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Abstract

To minimize the access cost in large disk arrays (RAID) Cohen et al. [5–7] introduced
(d, f)-cluttered orderings of various set systems, d, f ∈ N. In case of a graph this
amounts to an ordering of the edge set such that the number of points contained
in any d consecutive edges is bounded by the number f . For the complete graph,
Cohen et al. gave some optimal solution for small parameters d [5] and introduced
some general construction principle based on wrapped ∆-labellings [7]. In this paper,
we investigate cluttered orderings for the complete bipartite graph. We adapt the
concept of a wrapped ∆-labelling to the bipartite case and introduce the notion
of a (d, f)-movement for subgraphs. From this we get a general existence theorem
for cluttered orderings. The main result of this paper is the explicit construction of
several infinite families of wrapped ∆-labellings leading to cluttered orderings for
the corresponding bipartite graphs.

Key words: cluttered ordering, wrapped ∆-labelling, bipartite graph, RAID
PACS:

1 Introduction

We begin by introducing the concept of a (d, f)-cluttered ordering for arbitrary
set systems generalizing the definition of [7]. A set system is a pair S = (X,B)
consisting of a finite set X and a finite set B = {B0, B1, . . . Bn−1}, n ∈ N, of
subsets of X. The elements of X are called points and the ones of B blocks.
Furthermore, let d be a positive integer, 1 ≤ d ≤ n, called a window of S,
and let π be a permutation on the index set {0, 1, · · · , n − 1}, called a block
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ordering of S. Define Xπ,d
i :=

⋃d−1
j=0 Bπ(i+j) for 0 ≤ i ≤ n− 1, where indices are

considered modulo n. For some given f ∈ N, π is called a cyclic (d, f)-cluttered
ordering, or simply (d, f)-cluttered ordering, if maxi |Xπ,d

i | ≤ f .

In view of the RAID application described in the next section one is interested
in minimizing the parameter f for some given d. Let fmin(S, d) denote the min-
imum value of f over all block orderings π of S for some fixed d and, similarly,
dmax(S, f) the maximum value of d for some fixed f . Typical questions are, for
example, to find lower and upper bound for fmin(S, d) and dmax(S, f). Further-
more, one is interested in explicit constructions of such orderings for certain
subclasses of set systems.

Cluttered orderings were introduced and studied by Cohen et al. for Steiner
triple systems [5] and the complete graph [6,7]. In case of the complete graph,
Cohen et al. [6] constructed for the parameters d = 3 and d = 4 optimal clut-
tered orderings, in this case also denoted as ladder ordering, for all complete
graphs Kn, n ∈ N, except for the parameters n ∈ {15, 18, 22}. Furthermore,
they also introduced in [7] some general construction principle of cluttered
orderings for the complete graph based on wrapped ρ-labellings. However, in
this construction they presuppose the existence of such wrapped ρ-labellings
and give only a finite number of explicit examples computed by some back-
tracking algorithm. Furthermore, injectivity of the ρ-labelling is not needed
in their construction. Dropping this condition we call the resulting labelling a
∆-labelling as will be defined later.

The rest of this paper is organized as follows. In Section 3, we adapt the
notion of a ∆-labelling to the bipartite case, introduce the notion of a (d, f)-
movement of certain subgraphs, and derive a general existence theorem for
cluttered orderings of the complete bipartite graph. The main contribution
of this paper can be found in Section 4 where we apply this general exis-
tence theorem to obtain several infinite families of cluttered orderings. First,
we introduce, similar to [7] in the complete case, a class of bipartite graphs
which allow suitable (d, f)-movements. To achieve the necessary consistency
condition of such movements we adapt the concept of wrapped ∆-labellings
to the bipartite case. Furthermore, we also give three explicit constructions
of different infinite families of such wrapped ∆-labellings leading to cluttered
orderings for the corresponding complete bipartite graphs. Among others, we
get optimal cluttered orderings for d = 3, d = 4, d = 5, and d = 6 for all
complete bipartite graphs whose number of vertices is divisible by three. In
Section 5, we give a short summary of the results and conclude with some
final remarks on lower bounds. As motivation for the combinatorial problems
discussed in this paper we summarize the main ideas of the underlying RAID
application in Section 2, where one also finds further links to the literature.
However, this section may be skipped since the result are not needed in the
rest of this paper.
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2 RAID Application

The desire to speed up secondary storage systems has led to the development
of disk arrays which achieve performance through disk parallelism. While per-
formance improves with increasing numbers of disks the chance of data loss
coming from catastrophic failures, such as head crashes and failures of the disk
controller electronics, also increases. To avoid high rates of data loss in large
disk arrays one includes redundant information stored on additional disks —
also called check disks — which allows the reconstruction of the original data
— stored on the so-called information disks — even in the presence of disk
failures. These disk array architectures are known as redundant arrays of in-
dependent disks (RAID) [4].

Hellerstein et al. [8] introduced data redundancy in form of erasure-resilient
codes. Let n, c ∈ N and let GF(2) denote the field with two elements. Then an
erasure-resilient code is defined by a linear injection γ : GF(2)n → GF(2)n+c

such that an information u ∈ GF(2)n appears unchanged in the first n bits
– the so-called information bits – of the corresponding code vector γ(u). The
remaining c bits are referred to as check bits which can be computed as the
parity of subsets of information bits. Each such code can be defined in terms
of a c × (n + c)-parity check matrix, H = [C|I], where I denotes the c × c
identity matrix and C is a c × n matrix. The codewords in the code are the
vectors v ∈ GF(2)n+c satisfying the equation Hv = 0. Note, that the first n
columns of H correspond to the information bits and the last c columns to
the check bits (see also Fig. 1).

