
SyncPlayer — An Advanced System for Multimodal Music Access

Frank Kurth, Meinard Müller, David Damm, Christian Fremer ey, Andreas Ribbrock, Michael Clausen
Universität Bonn

Institut für Informatik III
Römerstr. 164, D-53117 Bonn, Germany

{frank,meinard,damm,fremerey,ribbrock,clausen}@cs.uni-bonn.de

ABSTRACT

In this paper, we present the SyncPlayer system for mul-
timodal presentation of high quality audio and associated
music-related data. Using the SyncPlayer client interface,
a user may play back an audio recording that is locally
available on his computer. The recording is then identified
by the SyncPlayer server, a process which is performed
entirely content-based. Subsequently, the server delivers
music-related data like scores or lyrics to the client, which
are then displayed synchronously with audio playback us-
ing a multimodal visualization plug-in. In addition to vi-
sualization, the system provides functionality for content-
based music retrieval and semi-manual content annota-
tion. To the best of our knowledge, our system is moreover
the first to systematically exploit automatically generated
synchronization data for content-based symbolic brows-
ing in high quality audio recordings. SyncPlayer has al-
ready proved to be a valuable tool for evaluating algo-
rithms in MIR research on a larger scale. In this paper,
we describe the technical background of the SyncPlayer
framework in detail. We also give an overview of the un-
derlying MIR techniques of audio matching, music syn-
chronization, and text-based retrieval that are incorporated
in the current version of the system.

Keywords: MIR systems and infrastructure, multi-
modal interfaces and music access, synchronization

1 INTRODUCTION

Classical MIR techniques typically work with a sin-
gle type of music representation. Examples include
most query-by-example scenarios like audio identification
(where a short query signal is to be identified w.r.t. a large
database of audio signals), melodic queries (where a note
sequence is to be matched to a melody database), poly-
phonic search (where an excerpt of a score is searched in

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2005 Queen Mary, University of London

a score database), or text-based search (where a sequence
of query terms is searched in a database of textual meta-
data). As a consequence of such approaches, all steps in
the typical MIR chain of query formulation, content-based
retrieval, and display of query results are based on the
same type of data representation. However, it is evident
that there is no single data representation that is equally
suitable or even a natural choice to be used for all of the
latter tasks. As an example, consider a user querying a
melody database. While it may be the most natural op-
tion to just hum a melody resulting in awaveform-based
query, most successful algorithms for melody-based re-
trieval work in the domain ofsymbolicmusic. On the
other hand, retrieval results are most naturally presented
by playing back an actualrecordingof the piece of music
containing the melody, while amusical scoreor apiano-
roll will frequently be the most appropriate form of visu-
ally displaying a query result.

Up to now, research on integrating different types of
music representation within MIR scenarios has mainly fo-
cused on the aspects of query formulation and the actual
retrieval algorithms: considering query formulation, many
approaches like existing query-by-humming techniques
(for example Pauws (2002)) use signal processing tech-
niques to convert acoustic data to the symbolic domain in
a preprocessing step. Concerning retrieval, methods have
been proposed to query music in a cross-domain fashion.
For example, Pickens et al. (2002) present a system for
querying polyphonic audio recordings in a database of
polyphonic music given in the symbolic domain.

In contrast to this, there still is a significant lack of
MIR systems for simultaneouslypresenting(which in-
cludes display, visualization, playback, and browsing)
music and content-related data in an adequatemultimodal
form. Generally, such data is presented based on a sin-
gle type of music data only. As an example, consider the
display of query results in content-based audio retrieval:
results are presented using acoustic playback along with
a visualized waveform (presentation based on waveform
data only). In MIDI-based retrieval, query results are typ-
ically presented as synthesized MIDI along with a MIDI-
based piano-roll.

A particular lack of appropriate systems for content-
presentation is found in several areas of MIRresearch.
For example, there are only few user-friendly interfaces
for analyzing results of the multitude of proposed algo-

rithms for automatic music annotation such as score-to-
audio synchronization (see below).

As a first step towards a proper multimodal presenta-
tion of music and content-related data, we recently pro-
posed a prototypic client-server based system for syn-
chronized playback and display of acoustic recordings
together with content-related metadata (see Kurth et al.
(2004)). The system’s capabilities were demonstrated in a
karaoke-like scenario where the displayed data consists of
lyrics information. In contrast to other systems such as a
similar system by Philocode LLC1, which is available as a
plug-in to various audio players (e.g., WinAmp or iTunes),
SyncPlayer identifies a selected musical recording and a
playback position therein entirely content-based. Hence it
does not rely on the availability of further metadata such
as ID3 tags.

