
Efficient Content-Based Retrieval of Motion Capture Data

Meinard Müller Tido Röder Michael Clausen
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Figure 1:Qualitative features describing geometric relations between the body points of a pose that are indicated by red and black markers.

Abstract

The reuse of human motion capture data to create new, realistic mo-
tions by applying morphing and blending techniques has become an
important issue in computer animation. This requires the identifi-
cation and extraction of logically related motions scattered within
some data set. Such content-based retrieval of motion capture data,
which is the topic of this paper, constitutes a difficult and time-
consuming problem due to significant spatio-temporal variations
between logically related motions. In our approach, we introduce
various kinds of qualitative features describing geometric relations
between specified body points of a pose and show how these fea-
tures induce a time segmentation of motion capture data streams.
By incorporating spatio-temporal invariance into the geometric fea-
tures and adaptive segments, we are able to adopt efficient indexing
methods allowing for flexible and efficient content-based retrieval
and browsing in huge motion capture databases. Furthermore, we
obtain an efficient preprocessing method substantially accelerating
the cost-intensive classical dynamic time warping techniques for
the time alignment of logically similar motion data streams. We
present experimental results on a test data set of more than one mil-
lion frames, corresponding to 180 minutes of motion. The linearity
of our indexing algorithms guarantees the scalability of our results
to much larger data sets.
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1 Introduction

The generation of human motion capture data as used in data-driven
computer animations is a time-consuming and expensive process.

∗e-mail:{meinard, roedert, clausen}@cs.uni-bonn.de

Various editing and morphing techniques for the modification and
adaptation of existing motion data [Bruderlin and Williams1995;
Witkin and Popovic 1995] or for the synthesis of new, realistic mo-
tions from example motions [Giese and Poggio 2000; Pullen and
Bregler 2002; Kovar and Gleicher 2003] have been developed in
the last few years. Prior to reusing and processing motion capture
material, one has to solve the fundamental problem ofidentifying
andextractingsuitable motion clips from the database on hand. In
doing so, a user may describe the motion clips to be retrievedin
various ways at different semantic levels. One possible specifica-
tion could be a rough textual description such as “a kick of the right
foot followed by a punch.” Another query mode would involve a
short query motion clip, the task being to retrieve all clipsin the
database containing parts or aspects similar to the query. This kind
of problem is commonly referred to ascontent-based retrieval. In
this paper, we present a prototypical system for content-based mo-
tion retrieval, where the query consists of a motion clip as well as a
user-specified selection of motion aspects to be consideredin the re-
trieval process. Unlike the work of Kovar and Gleicher [2004], our
technique does not support fully automatic “query-by-example,”
since the user has to supply additional query-dependent input. Be-
ing able to choose certain motion aspects, however, provides the
user with a high degree of flexibility, cf. the subsequent overview.

The crucial point in content-based motion retrieval is the notion of
“similarity” used to compare different motions. Intuitively, two mo-
tions may be regarded as similar if they represent variations of the
same action or sequence of actions, see Kovar and Gleicher [2004].
Here the variations may concern the spatial as well as the temporal
domain. For example, the two walking motions shown in Fig. 5 and
Fig. 6, respectively, may be perceived as similar even though they
differ considerably in their respective speeds. In other words, log-
ically similar motions need not benumerically similar, as is also
pointed out by Kovar and Gleicher [2004]. This may lead to in-
complete and dissatisfying retrieval results when using similarity
measures based on numerical comparison of spatial coordinates.
Furthermore, the necessary warping of the time axis to establish
frame correspondences is computationally expensive, making this
kind of technique infeasible for large data sets, see also Sect. 2.

To bridge the semantic gap between logical similarity as per-
ceived by humans and computable numerical similarity measures,
we introduce new types of qualitative geometric features and in-
duced motion segmentations, yielding spatio-temporal invariance
as needed to compare logically similar motions. This strategy
has far-reaching consequences regarding efficiency, flexibility and
automation in view of indexing, content-based retrieval and time
alignment of motion capture data. The following overview summa-
rizes the main contributions of this paper.



1.1 Overview

1. Geometric Features: We introduce a class of boolean fea-
tures expressing geometric relations between certain body
points of a pose. As an example of this kind of features, con-
sider the test whether the right foot lies in front of or behind
the plane spanned by the left foot, the left hip joint and the
center of the hip (the root), cf. Fig. 1 (a). Such geometric fea-
tures are very robust to spatial variations and allow the identi-
fication of logically corresponding events in similar motions.
In particular, (user-specified) combinations of such qualitative
features become a powerful tool in describing and specifying
motions at a high semantic level, see also Fig. 2.