An unreadable bit of a code vector is called an erasure. It is a well known
fact that a code can correct a set of t erasures iff the corresponding t columns
of H are linearly independent considered as vectors over GF(2). An erasure-
resilient code which can correct any t erasures will be abbreviated as t-ERC. In
view of the RAID-application there are the following two important metrics
in ERCs. One metric is the update penalty, which is the number of check
disks whose content must be changed if an information disk is changed. In
terms of the matrix H it can be defined as the maximum over the weights
of the columns of H. It follows easily that the update penalty of a t-ERC is
at least t. Another metric is the check bit overhead, which is the ratio c/n of
the number of check bits to information bits. Good erasure codes have high
erasure correcting capabilities, whereas the update penalty as well as the check
bit overhead is low. (See [8] for further details.)

From a set theoretic point of view, one can model the problem as follows.
Let S = (X,B) be a set system as in the introduction and set c := |X|. The
elements of X are identified with the check disks and the elements of B with
the information disks. The bits of some check disk x ∈ X are computed as the
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parity of the corresponding bits of the check disks B ∈ B with x ∈ B. In other
words, the incidence matrix of the set system coincides with the matrix C of
the parity check matrix H = [C|I] of the corresponding code. For a detailed
treatment of the connection between ERCs and combinatorial design theory
we refer to the nice paper by Chee et al. [3].

In particular, we are interested in the two-dimensional parity code which is
defined as follows. Let n = ℓ2 for some ℓ ∈ N, so that the n information bits
can be arranged in a two dimensional array. Associate to each row and each
column a check bit containing the parity of that row or column, i.e., c = 2ℓ.
The so defined code is called 2-dimensional parity code which is a 2-ERC
with update penalty 2 and check bit overhead c

n
= 4

c
. It is obvious that any

2-ERC with update penalty 2 cannot correct any 3-erasure consisting of an
information bit and its two associated check bits. Such erasures are also called
bad 3-erasure. In [8] it is shown that the 2-dimensional parity code can correct
all 3-erasures except for the bad 3-erasures and has – with respect to this even
higher erasure-correcting capability – optimal check disk overhead among all
such codes. Fig. 1 shows the case ℓ = 2. For example, information disk 1 is
associated to the check disks a and c.
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Fig. 1. 2-dimensional parity code for ℓ = 2, its parity check matrix H, and the
corresponding complete bipartite graph K2,2.

In any erasure-resilient code with update penalty 2, where each information
bit is associated with exactly two check bits, the corresponding set system
of such a code is a graph: the check bits correspond to the vertices and the
information bits to the edges. Now, it is not hard to see that the 2-dimensional
parity code with n = ℓ2 information bits corresponds to the complete bipartite
graph Kℓ,ℓ with 2ℓ vertices and ℓ2 edges (see also Fig. 1). This explains our
interest in the complete bipartite graphs in this paper.

In a RAID system disk writes are expensive operations and should therefore
be minimized. When writing on a single information disk one also has to re-
compute the parity information and change the contents of all check disks
involved. This overhead is expressed by the update penalty. In many applica-
tions there are writes on a small fraction of consecutive disks – say d disks –
where d is small in comparison to n, the number of information disks. In this
case a write can be implemented as an efficient read-modify-write which is de-
scribed by Cohen et al. [5] as follows. Firstly, the d information disks are read
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followed by all of their associated check disks. In the case when check disks
overlap the physical read only takes place once. Secondly, all of the new parity
is computed and then this new parity and the new information is written back
to the disks. Once again, the shared check disks are only physically written
once. Therefore, to minimize the number of operations when writing to d con-
secutive information disks one has to minimize the number of check disks –
say f – associated to the d information disks. In other words, the order of the
information disks – or the order of the corresponding columns of the parity
check matrix – plays a crucial role for the efficiency of the RAID system. In
terms of set systems this leads exactly to the definition of a (d, f)-cluttered
ordering as given in the introduction.

3 A General Existence Theorem for Cluttered Orderings

Let ℓ ∈ N be a natural number and let Kℓ,ℓ denote the complete bipartite
graph with 2ℓ vertices and ℓ2 edges. In the following, we identify the vertex
set of Kℓ,ℓ with Zℓ × Z2 where two vertices are connected by an edge iff
they have different second components in Zℓ ×Z2. The construction of (d, f)-
cluttered orderings for Kℓ,ℓ with small f ∈ N is based on two fundamental
concepts: ∆-labellings and (d, f)-movements. A suitable ∆-labelling is used
to decompose Kℓ,ℓ into isomorphic copies of some subgraph. Then, based on
a suitable (d, f)-movement, “local” edge orderings can be defined on each of
these copies. When the (d, f)-movement in question is consistent with some
translation operator the locally defined edge orderings can be composed to
form a “globally” defined cluttered (d, f)-ordering for Kℓ,ℓ. This construction
principle, which was implicitly used in [7] in case of the complete graph, leads
to some general existence theorem (Theorem 3.4).