In the present paper, we describe how the SyncPlayer
framework has been redesigned to constitute an inte-
grated MIR system incorporating functionality for mul-
timodal display of symbolic data, content-based querying
and semi-manual content annotation. To achieve this, we
suitably adapt and combine recent techniques from audio
identification (Clausen and Kurth (2004)), music synchro-
nization (Müller et al. (2004)), and text retrieval. To the
best of our knowledge, our system is the first to system-
atically exploitautomatically generatedsynchronization
data for content-based symbolic browsing in high quality
audio recordings.

The main contributions of our system are summarized
as follows:

• We propose anintegrated systemfor symbolic
(including textual) music searching and browsing
with acoustic audio playback based on high quality
recordings of the selected pieces of music.

• Our novel MultiVis (Multimodal Visualization) plug-
in offers functionality for output as well as apiano-
roll-like interface for visualization and MIDI-based
browsing. This interface turns out to be a valuable
tool for larger scale evaluation of research results in
the domain of music synchronization.

• The newly developedquery engineallows for textual
search in a lyrics database, a ranked representation
of query results, and playback of the exact positions
of all matches. Our query engine is generic in that
it is extensible to musical content-based search (for
example, melody-based queries).

• An extended version of our Sync File Maker plug-in
allows forsemi-manual annotation of lyrics(or gen-
eral textual) metadata to audio recordings. This func-
tionality is supported by means of signal processing
techniques for “slow-motion playback” of the under-
lying audio recording. By offering additional func-
tionality for feature extraction, the plug-in can be
used to extend and maintain the underlying audio
database.

• The SyncPlayer framework is based on aflexible

1http://www.philocode.com/minilyrics/

Figure 1: Overview of the SyncPlayer system architecture

client-server architecture, which makes it suitable
for arbitrarily distributed environments.

Our paper is organized as follows. In the next section
we describe the SyncPlayer system, consider its modes of
operation, and give a detailed account on the constitut-
ing software modules and their interaction. In the sub-
sequent sections we summarize the audio identification
and music synchronization techniques that are used in
the SyncPlayer framework. Audio identification is con-
sidered in Section 3, where we give a suitable model-
ing for the type of identification problem relevant to the
SyncPlayer scenario. Moreover, we sketch a novel fast
index-based search algorithm, which is capable of deal-
ing with very large data collections. Section 4 briefly dis-
cusses algorithms for music synchronization used in our
system. We furthermore describe a new version of our an-
notation module for semi-manual text-to-PCM synchro-
nization. In Section 5 we consider content-based music
queries. We propose a novel query module which, in the
current version of our system, allows for text-based query-
ing and browsing. In the concluding Section 6, we give an
overview of our ongoing work and propose some prob-
lems for future research.

2 SYNCPLAYER SYSTEM

In this section we describe the SyncPlayer system in de-
tail. After giving an overview of the basic operation mode,
we describe the architecture of the software system. We
give a detailed account on the client-server based frame-
work and the plug-in modules used for playback, visual-
ization, annotation, and querying. We also describe an
administration tool for creating and updating the audio in-
dex, which is used for the audio identification task.

Figure 2: SyncPlayer client interface (left) together withtwo instances of the MultiVis plug-in, one displaying lyrics
metadata, the other showing piano-roll data of an audio recording.

2.1 Basic Mode of Operation

Upon starting the SyncPlayer client application, the user
selects an audio file from his local music collection, and
acoustic playback starts automatically. Currently, MP3
and WAV audio are supported. At any time before or
during playback, the user may launch any of the sup-
plied plug-in modules. The different plug-ins offer func-
tionality for visualization, semi-automatic annotation,and
querying. The regular operation mode uses the Multi-
Vis plug-in, which provides functionality for visualizing
audio-related informationsynchronously to acoustic play-
back. Currently, two types of visualization are supported,
one displaying textual information (e.g., lyrics or com-
mentaries) in a karaoke-like fashion, the other giving a
piano-roll representation of the musical notes occurring in
the audio recording. The current playback position is in-
dicated in both types of visualization by highlighting cor-
responding text and note positions, respectively. Avail-
able types of visualization (lyrics or piano-roll) are dis-
played in the track selection box of the MultiVis plug-in
and may be subsequently chosen by the user. Depend-
ing on the musical contents and existing metadata for the
selected audio recording, different types of visualizations
(e.g., lyrics only, piano-roll only, both lyrics and piano-
roll, multiple lyrics tracks) may be available. Note that an
arbitrary number of MultiVis plug-ins may be launched
simultaneously, each operating in an independently se-
lectable visualization mode. Figure 2 shows the Sync-
Player client application and two instances of the Multi-
Vis plug-in for an audio recording with available lyrics
and piano-roll metadata. During playback, the piano-roll
moves, while a locator is positioned on the current notes.
All notes are highlighted at the point of their onset. Past
and future notes are displayed in different colors.

