ≤ �, one has odd({A1, . . . , At}) ≥ �+1−t.

A k-uniform set system (X,A) of order v is called a Steiner 2-design, denoted
as S(2, k; v), if every pair of distinct points of X is contained in exactly one
block of A. From such a Steiner 2-design one can obtain an erasure-resilient
code with parity-check matrix H = [C|I ] by defining C = (ci,j) to be the
incidence matrix of (X,A), i.e., if X = {x1, . . . , xv} and A = {A1, . . . , Ab},
then ci,j = 1 in case xi ∈ Aj and otherwise ci,j = 0, 1 ≤ i ≤ v, 1 ≤ j ≤ b. In
the following, this code will be simply referred to as S(2, k; v)-Steiner code.

Lemma 3.3 An S(2, k; v)-Steiner design is a [b, v, k]-ERC with b = v(v−1)
k(k−1)

.

Proof: Let H = [C|I ] be the parity check matrix of the Steiner code (X,A).
Since each block of (X,A) consists of k points, every column of C has weight
k. Furthermore, it is a well known fact from design theory that the number
b of blocks of any S(2, k; v) is as stated in the lemma (see [1]). Let B ⊆ A
denote a subset consisting of t blocks, 2 ≤ t ≤ k. By definition, any pair of
two distinct points is contained in exactly one block, i.e., two distinct blocks
have at most one point in common. From this follows easily

odd(B) ≥ t · k −
t−1∑
i=1

2i = t · k − t · (t − 1) = t · (k − t + 1) ≥ k − t + 1.

Lemma 3.2 with � = k finishes the proof. �
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In general, Steiner codes are not (k, k + 1)-ERC, i.e., there are uncor-
rectable (k + 1)-erasures which are not bad. In the proof of Theorem 4.6 we
will construct such examples. For a more special class of Steiner 2-designs,
however, one has a much higher erasure-correcting capability as is shown in
the next section.

4 Erasure-Resilient Codes from Affine Spaces

For any prime power q and natural number n ≥ 2 there is the following
well-known standard construction for Steiner 2-designs. Let GF(q) be the Ga-
lois field of order q. Define the set of points X to be an n-dimensional vector
space over GF(q). Let A be the set of cosets of one-dimensional subspaces
of X. In this case, the blocks are also called lines. Then one readily shows
that (X,A) is an S(2, q; qn) (see [1]). Coming from an n-dimensional affine
space these Steiner 2-design, also denoted by AG1(n, q), have nice “geomet-
ric” properties. Two lines of A are said to be parallel iff they are cosets of
the same one-dimensional subspace of X. This defines an equivalence relation
on A, where each equivalence class forms a so-called parallel class containing
each point of X exactly once. Furthermore, note that two lines of A intersect
each other iff they lie in the same plane (coset of a two-dimensional subspace
of X) and are non-parallel. To prove the main result (Theorem 4.2) of this
paper the following lemma will be useful, which gives a lower bound on the
number of odd points for certain subsystems of lines.

Lemma 4.1 Let q be an odd prime power and let B = {B1, . . . , Bt}, t ≥ 2,
be any subsystem of lines of the Steiner 2-design AG1(2, q). Suppose there is
a parallel class P of AG1(2, q) such that s := |B ∩ P| < q and t − s is odd.
Then odd(B) ≥ q − s. Furthermore, at least q − s odd points of B lie on lines
of B \ P.

Proof: Let B, P, and s as postulated in the lemma. With a suitable enumer-
ation we may assume B ∩ P = {B1, . . . , Bs}. There are q − s lines in P \ B.
Fix any such line P ∈ P \ B. Note that any line Bi, s + 1 ≤ i ≤ t, intersects
P in exactly one point. Now, we proceed stepwise. Starting with the empty
set we add in the ith step, i = 1, . . . , t, the line Bi. Define ai, 1 ≤ i ≤ t, to be
the number of odd points of {B1, . . . , Bi} lying on P . Then, clearly ai = 0 for
i = 1, . . . , s and as+1 = 1. In step i, s + 1 ≤ i ≤ t, there are two possibilities:

• Bi intersects P in some odd point of {B1, . . . , Bi−1}. Then ai = ai−1 − 1.
• Bi intersects P in some even point of {B1, . . . , Bi−1}. Then ai = ai−1 + 1.

In any case ai + 1 ≡ ai−1 mod 2. Therefore, since as+1 = 1 and t− s is odd by
assumption, at is odd as well. In other words, there is an odd number of odd
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points of B lying on P , in particular there is at least one such point. Since
there are q − s choices for P ∈ P \ B, the assertions of the lemma follow. �

In an AG1(n, q)-Steiner code there are obviously non-bad 2q-erasures which
are not corrigible. For example, just take the subsystem consiting of 2q lines of
two distinct parallel classes of AG1(2, q) considered as a subspace of AG1(n, q),
where any point has clearly replication number two. Therefore, in view of
erasure-correcting capability the next theorem gives the best possible result
one may expect. It also generalizes a result of Hellerstein et al. [4], where the
existence of an S(2, 3; 3n), n ∈ N, which is an (3, 4)-ERC is shown.