In the following, H = (U,E) denotes a bipartite graph with vertex set U
partitioned into two subsets denoted by V and W . Any edge of the edge set
E contains exactly one point of V and W , respectively. Let ℓ = |E|, then a
difference labelleling or, for short, a ∆-labelling of H with respect to V and
W is defined to be a map δ : U → Zℓ × Z2 with δ(V ) ⊂ Zℓ × {0} and
δ(W ) ⊂ Zℓ × {1} such that each element of Zℓ occurs exactly once in the
difference list

∆(E) :=
(

π1(δ(v) − δ(w))
∣

∣

∣v ∈ V,w ∈ W, {v, w} ∈ E
)

. (1)

Here, π1 : Zℓ × Z2 → Zℓ denotes the projection onto the first component. Let
Hδ denote the graph obtained from H by identifying the vertices which have
the same image under δ. Of course, H = Hδ where δ is injective. However,
we do not presume a ∆-labelling to be an injection. In any case, Condition
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(1) implies that Hδ does not have multiple edges. In general, vertex labellings
are well-known tools for the decomposition of graphs into subgraphs (see, e.g.,
[2]). In this context a decomposition is understood to be a partition of the
edge set of the graph. In the case of the complete bipartite graph one has the
following proposition.

Proposition 3.1 Let H = (U,E) be a bipartite graph, ℓ = |E|, and δ a ∆-
labelling of H. Then there is a decomposition of the complete bipartite graph
Kℓ,ℓ into isomorphic copies of Hδ.

Proof: Take ℓ copies of H = (U,E), where each object of the ith copy is
tagged by the superscript (i), e.g., H(i) = (U (i), E(i)), i ∈ Zℓ. Provide the
ith graph H(i) with the labelling δ(i) defined by δ(i)(u(i)) := δ(u) + (i, 0),
u ∈ U . Now, take the disjoint union of the graphs H(i), i ∈ Zℓ, and identify
the vertices with the same label. In other words, x ∈ U (i) is identified with
y ∈ U (j) iff δ(i)(x) = δ(j)(y). It is not difficult to show that the resulting graph
is isomorphic to the complete bipartite graph Kℓ,ℓ with vertex set Zℓ × Z2.
Here the vertices of Kℓ,ℓ correspond to the labels, i.e., a vertex u ∈ U (i) is
identified according to its label δ(i)(u) with the corresponding vertex in the
vertex set Zℓ × Z2 of Kℓ,ℓ. One then just checks that each of the ℓ2 edges of
Kℓ,ℓ — having one vertex in Zℓ ×{0} and the other in Zℓ ×{1} — appears as
an edge in some H(i) with the corresponding labels of the vertices. �

For example, Fig. 3 in the next section shows a ∆-labelling δ of a graph
H = H(1; 5) with 15 edges leading to a decomposition of K15,15 into isomorphic
copies of Hδ. Next, we define the concept of a (d, f)-movement for arbitrary
set systems.

Definition 3.2 Let S = (X,B) be a set system with finite point set X and
block set B = {B0, B1, . . . Bn−1}, n ∈ N. Furthermore, let Σ0, Σ1 ⊂ B with
d := |Σ0| = |Σ1| > 0. For a permutation σ on {0, 1, · · · , n − 1} define Xσ,d

i :=
⋃d−1

j=0 Bσ(i+j) for 0 ≤ i ≤ n − d where indices are considered modulo n. Then,
for some given f ∈ N, σ is called a (d, f)-movement from Σ0 to Σ1 if

Σ0 = Xσ,d
0 , Σ1 = Xσ,d

n−d, and max
0≤i≤n−d

|Xσ,d
i | ≤ f. (2)

Furthermore, let ϕ : Σ0 → Σ1 be any bijection, then a (d, f)-movement σ from
Σ0 to Σ1 is called consistent with ϕ if

ϕ(Bσ(j)) = Bσ(n−d+j), for j = 0, 1, . . . , d − 1. (3)

With these definitions at hand it is not difficult to prove a general exis-
tence theorem for (d, f)-cluttered orderings of the complete bipartite graph.
As before, let H = (U,E) denote a bipartite graph, δ a ∆-labelling of H,
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Σ0 ⊂ E a subset of order d = |Σ0|, and ℓ = |E|. By Proposition 3.1 we get a
decomposition of Kℓ,ℓ into ℓ isomorphic copies of Hδ. We denote these copies
by H(i) = (U (i), E(i)) and the corresponding subsets by Σ0

(i) ⊂ E(i), i ∈ Zℓ.
(Note that in the proof of Proposition 3.1 the H(i) denoted copies of H whereas
we now regard these graphs as subgraphs of Kℓ,ℓ being isomorphic to Hδ.) For
each j ∈ Zℓ one obtains an automorphism τj of the bipartite graph Kℓ,ℓ via a
cyclic translation of the vertex set:

τj : Zℓ × Z2 → Zℓ × Z2, τj((u, b)) := (u + j, b) (4)

for (u, b) ∈ Zℓ × Z2. τj induces in a natural way an automorphism of the
edge set of Kℓ,ℓ also denoted by τj. Clearly, τj(E

(i)) = E(i+j) and τj(Σ0
(i)) =

Σ0
(i+j), i ∈ Zℓ. Let κ be an integer coprime to ℓ which will be referred to as

translation parameter. We define a subgraph G(0) ⊂ Kℓ,ℓ by specifying its edge
set E(G(0)) := E(0) ∪ Σ0

(κ). The cyclic translation τκ induces in a canonical
way a bijection Σ0

(0) → Σ0
(κ) which will be denoted by ϕ(0)

κ .