2.2 General System Architecture

The SyncPlayer framework consists of several software
components, which are summarized as follows:

• The user operates theclient application, which per-
forms acoustic playback and plug-in operation (visu-
alization, annotation, querying).

• A remote computer system runs theserver applica-
tion, which is used for identifying the audio record-
ings the user selects. Furthermore, the server system
is used for retrieving metadata related to the identi-
fied recordings such as lyrics or musical notes, which
are then used by the client-side visualization plug-
ins.

• A server-sideadministration systemis used to create
and maintain an index used for audio identification
as well as for the various types of metadata.

The framework uses different types of music-related data:

• A local collection of audio recordings, which are se-
lectable for playback.

• A (possibly large)database of audio recordings
stored on a server. This collection is used in a pre-
processing step for creating an audio index.

• This audio indexis permanently accessible by the
server and is used for fast audio identification

• The global metadata (e.g., title, artist, album, etc.)
for the pieces contained in the audio database are
stored in ametadata table, which is accessible by the
server application.

• The content-related metadata (lyrics, piano-roll data,
etc.) for the database items are stored in multi-track
Sync Files(one Sync File for each audio recording; a
Sync File may contain multiple tracks, each contain-
ing different metadata). There are two Sync File for-
mats:Binary Sync Files(BSFs) are generated during
the synchronization step (cf. Section 4). They store
content-related metadata along with synchronization
information (i.e., data relating actual time positions

to chunks of metadata) as well as audio feature data
used for creating the audio index.Textual (XML-
based) Sync Filescontain content-related metadata
along with synchronization information in a human-
readable format.

Figure 1 gives an overview of the SyncPlayer system
architecture. In the following subsections, interaction of
the system components is illustrated in more detail.

2.3 Client System

When the user selects an audio recording and launches the
MultiVis plug-in, SyncPlayer automatically tries to iden-
tify both the audio recording and the current playback po-
sition within the audio recording. The identification is
performed content-based, i.e., based on the PCM wave-
form, making it independent of the availability of meta-
data (such as ID3 tags) or specific data formats. More-
over, the identification method as described in Section 3
is robust against signal distortions, lossy compression, and
cropping. For audio identification, the client system first
performs a feature extraction step. The features are then
transmitted to the server system, which performs the ac-
tual identification. Note that the feature-based approach
saves both bandwidth and helps preventing legal prob-
lems, which could result if parts of original audio record-
ings were transmitted from client to server. Upon success-
ful identification, the client system is enabled to retrieve
content-related metadata from the server.

Most of the client system is implemented in Java. As
feature extraction generally is a time-critical task, it has
been implemented in a C++-based module. This module
is then accessed using the Java Native Interface (JNI) tech-
nology. Client-server communication is performed us-
ing Java’s Remote Method Invocation (RMI) framework.
Within this framework, the client communicates with the
server using an interface of predefined functions. As a par-
ticular benefit of RMI, network communication is almost
transparent. Hence, client and server may be located at
virtually any point of the network (even on the same com-
puter system) without requiring major changes in Sync-
Player’s system configuration.

2.4 Server System

The SyncPlayer server consists of a scheduler component
and a module for audio identification (theaudentify
server), which is also accessed using the Java RMI frame-
work. When receiving a request for audio identifica-
tion, the scheduler directs the request to theaudentify
server, which in turn performs audio identification by
querying the audio index using fast search algorithms as
described in Section 3. Similar to feature extraction, the
actual index search is implemented in C++. Upon suc-
cessful identification,audentify returns a unique file
ID, which is subsequently used by the scheduler to re-
trieve the content-related data. For this, the scheduler first
retrieves global metadata from the metadata table stored
in a MySQL database. In particular, the metadata table
contains references to existing Sync Files.