Theorem 4.2 Let q be an odd prime power and n ≥ 2 a natural number. Then
the AG1(n, q)-Steiner code is an [m, c, q, 2q−1]-ERC with m = qn−1 · qn−1

q−1
and

c = qn.

Proof: The formulas for m and c follow from the definition of AG1(n, q) and
Lemma 3.3. In view of Lemma 3.2, we have to prove that for any set B of t
lines of AG1(n, q), where 2 ≤ t ≤ 2q − 1, one has odd(B) ≥ 2q − t. Fix such
a t and B = {B1, . . . , Bt} for the rest of the proof, which will be split up into
three cases: Case 1: n = 2, t odd, Case 2: n = 2, t even, and Case 3: n > 2.

Case 1 (n = 2, t odd): Since q is assumed to be an odd prime power q + 1 is
even. Since the number of parallel classes in AG1(2, q) is q+1 and t is odd, there
is at least one parallel class containing an even number of lines of B. Under
all such parallel classes containing an even number of lines of B pick a parallel
class, call it P, which is minimal with respect to this number, call it s. Then
either s = 0 or all parallel classes contain at least one line of B. Therefore,
s ≤ max{0, t− q} in any case. In the case when 2 ≤ t < q, we can argue as in
the proof of Lemma 3.3 to get odd(B) ≥ t · (q− t+1) ≥ 2 · (q− t)+ t = 2q− t.
In the case when t ≥ q, we can apply Lemma 4.1 (since t − s is odd) to get
odd(B) ≥ q − s ≥ q − (t − q) = 2q − t.

Case 2 (n = 2, t even): We distinguish two cases. In the first case the number
|P ∩B| is even for any parallel class P of AG1(2, q). Then we can partition the
lines of B into j = t

2
pairs of lines, where each pair is contained in a parallel

class. If j = 1, then odd(B) = 2q ≥ 2q − t. If j > 1, then the four lines of any
two of the j pairs have at most 4 intersection points. From this follows (just
as in the proof of Lemma 3.3):

odd(B)≥ j · 2q −
j−1∑
i=1

4i = 2(jq − j(j − 1)) = j(2q − 2j + 2)

≥ 2q − 2j + 2 ≥ 2q − t,

where we used 2q−2j +2 ≥ 0. In the second case there is at least one parallel
class P of AG1(2, q) such that s := |P ∩ B| is odd and therefore t − s as
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well. If s ≤ t − q we get odd(B) ≥ q − s ≥ q − (t − q) = 2q − t applying
Lemma 4.1 just as in Case 1. Now, suppose s > t − q. Each line of B \ P
intersects each line of B∩P in exactly one point. Therefore, there are at most
|B \ P| · |B ∩ P| = (t − s) · s distinct intersection points of lines of B lying on
some line of B∩P. But then there are at least s · q− (t− s) · s odd points of B
lying on lines of B ∩ P. Furthermore, since t − s is odd, there are by Lemma
4.1 another q − s odd points of B lying on lines of B \ P. Altogether, we get

odd(B) ≥ s(q − t + s) + q − s ≥ q − t + s + q − s = 2q − t,

where we used q − t + s > 0 and s ≥ 1.

Case 3 (n > 2): In case all lines of B lie in a common plane, we may assume
– by applying a suitable affine transformation – that this plane is just the one
spanned by the first two coordinates. This reduces the problem to the case
n = 2. In case t = 2, obviously odd(B) ≥ 2q − t. Hence, we are left with the
case where there are at least three lines of B not lying on a plane. We may
assume that there are two lines, say B1 and B2, intersecting each other since
otherwise trivially odd(B) ≥ 2q − t. Let j, 2 ≤ j ≤ t − 1 be the number of
lines in B lying on the plane P spanned by B1 and B2. Renumbering the lines
of B we may assume that these lines are B1, . . . , Bj. We distinguish two cases.
In the first case let j > q. Since Bt intersects P in at most one point, the set
system {B1, . . . , Bj, Bt} has at least q−1 odd points on Bt \P . Any other line
Bi, j < i < t intersects Bt in at most one point, i.e., odd(B) ≥ (q−1)−(t−j−
1) > 2q−t. In the second case let j ≤ q. Then odd({B1, . . .Bj}) ≥ j(q−j +1)
which follows just as in the proof of Lemma 3.3. Furthermore, since any other
line Bi, j < i ≤ t intersects P in at most one point, we get

odd(B)≥ j(q − j + 1) − (t − j) = −j2 + j(q + 2) − t

=−(j − q)(j − 2) + 2q − t ≥ 2q − t,

where we used (j − q)(j − 2) ≤ 0. �

This result is also of interest in view of the conjecture formulated by Chee et
al. [2] concerning the asymptotic behaviour of the optimal check bit overhead
for (k, �)-ERC. We substantiate this statement.