Definition 3.3 With above notation, a (d, f)-movement of G(0) from Σ0
(0) to

Σ0
(κ) consistent with ϕ(0)

κ will be called a (d, f)-movement from Σ0
(0) consistent

w.r.t. the translation parameter κ.

Let σ be such a (d, f)-movement of G(0) from Σ0
(0) consistent w.r.t. κ.

Then σ defines an edge ordering of G(0) such that the first d edges are the
edges of Σ0

(0), the last d edges are the edges of Σ0
(κ), and the first ℓ edges are

the edges of E(0). By means of the translation operator τκ the edge ordering
of G(0) can be transferred to an edge ordering of G(κ) := τκ(G

(0)). Obviously,
E(G(0)) ∩ E(G(κ)) = Σ0

(κ) which are just the last d edges of G(0) and the
first d edges of G(κ). Since σ is consistent w.r.t. κ, the last d edges of G(0) are
ordered in the same way as the first d edges of G(κ). In the same way, one
can now order the edges of G(2κ), G(3κ), and so on. These orderings will be
referred to as local orderings. Altogether, we define a global cyclic ordering on
the edge set of Kℓ,ℓ by first cyclically arranging the edge sets E(i), i ∈ Zℓ, of
the decomposition along

E(0), E(κ), E(2κ), . . . , E((ℓ−1)κ)

and then ordering the edges within each subgraph according to σ. Note that
in this list all edge sets E(i), i ∈ Zℓ, appear exactly once since ℓ and κ are
coprime. Furthermore, any d consecutive edges w.r.t. this global cyclic order-
ing lie in some G(i) and are also consecutive w.r.t. to the corresponding local
ordering. Since the global ordering restricted to G(i) coincides with the local or-
dering defined by σ, the global cyclic ordering defines indeed a (d, f)-cluttered
ordering of Kℓ,ℓ. We summarize the result in the following theorem.

Theorem 3.4 Let H = (U,E) be a bipartite graph with ∆-labelling δ and
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κ ∈ N a translation parameter coprime to ℓ := |E|. Let Σ0 ⊂ E with d := |Σ0|
and f ∈ N. If there is a (d, f)-movement from Σ0 consistent w.r.t. κ, then
there also is a (d, f)-cluttered ordering for the complete bipartite graph Kℓ,ℓ.

As shown in Proposition 3.1 a ∆-labelling δ of some bipartite graph H
with ℓ edges leads to a decomposition of Kℓ,ℓ into isomorphic copies of Hδ.
However, in general one has no control of how these copies are embedded in
Kℓ,ℓ. Therefore, it is difficult to find good (d, f)-movements which are consis-
tent with some translation operator κ. In the next section, we will deal with
this problem.

4 Explicit Constructions

In this section we define an infinite family of bipartite graphs which allow
(d, f)-movements with small f . In order to ensure that these (d, f)-movements
are consistent with some translation parameter κ, we impose an additional
condition on the ∆-labellings also referred to as wrapped-condition. Then, we
construct three infinite families of such wrapped ∆-labellings. By applying
Theorem 3.4 we get explicit (d, f)-cluttered orderings of the corresponding
bipartite graphs.

4.1 Construction of Consistent (d, f)-Movements of H(h; t)

For each parameter h ∈ N and t ∈ N we define a bipartite graph denoted
by H(h; t) = (U,E). Its vertex set U is partitioned into U = V ∪ W and
consists of the following 2h(t + 1) vertices:

V := {vi | 0 ≤ i < h(t + 1)}, (5)

W := {wi | 0 ≤ i < h(t + 1)}.

The edge set E is partitioned into subsets Es, 0 ≤ s < t, defined by

E ′
s := {{vi, wj} | s · h ≤ i, j < s · h + h},

E ′′
s := {{vi, wh+j} | s · h ≤ j ≤ i < s · h + h},

E ′′′
s := {{vh+i, wj} | s · h ≤ i ≤ j < s · h + h}, (6)

Es := E ′
s ∪ E ′′

s ∪ E ′′′
s , for 0 ≤ s < t,

E :=
t−1
⋃

s=0

Es.
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Fig. 2 shows the edge partition of H(2; 1). Further examples can be found
in Fig. 3, Fig. 4, and Fig. 5.
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Fig. 2. Partition of the edge set of H(2; 1).

For the number |E| of edges one obtains the equation |E| = t · (h2 +
h(h+1)

2
+ h(h+1)

2
) = th(2h + 1). The t subgraphs defined by the edge sets Es,

0 ≤ s < t, and its respective underlying vertex sets are isomorphic to H(h; 1).
Intuitively speaking, the bipartite graph H(h; t) consists of t “consecutive”
copies of H(h; 1) where the last h vertices of V and W , respectively, of one
copy are identified with the first h vertices of V and W , respectively, of the next
copy. Traversing these copies with increasing s will define a (d, f)-movement
of H(h; t) with small parameter f as is shown in the next proposition.

Proposition 4.1 There is a (d, f)-movement of H(h; t) from E0 to Et−1 with
d = h(2h + 1) and f = 4h for h, t ∈ N, t ≥ 2.