2.5 Plug-In Modules

Subsequently, any of the running plug-ins may request the
global as well as content-related metadata stored in the re-
trieved Sync Files. Global metadata consists of the num-
ber of different tracks stored in a particular Sync File as
well as content identificators (currently, lyrics and MIDI
are supported). Access to the Sync Files is possible by re-
questing the server to deliver all metadata available for
a certain time interval[s, e]. In the current version of
our system, time stamps may be specified in milliseconds.
The server returns a sorted list of metadata events consist-
ing of pairs(t, d) wheret, s ≤ t ≤ e, is a time stamp
andd is some context-based metadata related to the time
stampt. Note that although such metadata might as well
be given in sample precision, technical reasons such as
different sampling rates and different feature extraction
methods suggest to use milliseconds as a common basis
for specifying time stamps.

Currently, three types of plug-ins are supported: in ad-
dition to the MultiVis plug-in, the Sync File Maker plug-in
can be used for semi-manual text-to-audio synchroniza-
tion, feature extraction, and Sync File creation (see Sec-
tion 4 for details). Furthermore, the Lyrics Seeker plug-in
provides text-based search in lyrics data (see Section 5).

2.6 The Index Admin Tool

The Index Admin Tool is a server-side Java application
that is used to organize existing Binary Sync Files, meta-
data and audio recordings. It can be used to define groups
containing arbitrary subsets of Binary Sync Files and gen-
erate both textual Sync Files as well as audio indexes from
those groups. For audio identification, theaudentify
server uses the particular audio index that has been con-
figured in the Index Admin Tool. Exported textual Sync
Files are used by the SyncPlayer server to deliver content-
related metadata to the client application.

3 AUDIO IDENTIFICATION

When the user starts playback of a specific audio record-
ing and launches a visualization plug-in, the recording has
to be identified before the retrieval of content-related data
is possible. In order to avoid noticeable delays in display-
ing these data, identification has to be perfomed very effi-
ciently. Furthermore, as audio recordings are available in
different qualities or may have been edited prior to play-
back, identification should be robust against basic signal
processing operations such as resampling, lossy compres-
sion, cropping, or equalization.

In the last five years, several powerful audio identifica-
tion methods have been proposed such as described by Al-
lamanche et al. (2001); Wang (2003); Clausen and Kurth
(2004). We refer to the survey paper Cano et al. (2002)
for a more detailed overview of existing methodologies.

In this section we first describe how we extend the
identification technique of Clausen and Kurth (2004) to
be suitable for the SyncPlayer framework. Then, we look
at the more general scenario of audio matching and out-
line how future developments might allow identification
of a musical work regardless of the specific interpretation.

Figure 3: Voting matrix used for fast fault tolerant audio
identification. The prominent peaks indicate two matches.

3.1 Identification Algorithm

Assume that a database ofN audio recordings is repre-
sented as a sequenceD = (x1, . . . , xN) of finite energy
signalsxi, 1 ≤ i ≤ N . From those signals, a compact
audio index is constructed in a preprocessing step. For
this, each signal is processed by a feature extractorF ,
which transforms a signalxi to a feature documentF [xi].
The feature documentF [xi] is composed of features[t, j],
each consisting of a feature classj and a time stampt, in-
dicating where the feature occurs within the signal. For
what follows, we assume thatF first transforms a sig-
nal xi using a short time Fourier transform (STFT), re-
sulting in a 2D time-frequency representation̂xi. Let
(f1, . . . , fK) denote a sequence ofK pitch classes. Then,
for each local maximum of|x̂i| at time positiont and
pitch fj , a feature[t, j] is added toF [xi]. Applying fea-
ture extraction to all audio signals, we obtain a collection
F [D] = (F [x1], . . . , F [xN]) of feature signals. Note that
the latter construction just sketches the idea of our event-
driven approach to feature extraction. For details, we refer
to Clausen and Kurth (2004).