2. Adaptive Segmentation: In conventional approaches, fea-
ture extraction is often performed in two steps: first, the data
stream is segmented along the time axis, then a feature vector
is computed for each of the resulting segments. We suggest
a different approach: for a fixed combination of pose-based
geometric features, consider consecutive frames yieldingthe
same feature vectors, in the following simply referred to as
runs. The segmentsof a given motion data stream are then
defined to be runs of maximal length. Such segments not only
inherit the semantic qualities of the underlying features but
are also robust to the local time variations that are typicalof
logically related motions. Furthermore, changing the combi-
nation of features will automatically lead to an adaptationof
the induced segmentation. As an example, see Figs. 3 and 5.

3. Similarity and Indexing: In plain words, our method
coarsens each motion data stream by transforming it into a
sequence of geometric configurations. Two motion clips are
then considered as similar if they possess (more or less) the
same progression of geometric features. Opposed to recent
approaches that involve dynamic time warping (DTW) to es-
tablish correspondence of related events, our approach incor-
porates spatio-temporal invariance in the geometric features
and induced segments. This allows us to employ standard in-
formation retrieval techniques for fast content-based andfault
tolerant retrieval based on indexing with inverted lists. We
simply use the feature vectors as index words, and indexing
is carried out at the segment level rather than at the frame
level. This leads to significant savings in memory and run-
ning time. In particular, the time and space required to build
and store our index structure islinear, O(n), in the numbern
of database frames opposed to DTW-based strategies, which
arequadratic, O(n2), in n, see Sect. 6.1.

4. Queries and Retrieval: In our system, a query consists of a
short motion clip and a query-dependent specification of mo-
tion aspects that determines the desired notion of similarity.
For the latter, the user selects relevant features from a given
set of intuitive, programmer-defined geometric features (each
expressing a relation of certain body parts). On the one hand,
this does not allow for fully automatic (query-independent)
motion retrieval, as would be necessary to process a whole
batch of motion queries. On the other hand, feature selection
enables the user to incorporate his previous knowledge of the
query motion into the retrieval process. Thus, the user may se-
lect or mask out certain aspects such as restricted body areas
in the query, so that, for example, all instances of “clapping
ones hands” can be found irrespective of any concurrent lo-
comotion. Furthermore, many movements such as “kicking
with subsequent punch” or “standing up and clapping ones
hands” can be specified by a short sequence of key poses,
which translate into a typical progression of geometric con-
stellations. Therefore, our approach is a major step towards

handling such low-level descriptive queries in an automatic
way without using manually generated annotations.

5. Time Alignment: Matching two feature progressions ob-
tained from similar motions can be regarded as a time align-
ment of the underlying motion data streams. This fact can
be used to significantly accelerate classical DTW-based align-
ment procedures by first computing (in linear time) a coarse
match based on geometric features and then refining this
alignment with classical DTW techniques.

1.2 Notations

For the sake of clarity, we quickly introduce some notions used in
the rest of this paper. Human motion is commonly modeled using
akinematic chain, which may be thought of as a simplified copy of
the human skeleton. A kinematic chain consists ofbody segments
(the bones) that are connected byjoints of various types. In the
following, let J denote the set of joints, where each joint is refer-
enced by an intuitive term such as ‘root’, ‘lankle’ (for ‘left ankle’),
‘rankle’ (for ‘right ankle’), ‘lknee’ (for ‘left knee’), and so on. For
simplicity, end effectors such as toes or fingers are also regarded as
joints. Using motion capture techniques, one can derive from an
actor’s motion a time-dependent sequence of 3D joint coordinates
as well as joint angles with respect to some fixed kinematic chain.
In the following, amotion capture data streamis thought of as a se-
quence offrames, each frame specifying the 3D coordinates of the
joints at a certain point in time. Moving from the technical back-
ground to an abstract geometric context, we also speak of apose
instead of a frame. Mathematically, a pose can be regarded asa
matrixP∈ R

3×|J|, where|J| denotes the number of joints. Thej-th
column ofP, denoted byP j , corresponds to the 3D coordinates of
joint j ∈ J. A motion capture data stream (in information retrieval
terminology also referred to as adocument) can be modeled as a
function D : [1 : T ] → P ⊂ R

3×|J|, whereT denotes the number
of poses,[1 : T] := {1,2, . . . ,T} corresponds to the time axis (for
a fixed sampling rate), andP denotes the set of poses. A subse-
quence of consecutive frames is also referred to as amotion clip.
Finally, the curve described by the 3D coordinates of a single body
point is termedtrajectory.