Proof: From the definition, it follows that d = h(2h + 1) = |E0| = |Et−1|
and that f = 4h is the number of vertices contained in the edges of E0. We
define the edge ordering of E in such a way that all edges of Er precede the
ones of Es whenever 0 ≤ r < s < h. For any 0 ≤ s < h, the edges within
each Es are ordered in the same way so that it suffices to specify the edge
ordering on E0 = E ′

0 ∪ E ′′
0 ∪ E ′′′

0 . First, arrange the edges of E0 such that the
edges of E ′

0 precede the ones of E ′′
0 which in turn precede the ones of E ′′′

0 .
Then, order the edges of E ′

0 arbitrarily. Order the edges of E ′′
0 “from left to

right” meaning that the edge {vi, wh+j} precedes {vk, wh+ℓ} whenever i < k
or (i = k and j < ℓ). Similarly, order the edges of E ′′′

0 such that {vh+i, wj}
precedes {vh+k, wℓ} whenever i < k or (i = k and j < ℓ). Altogether this
defines an edge ordering in the sense of Definition 3.2 which clearly satisfies
that the first d edges with respect to this ordering constitute E0 and the last
d edges constitute Et−1.

It is left to show that any d consecutive edges contain at most f vertices.
We start with the d edges of E0, which clearly satisfy this condition, and
“move” the edges successively along the specified edge ordering. The first h2

moves amount to moving an edge from E ′
0 to the corresponding edge of E ′

1.
Since the vertex set of E ′

1 is contained in the one of E0, any d consecutive edges

along these moves contain at most f vertices. The next h(h+1)
2

moves amount
to moving an edge from E ′′

0 to the corresponding edge of E ′′
1 . Suppose that in

this process some edge e0 of E ′′
0 is replaced by the corresponding edge e1 of E ′′

1 ,
i.e., there are exactly d − 1 edges between e0 and e1 with respect to the edge
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ordering. Here, note that whenever one gets a “new” vertex w2h+j for some
1 ≤ j ≤ h which is contained in the edge e1 ∈ E ′′

1 but not contained in the
d− 1 edges lying between e0 and e1, the vertex vj contained in e0 is no longer
contained in any of the edges following e0. So again, any d consecutive edges
along these moves contain at most f vertices. Similarly, the same holds for the
next h(h+1)

2
moves from E ′′′

0 to the corresponding edge of E ′′′
1 . Altogether we

have shown that along the first d moves any d consecutive edges contain at
most f vertices. Note that the edge set after d moves is E1. Therefore, one can
proceed exactly the same way to move from E1 to E2 and so on until getting
to Et−1. �

By Proposition 3.1 a ∆-labelling δ of the graph H(h; t) will lead to a
decomposition of the complete bipartite graph Kℓ,ℓ into ℓ isomorphic copies
of H(h; t)δ, where ℓ = th(2h + 1). However, in general there is no (d, f)-
movement consistent with some translation parameter κ as needed in Theorem
3.4. To this means, we impose an additional condition on the ∆-labelling. The
following definition generalizes and adapts the notion of a wrapped ∆-labelling
to the bipartite case, which was introduced in [7] for certain subgraphs of the
complete graph.

Definition 4.2 Let H = (U,E), ℓ = |E|, denote a bipartite graph and let
X,Y ⊂ U with |X| = |Y |. A ∆-labelling δ is called a wrapped ∆-labelling of
H relative to X and Y if there exists a κ ∈ Z coprime to ℓ such that

δ(Y ) = δ(X) + (κ, 0) (7)

as multisets in Zℓ × Z2. The parameter κ is also referred to as translation
parameter of the wrapped ∆-labelling.

For the graphs H = H(h; t), we define X := {vi, wi | 0 ≤ i < h} and Y :=
{vi, wi | ht ≤ i < h(t + 1)}. Furthermore, in the following we consider only
wrapped ∆-labellings relative to X and Y for which the stronger condition

δ(vi+ht) = δ(vi) + (κ, 0) and δ(wi+ht) = δ(wi) + (κ, 0), (8)

hold for 0 ≤ i < h. Suppose we have such a labelling δ satisfying Condition (8).
Using the notation of Section 3, we denote ℓ the isomorphic copies of H(h; t)δ

by H(i) and its edge sets by E(i), i ∈ Zℓ. Obviously, the (d, f)-movements
as described in Proposition 4.1 also define (d, f)-movements for H(h; t)δ and
hence for H(i), i ∈ Zℓ. Let Σ0

(i) ⊂ E(i) consist of the first d = h(2h+1) edges.
Then from condition (8), it follows that the edge set E(G(0)) := E(0)∪Σ0

(κ) of
the graph G(0) ⊂ Kℓ,ℓ can be identified with the edge set of H(h; t + 1) (even
though the graphs G(0) and H(h; t+1) are not isomorphic if the vertex labelling
δ is not injective). Anyway, it is easy to check that the (d, f)-movement of
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H(h; t + 1) from Proposition 4.1 induces a (d, f)-movement of G(0) from Σ0
(0)

consistent w.r.t. κ. By applying Theorem 3.4 we get the following result.

Theorem 4.3 From any wrapped ∆-labelling of H(h; t), t, h ∈ N, satisfying
condition (8), one obtains a (d, f)-cluttered ordering of the complete bipartite
graph Kℓ,ℓ with ℓ = th(2h + 1), d = h(2h + 1), and f = 4h.

Actually, one can show that Theorem 4.3 even holds for any wrapped ∆-
labelling of H(h; t). One just has to modify the (d, f)-movement described in
Proposition 4.1 in some suitable manner, where one still has a lot of freedom
concerning the edge ordering within each Es. However, in the next three sub-
section we construct wrapped ∆-labellings which all clearly satisfy Condition
(8).