The audio index is then constructed by suitably adapt-
ing inverted file indexing. In particular, for each feature
classj, we create an inverted file

HF [D](j) := {(t, i) | [t, j] ∈ F [xi]}

consisting of all pairs(t, i) such that a feature of class
j occurs at positiont within the ith audio signal, i.e.,
[t, j] ∈ F [xi]. In this setting, audio identification is a sim-
ple task: consider a short audio signalq, e.g., an excerpt
of a recording that the user selects for playback. Applying
feature extraction, we obtain a feature queryF [q]. Then
one easily shows that an intersection

HF [D](F [q]) :=
⋂

[t,j]∈F [q]
HF [D](j) − t (1)

of suitably adjusted inverted files

HF [D](j) − t := {(τ − t, i) | (τ, j) ∈ HF [D](j)}

returns a setHF [D](F [q]) of pairs(t, i), each correspond-
ing to an occurence of thet-shifted query featuresF [q]
within theith document. It turns out that for suitably sized
queriesq of only a few seconds of length, one may assume
that each of those feature-based matches(t, i) identifiesq

as a specific segment of the audio signalxi. For details,
we again refer to Clausen and Kurth (2004).

To make audio identification robust to signal distor-
tions, it is appropriate to allow a certain percentagep of
feature mismatches. In terms of the query method pre-
sented in Eq. (1) this means we have to determine all
pairs (τ, i) contained in(100 − p) percent of the inter-
sected listsHF [D](j) − t. Instead of using a previously
proposed dynamic programming approach (Clausen and
Kurth (2004)), which may be too inefficient for solving
this time-critical task for very large data sets, we propose
a novel fast search technique based on a variant of geo-
metric hashing, see Wolfson and Rigoutsos (1997). The
method is outlined as follows: assumeT is the maximum
first coordinate of an element occuring in any of the lists
HF [D](j) − t. Further assume that all elements of those
lists are positive (in practice, both conditions may easily
be enforced in a preprocessing step). We then construct
an integer arrayM of dimensionT × N that will be used
in the subsequent voting scheme. In a second step, for
each[t, j] ∈ F [q] we process the listHF [D](j) − t. For
each(τ, i) contained in that list, the entry(τ, i) of matrix
M is increased by one. After this step, each of those en-
triesM [τ, i] contains the amount of features of at-shifted
version ofF [q] matching documentF [xi]. Fig. 3 shows
an example of the voting matrixM with two prominent
peaks indicating two matches.

To account for slight time-distortions of queryq and
original signalxi, adjacent entries ofM may be pooled in
a postprocessing step. This essentially amounts to calcu-
lating sumsM ′[τ, i] :=

∑λ

ℓ=−λ M [τ + ℓ, i] for all posi-
tions τ . After this, all entries ofM ′ exceeding a certain
threshold are identified as matches. Note that since inter-
nal memory forM may be allocated in advance and no
further postprocessing is necessary, this procedure is very
efficient. To achieve a further speed-up,M may be or-
ganized in a hierarchical manner: at a coarse level, one
identifies (for example rectangular) regions ofM contain-
ing only few votes, which are then rejected at an early
stage. As detailed by Ribbrock (2005, to appear), the lat-
ter approach amounts in a considerable gain in efficiency
as compared to previous approaches like Wang (2003).

3.2 Towards Audio Matching

In the SyncPlayer scenario, audio identification in the
above sense appears to be quite restrictive, particularly in
the case of classical music. Because of the multitude of
different available performances (and recordings) of one
and the same piece of music, it is unrealistic to assume
that a user owns the same version of a piece of music as
is stored in the server’s database. Hence, it will be of
great interest to identify a piece of music regardless of
the specific performance. We will call this problemaudio
matching. Müller et al. (2005) describe an approach to au-
dio matching that works well for a broad class of Western
music. The approach is based on using rough harmonic
progressions, which is often sufficient for characterizinga
piece of music. Although the latter approach to matching
is still to be sped up by suitable indexing mechanisms, it
should be feasible to integrate audio matching into future

S
co

re

A
ud

io
M

ID
I

Figure 4: Synchronization of music data in the score (top),
audio (center), and MIDI (bottom) data formats represent-
ing the same piece of music (first four measures of Etude
no. 2, op. 100, F. Burgmüller).

versions of the SyncPlayer framework to achieve indepen-
dence of the actual performance of a piece of music.

4 MUSIC SYNCHRONIZATION

In our SyncPlayer system, synchronous display of
content-related musical data relies on appropriate meth-
ods for generating correspondingsynchronization datain
a preprocessing step, which is then stored in the previ-
ously described Sync Files. This amounts to linking the
respective data (like lyrics or score data) to the actual
musical recordings. In the last three years, research has
focused on developing first approaches for automatically
performing these so calledsynchronizationtasks. Impor-
tant examples include the synchronization of music data in
the audio, MIDI and score domain as proposed by Soulez
et al. (2003); Hu et al. (2003); Turetsky and Ellis (2003);
Müller et al. (2004); Raphael (2004). In this section, we
first give a brief introduction to music synchronization and
then summarize our method for automatically synchro-
nizing score-to-audio data. Finally, we describe the Sync
File Maker plug-in, which was developed for semi-manual
synchronization of audio recordings to lyrics data.