2 Related Work

In view of massively growing multimedia databases of various
types and formats, efficient methods for indexing and content-based
retrieval have become an important issue. Vast literature exists on
indexing and retrieval in text, image, and video data, see, e.g., Wit-
ten et al. and Bakker et al. [1999; 2003] and references therein. For
the music scenario, Clausen and Kurth [2004] give a unified ap-
proach to content-based retrieval; their group theoretical concepts
generalize to other domains as well. The problem of indexinglarge
time series databases has also attracted great interest in the database
community, see, e.g., Last et al. and Keogh [2004; 2002] and refer-
ences therein. Here, possible distortions of the time axis constitute
a major problem in comparing related time series, usually solved by
means of dynamic time warping. DTW, however, is cost-intensive
in computing time and memory. Keogh [2002] describes an in-
dexing method based on lower bounding techniques that makesre-
trieval of time-warped time series feasible even for large data sets.

Only recently, motion capture data has become publicly available
on a larger scale (e.g., CMU [2003]), reinforcing the demandfor
efficient indexing and retrieval methods. Such methods are nec-
essary to efficiently retrieve logically related motions, which can



then be processed via editing and morphing techniques [Bruderlin
and Williams 1995; Witkin and Popovic 1995; Giese and Poggio
2000; Pullen and Bregler 2002; Kovar and Gleicher 2003; Kovar
and Gleicher 2004]. So far, only little work has been published on
motion capture indexing and content-based motion retrieval. We
give a short overview of the relevant literature: to identify motions
similar to a given query motion, Wu et al. [2003] proceed in two
stages: they first identify start and end frames of possible candi-
date clips utilizing a pose-based index and then compute theac-
tual distance from the query via DTW. Cardle et al. [2003] sketch
how to use DTW-based indexing techniques to accomplish the re-
trieval task. Adapting techniques from Keogh [2002], Keoghet
al. [2004] describe how to efficiently identify similar motion frag-
ments that differ by some uniform scaling factor with respect to
the time axis. In the approach of Kovar and Gleicher [2004], nu-
merically similar motions are identified by means of a DTW-based
index structure termedmatch web. A multi-step search spawning
new queries from previously retrieved motions allows for the identi-
fication of logically similar motions using numerically similar mo-
tions as intermediaries. The authors report good retrievalresults,
which are particularly suitable for their blending application. Our
approach to indexing and content-based retrieval of motioncapture
data differs fundamentally from previous approaches: opposed to
DTW-based techniques that rely on suitable numerical localcost-
measures to compare individual frames of data streams, we grasp
spatio-temporal invariance in our features and induced segments,
allowing for exact matchings at the segment level.

The idea of considering geometric (combinatorial, relational, quali-
tative) features instead of numerical (metrical, quantitative) features
is not new and has already been applied by, e.g., Carlsson [1996;
1999] as well as Sullivan and Carlsson [2002] in other domains such
as visual object recognition in 2D and 3D, or action recognition and
tracking. The following observations are of fundamental impor-
tance, see Carlsson [1996]: firstly, relational structuresare not only
interesting for general recognition problems (due to theirinvariance
properties) but also ideally suited for indexing (due to their discrete
nature). Secondly,relational similarity of shapes correlates quite
well with perceptual (logical)similarity. These principles moti-
vate the usage of progressions of geometric constellationsin order
to identify logically similar movements. Analogously, Green and
Guan [2004] use progressions of kinematic features such as mo-
tion vectors of selected joints, so-calleddynemes, as basic building
blocks of their HMM-based motion models.

3 Geometric Features

In this section, we define various kinds ofgeometric featuresde-
scribing geometric relations between specified points of the kine-
matic chain for some fixed, isolated pose. To this end, we needthe
notion of aboolean feature, which we describe mathematically as
a boolean functionF : P → {0,1}. Obviously, any boolean ex-
pression of boolean functions (evaluated pose-wise) is a boolean
function itself, examples being the conjunctionF1∧F2 and the dis-
junctionF1∨F2 of boolean functionsF1 andF2. Forming a vector of
f boolean functions for somef ≥ 1, one obtains a combined func-
tion F : P → {0,1} f . From this point forward,F will be referred
to as afeature functionand the vectorF(P) as afeature vectoror
simply a featureof the poseP ∈ P . Any feature function can be
applied to a motion capture data streamD : [1 : T] → P in a pose-
wise fashion, which is expressed by the compositionF ◦D.