4.2 Construction of Wrapped ∆-Labellings for H(1; t)

In this subsection, we define a wrapped ∆-labelling of H(1; t) for any t ∈ N.
H(1, t) = (U,E) has 2(t+1) vertices and 3t edges. For a fixed t ∈ N, we define
δ : U → Z3t × Z2 on the vertex set U = V ∪ W as follows:

δ(vj) =











(jt, 0), for 0 ≤ j ≤ t − 1,

(t2 + 1, 0), for j = t,

δ(wj) =











(j(t − 1), 1), for 0 ≤ j ≤ t − 1,

(t2 + 1, 1), for j = t,

where the integers in the first components are considered modulo 3t. Fig. 3
shows δ for the case t = 5 indicating only the first components of Zℓ × Z2.
Note that in this example δ is not injective.

• • • • • •

• • • • • •

w0 w5

v0 v5

0 4 8 12 1 κ = 11

0 5 10 0 5 κ = 11
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Fig. 3. Some wrapped ∆-labelling of H(1; 5), |E| = 15, |V | = 12, κ = 11.

We now compute the difference list ∆(E) of δ defined as in Equation (1):
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∆(
⋃t−1

j=0 E ′
j) = (jt − j(t − 1) | 0 ≤ j ≤ t − 1) = (0, . . . , t − 1),

∆(
⋃t−2

j=0 E ′′
j ) = (jt − (j + 1)(t − 1) | 0 ≤ j ≤ t − 2) = (2t + 1, . . . , 3t − 1),

∆(
⋃t−2

j=0 E ′′′
j ) = ((j + 1)t − j(t − 1) | 0 ≤ j ≤ t − 2) = (t, . . . , 2t − 2),

∆(E ′′
t−1 ∪ E ′′′

t−1) = ((t − 1)t − (t2 + 1), t2 + 1 − (t − 1)2) = (2t − 1, 2t).

Hence each element of Z3t appears exactly once in ∆(E) and the difference
condition holds. Obviously, the wrapped-condition (8) relative to X = {v0, w0}
and Y = {vt, wt} holds as well and the translation parameter κ = t2 + 1 is
coprime to 3t for any t ∈ N. Therefore, δ defines the desired wrapped ∆-
labelling of H(1, t) and, by applying Theorem 4.3, we get the following result.

Theorem 4.4 For all t ∈ N there is a (d, f)-cluttered ordering of the complete
bipartite graph K3t,3t with d = 3 and f = 4.

Enlarging the window d provides a further useful result. Using the same
edge ordering of the edge set of K3t,3t as before one easily checks the following
theorem.

Theorem 4.5 For all t ∈ N there is a (d, f)-cluttered ordering of the complete
bipartite graph K3t,3t with d = 3s + r and f = 2(s + 1) + r, s > 0, r = 0, 1, 2.

Note that from Theorem 4.5 only for small d one obtains “good” cluttered
orderings in the sense that f is not much bigger than fmin(K3t,3t, d). For exam-
ple, one obtains a (3, 4)-, (4, 5)-, or (6, 6)-cluttered ordering of K3t,3t, t ∈ N.
Theorem 4.5 also gives a (30, 22)-cluttered ordering or a (36, 26)-cluttered
ordering of K3t,3t. For some of these graphs, these results can be improved
considerably by using the constructions of the next sections.

4.3 Construction of Wrapped ∆-Labellings for H(2; t)

In this section, we define a wrapped ∆-labelling of H(2; t) for any t ∈ N.
H(2; t) = (U,E) has 4(t + 1) vertices and 10t edges. For a fixed t ∈ N, a
labelling δ is a map δ : U → Z10t × Z2 on the vertex set U = V ∪ W .
We specify the second component of δ on the vertices V = (v0, v1, . . . , v2t+1)
sequentially by the following list of 2t + 2 numbers:

c0, c0 + a, c1, c1 + a, . . . , cj, cj + a, . . . , ct−1, ct−1 + a, c0 + κ, c0 + a + κ,

and similarly on the vertices W = (w0, w1, . . . , w2t+1) by

d0, d0 + b, d1, d1 + b, . . . , dj, dj + b, . . . , dt−1, dt−1 + b, d0 + κ, d0 + b + κ,

where we set
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a := 6t − 1, cj := 2jt, j = 0, 1, . . . , t − 1,

b := 6t − 2, dj := 2j(t − 1), j = 0, 1, . . . , t − 1,

κ := 2t2 + 1.

All integers are considered modulo 10t. Note that |E| = 10t and κ = 2t2 + 1
are coprime for all t ∈ N and that the wrapped-condition (8) is obviously
fulfilled. Fig. 4 illustrates the definition for the case t = 2.

• • • • • •

• • • • • •

w0 w5

v0 v5

d0 = 0 d0 + b = 10 d1 = 2 d1 + b = 12 d0 + κ = 9 d0 + κ + b = 19

c0 = 0 c0 + a = 11 c1 = 4 c1 + a = 15 c0 + κ = 9 c0 + κ + a = 0
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Fig. 4. Some wrapped ∆-labelling of H(2; 2), |E| = 20, |V | = 12, κ = 9.