4.1 Score-to-Audio Synchronization

In score-to-audio synchronization, we consider the score
of a particular piece of music as well as an audio record-
ing of the same piece. Then the synchronization problem
may be stated as follows: given a musical onset time in the
score representation, determine the corresponding physi-
cal onset time within the audio representation. Synchro-
nization of score and audio data is illustrated in the upper
part of Fig. 4. Note that score and audio data differ fun-
damentally in their respective structure and content. On
the one hand, the score consists of note parameters such
as pitches, note onsets, or note durations, leaving a lot
of space for various interpretations concerning, e.g., the
tempo, dynamics, or multi-note executions such as trills.
On the other hand, the waveform-based audio recording
of a particular performance encodes all the information
needed to reproduce the acoustic realization—note param-

eters, however, are not given explicitly.
To synchronize score and audio data, our approach

described in Müller et al. (2004) proceeds in two sta-
ges: in a first step, semantically meaningful descriptors
are extracted from the score and audio data streams mak-
ing them locally comparable. In short, the audio signal
is analyzed using an IIR subband filterbank consisting of
one filter for each musical pitch. Subsequent processs-
ing results in oneonset signalfor each of the subbands,
where note onsets show up as prominent peaks. Finally, a
peak picking step is used to obtain a score-like representa-
tion of the audio signal, which consists of one note event
(p, t, s) for each note candidate of strengths detected in
subbandp at onset timet. It is straightforward to convert
the score data to a similar format. In a second step, the
two data streams are synchronized by minimizing a suit-
able cost functional using an alignment technique based
on dynamic time warping (DTW). Here, the score data
is used as a kind of ground truth in that only those note
events extracted from the audio signal are considered that
have an explicit counterpart in the score data stream.

Symbolic data is frequently stored in the widely used
semi-symbolic MIDI format, which, in contrast to score
formats is capable of accurately representing onset posi-
tions of a particular performance. Fortunately, the latter
synchronization techniques may be adapted to the prob-
lem of MIDI-to-audio synchronization. The bottom part
of Fig. 4 illustrates this type of synchronization.

The score material considered in Müller et al. (2004)
was converted to the MIDI format and then synchronized
to actual piano performances. To make these results avail-
able to our SyncPlayer, we exported the synchronization
data to SyncFiles and indexed the audio recordings as de-
scribed in Section 3.

4.2 Text-to-Audio Synchronization

Currently, text-to-audio synchronization at the lyrics level
still requires manual interaction. To assist this process,
our framework provides the Sync File Maker plug-in. Ba-
sically, the plug-in allows the user to load a text file con-
taining lyrics data for a selected audio recording. During
playback, the user may then specify lyrics positions by
pressing keys on his keyboard at the point of their acous-
tic output. As this process is frequently very difficult due
to playback speed and rhythmic complexity of a particular
audio recording, we extended the plug-in by integrating
a time-scaling functionality. Using a sliding bar, the user
may specify an adequate playback speed. The plug-in then
outputs a slower version of the original audio recording
having the same perceptible pitch (i.e., we use to time-
scaling to suppress pitching effects). Our time-scaling
method is an adapted real-time version of the WSOLA-
method by Verhelst and Roelands (1993), which basically
consists of the follwing steps: the original signal is cut
into overlapping parts using a sliding window of a time-
varying step-size ofs′1 ∈ [s1 − δ : s1 + δ] samples. The
resulting signal parts are then used to construct a new sig-
nal. To achieve time scaling, adjacent parts are overlapped
using a new fixed step sizes2. In order to obtain ans-
times as slow version of the original signal, we choose

s2 := s · s1. To suppress audible artifacts, in each step a
local autocorrelation between the current signal part and
its local neighborhood within the original signal is used
to determine the latter “best fitting”s′1, i.e., we chooses′1
to maximize autocorrelation. Using fast convolution, we
designed an algorithm for performing this step faster than
in real time (Java-based on an 1.6 GHz Intel P4 platform).