Definition 4.3 Given c, k, and �, define F (c, k, �) to be the maximum m such
that there exists an [m, c, k, �]-ERC.

In other words, F (c, k, �) is the maximum number of information bits that
can be supported by c check bits, if one desires an update penalty of k and
wants to tolerate all t-erasures, t ≤ �, except the bad ones. An [m, c, k, �]-
ERC with m = F (c, k, �) is said to have optimal check bit overhead. In [2] the
following lower and upper bounds for F (c, k, l) are given.
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Theorem 4.4 For any fixed k and � such that 1 ≤ k ≤ �, there exist positive
constants a1 and a2 such that

a1c
(2k+1−�)/4 ≤ F (c, k, �) ≤ a2c

k+1−��/2�,

for all positive integer c.

Chee et al. [2] speak out the conjecture that the upper bound describes the
true asymptotic behaviour of F (c, k, �). Theorem 4.2 verifies this conjecture
for the case k = q, � = 2q − 1 for odd prime powers q, as will be proved in the
next corollary.

Corollary 4.5 For an odd prime power q one has F (c, q, 2q − 1) = Θ(c2). In
particular, F (c, q, 2q − 1) ≥ 1

q4 · c2.

Proof: From Theorem 4.4 one gets F (c, q, 2q − 1) = O(c2). For any c >
0 pick the n ∈ N such that qn ≤ c < qn+1. By Theorem 4.2 there is an
[qn−1, qn−1 · qn−1

q−1
, q, 2q − 1]-ERC. Hence

F (c, q, 2q − 1) ≥ qn−1 · qn−1
q−1

≥ (qn−1)2 = 1
q4 · (qn+1)2 ≥ 1

q4 · c2.

�

We conclude this paper with the case where q is an even prime power.

Theorem 4.6 If q is an even prime power and n ≥ 2 then the AG1(n, q)-
Steiner code is not a (q, q + 1)-ERC. In particular, there is a set system B
consisting of q + 1 lines of AG1(n, q) such that odd(B) = 0.

Proof: Obviously, it suffices to prove the assertion for n = 2. Note that
1 = −1 in GF(q) since q is an even prime power. Pick an arbitrary but fixed
invertible element ω ∈ GF(q)\{0}. We define the following q +1 distinct lines
of AG1(2, q):

Bα = {λ · (ω + α, α) + (0, α) , λ ∈ GF(q)}, α ∈ GF(q),

B′ = {λ · (ω, ω) + (0, ω) , λ ∈ GF(q)},
and B := {Bα|α ∈ GF(q)} ∪ {B′}. We will show, that any two lines of B
intersect in exactly one point and that all intersection points are different.
This implies that there are q(q+1)

2
points in the set system B and any such

point appears in exactly two lines of B, i.e., odd(B) = 0 which proves the
theorem.

For any α, β ∈ GF(q), α 
= β, one has ω+α
α


= ω+β
β

and ω+α
α


= ω
ω
. In other

words, any two lines of B are non-parallel and hence intersect in exactly one
point. It is easily verified that
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Bα ∩ Bβ = 1
ω

((ω + α)(ω + β), α · β) , α, β ∈ GF(q), α 
= β,

Bα ∩ B′ = 1
ω

(
(ω + α)2, α2

)
, α ∈ GF(q).

Next, we show that the intersection points of different pairs of lines are differ-
ent. Let α, β, γ, δ ∈ GF(q) with α 
= β, δ 
= γ, β 
= 0 and suppose Bα ∩ Bβ =
Bγ ∩Bδ. From this one gets the two equations (ω +α)(ω +β) = (ω +γ)(ω + δ)
and α·β = γ ·δ. If one plugs in α = γ·δ

β
into the first equation and multiplies by

β one gets (βω + γδ)(ω +β) = β(ω + γ)(ω + δ). By another easy computation
and dividing by ω one derives the equation (β + γ)(β + δ) = 0, i.e., β = γ
or β = δ. Since α = γ·δ

β
one gets {α, β} = {γ, δ}. Similarly, one shows that

Bα ∩ B′ = Bβ ∩ B′ implies α = β. Furthermore, from Bα ∩ Bβ = Bγ ∩ B′,
α, β, γ ∈ GF(q), α 
= β, one derives α = β which is not possible. �

References

[1] Beth, T., Jungnickel, D., Lenz, H.: Design Theory. Cambridge University Press,
1999.

[2] Chee, Y. M., Colbourn, C. J., Ling, A.: Asymptotically optimal erasure-resilient
codes for large disk arrays. Discrete Applied Mathematics 102 (2000), 3–36.

[3] Chen, P., Lee, E., Gibson, G., Katz, R., Patterson, D.: RAID: High-performance,
reliable secondary storage. ACM Computing Surveys 26 (1994), 145–185.

[4] Hellerstein, L., Gibson, G., Karp, R., Katz, R., Patterson, D.: Coding Techniques
for Handling Failures in Large Disk Arrays. Algorithmica 12 (1994), 182–208.

9