We now consider a special class of geometrically meaningfulfea-
ture functions. As an example, a geometric feature may express
whether the right toes lie in front of the plane spanned by theleft

F r ◦D

F l ◦D

0 20 40 60 80 100

(F r ∧F l )◦D

Figure 2:Boolean featuresF r , F l , and the conjunctionF r ∧F l applied to the 100-
frame walking motionD = Dwalk of Fig. 3.

ankle, the left hip and the root for a fixed pose. More generally, let
pi ∈ R

3, 1≤ i ≤ 4, be four 3D points, the first three of which are in
general position. Let〈p1, p2, p3〉 denote the oriented plane spanned
by the first three points, where the orientation is determined by
point order. Then define

B(p1, p2, p3; p4) :=

{

1, if p4 lies in front of or on〈p1, p2, p3〉,
0, if p4 lies behind〈p1, p2, p3〉.

(1)

From this we obtain a feature functionF( j1, j2, j3; j4)
plane : P → {0,1}

for any four distinct jointsj i ∈ J, 1≤ i ≤ 4, by defining

F( j1, j2, j3; j4)
plane (P) := B(P j1,P j2,P j3;P j4). (2)

The concept of such geometric features is simple but powerful,
as we will illustrate by continuing the above example. Setting
j1 =‘root’, j2 =‘lankle’, j3 =‘lhip’, and j4 =‘rtoes’, we denote

the resulting feature byF r := F( j1, j2, j3; j4)
plane . The plane determined

by j1, j2, and j3 is indicated in Fig. 1 (a) as a green disc. Obvi-
ously, the featureF r(P) is 1 for a poseP corresponding to a person
standing upright. It assumes the value 0 when the right foot moves
to the back or the left foot to the front, which is typical for locomo-
tion such as walking or running. Interchanging corresponding left
and right joints in the definition ofF r and flipping the orientation of
the resulting plane, we obtain another feature function denoted by
F l . Let us have a closer look at the feature functionF := F r ∧F l ,
which is 1 if and only if both, the right as well as the left toes, are
in front of the respective planes. It turns out thatF is very well
suited to characterize any kind of walking or running movement. If
a data streamD : [1 : T] → P describes such a locomotion, then
F ◦D exhibits exactly two peaks for any locomotion cycle, from
which one can easily read off the speed of the motion (see Fig.2).
On the other hand, the featureF is invariant under global orienta-
tion and position, the size of the skeleton, and various local spatial
deviations such as sideways and vertical movements of the legs. Of
course,F leaves any upper body movements unconsidered.

In general, feature functions defined purely in terms of geometric
entities that are expressible by joint coordinates are invariant under
global transforms such as Euclidean motions and scalings. Geo-
metric features are very coarse in the sense that they express only
a single geometric aspect, masking out all other aspects of the re-
spective pose. This makes such features robust to variations in the
motion capture data stream that are not correlated with the aspect
of interest. Using suitable boolean expressions and combinations
of several geometric features then allows to focus on or to mask out
certain aspects of the respective motion, see Sect. 5.

The four joints inF( j1, j2, j3; j4)
plane can be picked in various meaning-

ful ways. For example, in the casej1 =‘root’, j2 =‘lshoulder’,
j3 =‘rshoulder’, andj4 =‘lwrist’, the feature expresses whether the
left hand is in front of or behind the body. Introducing suitable off-
sets, one can make the feature more robust. For the previous exam-
ple, we moved the plane〈P j1,P j2,P j3〉 to the front by one length
of the skeleton’s humerus. One thus obtains a more robust feature



Feature set Features and corresponding abbreviations

Fℓ

right/left foot in front (F1
ℓ /F2

ℓ ), right/left foot raised (F3
ℓ /F4

ℓ ), right/left
foot fast (F5

ℓ /F6
ℓ ), right/left knee bent (F7

ℓ /F8
ℓ ), right/left leg sideways

(F9
ℓ /F10

ℓ ), legs crossed (F11
ℓ )

Fu
right/left hand in front (F1

u /F2
u ), right/left hand raised (F3

u /F4
u ),

right/left arm sideways (F5
u /F6

u ), right/left elbow bent (F7
u /F8

u ),
right/left hand fast (F9

u /F10
u ), arms crossed (F11

u ), hands touching (F12
u )

Fm
right/left hand touching any leg (F1

m/F2
m), right/left hand touching head

or neck (F3
m/F4

m), right/left hand touching hip area (F5
m/F6

m), torso bent
(F7

m), root fast (F8
m)

Table 1: The three sets of features used in our experiments.Fℓ characterizes the
lower body,Fu the upper body andFm the interaction of upper and lower body.

that can distinguish between a pose with a hand reaching out to the
front and a pose with a hand kept close to the body, see Fig. 1 (b).