Methods for automatically synchronizing music to
lyrics data constitute an upcoming field of research. A re-
cent approach by Wang et al. (2004) presents first results
for line-level based text-to-audio synchronization.

5 QUERY ENGINE

Many types of content-based retrieval like full-text-,
melody-, or score-based retrieval (see Clausen and Kurth
(2004)) allow for an exact localization of a given query
within a matching document. In the SyncPlayer scenario,
it is then possible to provide the user with an adequate
presentation of the queries’ occurence in the retrieved doc-
ument. In particular, we may use SyncPlayer’s MultiVis
module to display any of the matches while synchronously
playing back a high-quality audio recording of the match-
ing positions.

As it is quite natural for many non-expert users to for-
mulate queries by specifiy fragments of the lyrics occuring
in a song, we integrated a prototypical text-based query
engine into the SyncPlayer framework.

Our technique for lyrics retrieval is term-based and
also uses inverted files as an index structure. In a pre-
processing step, we generate the inverted files from our
Sync FilesS := (S1, . . . , SN): basically, for each termt,
the inverted fileHS(t) contains all pairs(p, i) such thatt
occurs aspth lyrics term within Sync FileSi. Using in-
verted files, query processing may be performed using the
same type of intersection as in Eq. (1): a textual query
q := (t1, . . . , tk), which is a sequence of words (terms),
is then used to calculate the set of all matches

HS(q) :=
⋂k

j=1
HS(tj) − j. (2)

This yields all positions of occurrences of the queryq
within the lyrics stored in the Sync Files. To account for
typing errors, we preprocess each query termtj and deter-
mine the setTj of all terms in our inverted file dictionary2

that have a close edit distance toti. Then, instead of only
considering the exact spellingtj by usingHS(tj) in (2),
we consider the union∪t∈Tj

HS(t) of occurrences of all
terms close tot. To account for word errors like inserted
or omitted words, we preprocess all word positions oc-
curring in (2) by a suitable quantization. This amounts
to replacingj by ⌊j/Q⌋ and each element(p, i) of an in-
verted file by(⌊pj/Q⌋, i) for a suitably chosen integerQ
prior to calculating the intersection (Q = 5 was used in
our tests). The latter yields a coarse approximation of the
set of all matching positions, which may then be refined
in a postprocessing step. There, we compareq with the
exact order of occurrence of all query terms and their ac-
tual proximity at the matching position, a process which
is very similar to Google’s proximity-based ranking.

2i.e., the set of all terms with an existing inverted file

Figure 5 shows the Lyrics Seeker plug-in for textual
queries (right). A query string can be entered at the top,
a list of ranked query results is displayed below. Lyrics
positions of matched query terms are highlighted. Upon
selecting a matching position, the MultiVis plug-in is
launched (left) and playback starts at the position of the
match. Note that also in this scenario legal reasons require
that a user has access to the actual audio recordings, i.e.,
the recordings have to be stored on the computer running
the SyncPlayer client.

To conclude this section we remark that it should be
possible to improve lyrics-based retrieval significantly by
using some elaborate text retrieval techniques such as
stemming, analysis of phrases or thesauri. As a particular
adaptation to lyrics-type data, it should moreover be ben-
eficial to consider some more Google-like ranking strate-
gies such as term occurrence at prominent places (such as
song title, chorus or hook line).

6 CONCLUSIONS AND FUTURE WORK

The proposed SyncPlayer framework constitutes a pow-
erful tool for accessing music-related contents in that it
combines different modalities like acoustic, graphical and
textual representations in a synchronous fashion. This be-
comes possible by suitably integrating elaborate methods
from music- and text-based retrieval with signal process-
ing techniques. We would like to stress that the current
version only constitutes the next step towards a framework
for integrated querying, display, and annotation of musi-
cal content. There are various interesting directions for
extending the proposed SyncPlayer framework as well as
the plug-in modules in future work:

• Extension of the query engine to support melody- or
general polyphonic score-based queries. For this we
plan to integrate our own retrieval algorithms in the
respective fields, see Clausen and Kurth (2004).

• Adaptation of audio matching techniques devel-
oped by Müller et al. (2005) to allow for version-
independent audio identification,

• Extension and integration of more elaborate algo-
rithms for automatic synchronization of music and
lyrics to audio recordings.

• Improvement of the Lyrics Seeker plug-in to incor-
porate advanced ranking mechanisms and concepts
for fault tolerant queries.

• Support text-basedbrowsingfunctionality with syn-
chronous playback.