We now compute the differences of δ using the notation in (1):

∆(E ′
j) = (cj − dj, cj − dj + (a − b), cj − dj + a, cj − dj − b)

= (2j, 2j + 1, 2j + 6t − 1, 2j + 4t + 2) for j = 0, 1, . . . , t − 1,

∆(E ′′
j−1) = (cj−1 − dj, cj−1 − dj + a, cj−1 − dj + (a − b)

= (2j + 8t, 2j + 4t − 1, 2j + 8t + 1) for j = 1, 2, . . . , t − 1,

∆(E ′′′
j−1) = (cj − dj−1, cj − dj−1 − b, cj − dj−1 + (a − b)

= (2j + 2t − 2, 2j + 6t, 2j + 2t − 1) for j = 1, 2, . . . , t − 1,

∆(E ′′
t−1) = (ct−1 − d0 − κ, ct−1 − d0 − κ + a, ct−1 − d0 − κ + (a − b))

= (8t − 1, 4t − 2, 8t),

∆(E ′′′
t−1) = (c0 + κ − dt−1, c0 + κ − dt−1 − b, c0 + κ − dt−1 + (a − b))

= (4t − 1, 8t + 1, 4t).

From this one easily checks that the first three lists cover all numbers in
Z10t \ {4t − 2, 4t − 1, 4t, 8t − 1, 8t, 8t + 1} exactly once. The missing values
are exactly covered by ∆(E ′′

t−1) and ∆(E ′′′
t−1). Thus, δ defines a wrapped ∆-

labelling and, by applying Theorem 4.3, we get the following result.

Theorem 4.6 For all t ∈ N there is a (d, f)-cluttered ordering of the complete
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bipartite graph K10t,10t with d = 10 and f = 8.

Using the same edge ordering of K10t,10t one obtains the following theorem
by enlarging the window d.

Theorem 4.7 For all t ∈ N there is a (d, f)-cluttered ordering of the complete
bipartite graph K10t,10t with d = 10s + r and f = 4(s + 1) + min(r, 4), s > 0,
r = 0, 1, . . . , 9.

From this, for example, we get a (30, 16)-cluttered ordering of K10t,10t. For
the graphs K30t,30t, t ∈ N, this is a much better ordering than the (30, 22)-
cluttered ordering from Theorem 4.5.

4.4 Construction of Wrapped ∆-Labellings for H(h; 1)

Next, we define in this section a wrapped ∆-labelling for H(h; 1) for any
h ∈ N. H(h; 1) = (U,E) has 4h vertices and h(2h + 1) edges. We define the
∆-labelling δ : U → Zh(2h+1) × Z2 on the vertex set U = V ∪W by specifying
the first component of δ on the vertices V = (v0, v1, . . . , v2h−1) sequentially by
the following list of 2h numbers:

a0, a1 . . . , ah−1, a0 + κ, a1 + κ, . . . , ah−1 + κ,

and similarly on the vertices W = (w0, w1, . . . , w2h−1) by

b0, b1 . . . , bh−1, b0 + κ, b1 + κ, . . . , bh−1 + κ,

where we set

a0 := 0, ai := 2i − (2h + 1), i = 1, 2, . . . , h − 1,

b0 := 0, bj := −j(2h + 1) − 1, j = 1, 2, . . . , h − 1,

κ :=−1.

All integers are considered modulo h(2h + 1). Obviously, |E| = h(2h + 1) and
κ are coprime for any h ∈ N and the wrapped-condition (8) is fulfilled. Fig. 5
illustrates the definition for the case h = 3.

We now show that δ indeed defines a wrapped ∆-labelling for H(h; 1). To
this means we compute the differences of δ using a partition of the edge set of
H(h; 1) as shown in Fig. 6. Using the notation of Equation (6), the edges (1)
to (4) account for the edge set E ′

0, the edges (5) to (7) for E ′′
0 and the edges

(8) to (10) for E ′′′
0 .

Note that the following computations are considered modulo h(2h + 1).
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• • • • • •

w0 w5

v0 v5

b0 = 0 b1 = 13 b2 = 6 b0 + κ = 20 b1 + κ = 12 b2 + κ = 5

a0 = 0 a1 = 16 a2 = 18 a0 + κ = 20 a1 + κ = 15 a2 + κ = 17
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Fig. 5. Some wrapped ∆-labelling of H(3; 1), |E| = 21, |V | = 12, κ = −1.

HHHHHH

HHHHHHHHHH

HHHHHHHHHH

V

v0

v1

v2...

vh−1

vh

vh+1

vh+2...

v2h−1

W w0 w1 w2 . . . wh−1 wh wh+1 wh+2 . . . w2h−1

(1) (2) (5)

(3) (4) (6) (7)

(8) (9)

(10)

Fig. 6. Edge partition of H(h; 1).

(1) a0 − b0 = 0

(2) 1 ≤ j ≤ h − 1 : a0 − bj = j(2h + 1) + 1

(3) 1 ≤ i ≤ h − 1 : ai − b0 = (h − 1)(2h + 1) + 2i

(4) 1 ≤ i, j ≤ h − 1 : ai − bj = (j − 1)(2h + 1) + 2i + 1

(5) a0 − (b0 + κ) = 1

(6) 1 ≤ i ≤ h − 1 : ai − (b0 + κ) = (h − 1)(2h + 1) + 2i + 1

(7) 1 ≤ j ≤ i ≤ h − 1 : ai − (bj + κ) = (j − 1)(2h + 1) + 2i + 2

(8) a0 + κ − b0 = −1

(9) 1 ≤ j ≤ h − 1 : a0 + κ − bj = j(2h + 1)

(10) 1 ≤ i ≤ j ≤ h − 1 : ai + κ − bj = (j − 1)(2h + 1) + 2(i − 1) + 2

Now, we split up the list (10) and get

(10a) 1 ≤ i < j ≤ h − 1 : (j − 1)(2h + 1) + 2i + 2

(10b) 1 ≤ j ≤ h − 1 : (j − 1)(2h + 1) + 2
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Forming suitable unions of the lists above one obtains the following lists which
are also schematically shown in Fig. 7.