For using SyncPlayer in commercial or at least
“rights-critical” scenario, it would moreover be beneficial
to incorporate some kind of digital rights management.
Thus it could be possible to allow for streaming audio
recordings in a client-server setting. This is of particu-
lar interest in retrieval scenarios, where a user generally
wants to listen to his query results.

Figure 5: Lyrics Seeker plug-in: text-based query (right, top) and retrieval results (right, bottom). Left: SyncPlayer client
(top) and MultiVis plug-in (bottom), which is launched uponselection of a query result.

SOFTWARE AND DEMO

The client version of our SyncPlayer is available from our
webpage3. Note that for legal reasons we are generally un-
able to provide audio recordings for download. However,
to test full functionality of the MultiVis plug-in, the web
page offers some of our own recordings for free download.

References

Eric Allamanche, Jürgen Herre, Bernhard Fröba, and
Markus Cremer. AudioID: Towards Content-Based
Identification of Audio Material. InProc. 110th AES
Convention, Amsterdam, NL, 2001.

Pedro Cano, Eloi Battle, Ton Kalker, and Jaap Haitsma.
A Review of Audio Fingerprinting. InProc. 5th IEEE
Workshop on MMSP, St. Thomas, Virgin Islands, USA,
2002.

Michael Clausen and Frank Kurth. A Unified Approach to
Content-Based and Fault Tolerant Music Recognition.
IEEE Transactions on Multimedia, 6(5), October 2004.

Ning Hu, Roger Dannenberg, and George Tzanetakis.
Polyphonic audio matching and alignment for music re-
trieval. InProc. IEEE WASPAA, New Paltz, NY, October
2003.

Frank Kurth, Meinard Müller, Andreas Ribbrock, Tido
Röder, David Damm, and Christian Fremerey. A Proto-
typical Service for Real-Time Access to Local Context-
Based Music Information. InISMIR, Barcelona, Spain,
2004.

Meinard Müller, Frank Kurth, and Michael Clausen. Au-
dio Matching via Chroma-based Statistical Features. In
ISMIR, London, GB (submitted), 2005.

Meinard Müller, Frank Kurth, and Tido Röder. Towards
an Efficient Algorithm for Automatic Score-to-Audio
Synchronization. InISMIR, Barcelona, Spain, 2004.

3http://www-mmdb.iai.uni-bonn.de/projects/syncplayer/

Steffen Pauws. CubyHum: a fully operational query by
humming system. InISMIR, Paris, 2002.

Jeremy Pickens, Juan Pablo Bello, Giuliano Monti, Tim
Crawford, Matthew Dovey, Mark Sandler, and Don
Byrd. Polyphonic Score Retrieval Using Polyphonic
Audio. In ISMIR, Paris, 2002.

Christopher Raphael. A hybrid graphical model for align-
ing polyphonic audio with musical scores. InISMIR,
Barcelona, October 2004.

Andreas Ribbrock.Schnelle Algorithmen zur Konstella-
tionssuche in Multimediadaten. PhD thesis, Depart-
ment of Computer Science, University of Bonn, 2005,
to appear.

Ferréol Soulez, Xavier Rodet, and Diemo Schwarz. Im-
proving polyphonic and poly-instrumental music to
score alignment. InISMIR, Baltimore, 2003.

Robert J. Turetsky and Daniel P.W. Ellis. Force-Aligning
MIDI Syntheses for Polyphonic Music Transcription
Generation. InISMIR, Baltimore, USA, 2003.

W. Verhelst and M. Roelands. An overlap-add technique
based on waveform similarity (WSOLA) for high qual-
ity time-scale modification of speech. InProc. ICASSP,
volume 2, pages 554–557, 1993.

Avery Wang. An Industrial Strength Audio Search Algo-
rithm. In ISMIR, Baltimore, 2003.

Ye Wang, Min-Yen Kan, Tin Lay Nwe, Arun Shenoy,
and Jun Yin. LyricAlly: Automatic Synchronization of
Acoustic Musical Signals and Textual Lyrics. InMUL-
TIMEDIA ’04: Proceedings of the 12th annual ACM in-
ternational conference on Multimedia, pages 212–219,
New York, NY, USA, 2004. ACM Press.

H.J. Wolfson and I. Rigoutsos. Geometric Hashing: An
Overview.IEEE Computational Science and Engineer-
ing, 4(4):10–21, 1997.