(4) + (7) + (10a) : 0 ≤ ℓ ≤ h − 2, 3 ≤ k ≤ 2h : ℓ(2h + 1) + k

(1) + (9) : 0 ≤ ℓ ≤ h − 1 : ℓ(2h + 1)

(2) + (5) : 0 ≤ ℓ ≤ h − 1 : ℓ(2h + 1) + 1

(10b) : 0 ≤ ℓ ≤ h − 2 : ℓ(2h + 1) + 2

(3) + (6) + (8) : 2 ≤ k ≤ 2h : (h − 1)(2h + 1) + k

HHHℓ

0
1
...

h − 2

h − 1

k 0 1 2 3 . . . 2h

(3) + (6) + (8)

(4) + (7) + (10a)

(1
)
+

(9
)

(2
)
+

(5
)

(1
0b

)

Fig. 7. Differences ℓ(2h + 1) + k, 0 ≤ ℓ < h, 0 ≤ k < 2h + 1, of δ in Zh(2h+1).

From these lists one can easily read off that all numbers in Zh(2h+1) appear
exactly once as difference of δ which hence defines a wrapped ∆-labelling.
Applying Theorem 4.3 we get the following result.

Theorem 4.8 For all h ∈ N there is a (d, f)-cluttered ordering of the com-
plete bipartite graph Kh(2h+1),h(2h+1) with d = h(2h + 1) and f = 4h.

From Theorem 4.8 one obtains, for example, a (36, 16)-cluttered ordering of
K36,36, which is much better then the (36, 26)-cluttered ordering from Theorem
4.5. Or one obtains a (210, 40)-cluttered ordering of K210,210 in comparison to
the (210, 88)-cluttered ordering one obtains from Theorem 4.7.

5 Final Remarks

In this paper, we investigated (d, f)-cluttered orderings in the case of com-
plete bipartite graphs based on some strategy suggested by Cohen et al.
[7] in the case of complete graphs. We introduced the concept of a (d, f)-
movement and formulated a general existence theorem for (d, f)-cluttered or-
derings. Then, we addressed ourselves to the explicit construction of such
orderings. To this means we defined a family of bipartite graphs which allow
(d, f)-movements with relatively small parameters f . To achieve the neces-
sary consistency of these movements we generalized and adapted the notion
of a wrapped ∆-labellings of bipartite graphs which was first introduced for
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complete graphs in [7]. However, in general the construction of wrapped ∆-
labellings is a difficult combinatorial problem. For the complete graph, Cohen
et al. [7] gave a couple of examples of such labellings which were found by
means of a computer, but no systematic construction was given. In case of bi-
partite graphs we gave three explicit constructions of wrapped ∆-labellings for
some infinite family of graphs respectively leading to different (d, f)-cluttered
orderings.

As formulated in the introduction, one interesting problem is to ask for the
minimal number fmin(S, d) for some set system S. Giving explicit construc-
tions based on some different technique, Cohen et al. [6] solved this problem
for d = 3 and d = 4 for all complete graphs Kn, n ∈ N, except for the param-
eters n ∈ {15, 18, 22}. In the case of complete bipartite graphs one can show
that fmin(Kℓ,ℓ, 3) ≥ 4, fmin(Kℓ,ℓ, 4) ≥ 5, fmin(Kℓ,ℓ, 5) ≥ 6, fmin(Kℓ,ℓ, 6) ≥ 6,
and fmin(Kℓ,ℓ, 10) ≥ 8, for ℓ > 2. Hence from Theorem 4.5 and Theorem 4.7
one obtains the following corollary.

Corollary 5.1 For any ℓ ∈ N which is divisible by three there are optimal
(3, 4)-, (4, 5)-, (5, 6)-, and (6, 6)-cluttered orderings of Kℓ,ℓ. For any ℓ ∈ N

which is divisible by ten there is an optimal (10, 8)-cluttered ordering of Kℓ,ℓ.

However, further increasing the size d of the window the cluttered orderings
from Theorem 4.5 and Theorem 4.7 are far from being optimal. On the other
hand, by Theorem 4.8 one obtains (d, f)-cluttered orderings only for a small
class of complete bipartite graphs Kℓ,ℓ, ℓ = h(2h + 1), h ∈ N, with d = ℓ and
f = 4h. In this cases, the value f = 4h is comparatively close to fmin(Kℓ,ℓ, d).
Actually, any bipartite graph with d = h(2h + 1) edges contains at least
2
√

2h vertices and hence fmin(Kℓ,ℓ, h(2h + 1)) ≥ 2
√

2h. Therefore, one has
f ≤

√
2fmin(Kℓ,ℓ, h(2h + 1)) for the (d, f)-cluttered ordering of Theorem 4.8.

The explicit construction of good cluttered orderings as well as the speci-
fication of good lower and upper bounds for fmin(S, d) in the case of complete
graphs, complete bipartite graphs, or even more general set systems consti-
tute a difficult combinatorial problem and is the content of an ongoing research
project of the authors.
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