We sketch some other kinds of geometric features that turnedout
to be useful in our experiments. Instead of specifying the plane by
three joints, one can define the plane by a normal vector givenby
two joints. For example, using the plane that is normal to thevec-
tor from the joint ‘chest’ to the joint ‘neck’, one can easilycheck
whether a hand is raised above neck height or not, cf. Fig. 1 (c).
Another type of expressive geometric features checks whether two
joints, two body segments, or a joint and a body segment are within
an ε-distance of each other or not. Here one may think of situa-
tions such as two hands touching each other, or a hand touching the
head or a leg, see Fig. 1 (d)–(f). In our experiments, we chosea rel-
atively large thresholdε, opting for possible false positives rather
than having false dismissals. We also use geometric features to
check whether certain parts of the body such as the arms, the legs,
or the torso are bent or stretched. This is done by measuring the
angleα between suitable body segments such as the thigh and the
lower leg (corresponding to the knee angle), the upper arm and the
forearm (corresponding to the elbow angle), or the spine andthe left
and right thigh (taking the maximum of the two angles). Our ex-
periments showed that an angle of 120 degrees is a good threshold
to classify the respective body part as bent (α < 120) or stretched
(α ≥ 120), see Fig. 1 (g). Finally, we complemented our set of ge-
ometric features with a couple of non-geometric boolean features
accounting for parameters such as absolute speed of certainjoints,
or relative speed of certain joints with respect to other joints.

In our retrieval scenario, we supply a fixed set of semantically rich
features from which the user may select relevant features for the
query specification. Concerning feature design, one has to deal
with the problem that the feature set should be extensive enough
to characterize a broad spectrum of different motion types.Si-
multaneously, the features should be pairwise orthogonal without
over-specializing on certain types of motions, as well as small in
number in view of efficiency. For the time being, we chose our
features manually, possibly yielding boolean features that manage
to capture important motion characteristics. An automatedway of
composing a high-quality standard feature set backed up by physi-
ological studies of human motions would be an important issue to
be considered in the future.

In particular, we designed 31 boolean features divided intothree
setsFℓ, Fu, and Fm, see Table 1. The features inFℓ and Fu ex-
press properties of the lower/upper part of the body (mainlyof the
legs/arms, respectively), whereas the features inFm mainly express
interactions of the upper and lower part. Here, the idea was to
subdivide the space of possible end effector locations intoa small
set of pose-dependent space “octants” defined by three intersect-
ing planes each (above/below, left/right, in front of/behind). Even
though these 31 features are not capable of covering all aspects of
all kinds of motions (e.g., motions that are small-scaled enough to

take place exclusively within a single space octant), they are suf-
ficient for our prototypical retrieval system. Here, our goal is to
retrieve motions based on their rough outlines. To handle queries at
a higher level of detail, more refined sets of features are required.

4 Adaptive Segmentation

As mentioned in the introduction, two logically similar motions
may exhibit considerable spatial as well as temporal deviations.
The pose-based geometric features defined in the last section are
invariant under such spatial variations. Introducing the concept of
adaptive segmentation, we show in this section how to achieve in-
variance under local time deformations.

Let F be a feature function. We say that two posesP1,P2 ∈ P are
F-equivalentif the corresponding feature vectorsF(P1) andF(P2)
coincide, i.e.,F(P1) = F(P2). Then, anF-run of D is defined to be
a subsequence ofD consisting of consecutiveF-equivalent poses,
and theF-segmentsof D are defined to be theF-runs of maximal
length. We illustrate these definitions by continuing the example
from Sect. 3. LetF2 := (F r ,F l ) : P → {0,1}2 be the combined
feature formed byF r andF l so that the pose setP is partitioned
into four F2-equivalence classes. ApplyingF2 to the walking mo-
tion Dwalk (see also Fig. 2) results in the segmentation shown in
Fig. 3, where the trajectories of selected joints have been plotted.
F2-equivalent poses are indicated by the same trajectory color: the
color red represents the feature vector(1,1), blue the vector(1,0),
andgreenthe vector(0,1). Note that no pose with feature vector
(0,0) appears inDwalk. Altogether, there are ten runs of maximal
length constituting theF2-segmentation ofDwalk.

It is this feature-dependent segmentation that accounts for the pos-
tulated temporal invariance, the main idea being that motion capture
data streams can now be compared at the segment level rather than
at the frame level. To be more precise, let us start with the sequence
of F-segments of a motion capture data streamD. Since each seg-
ment corresponds to a unique feature vector, the segments induce
a sequence of feature vectors, which we simply refer to as theF-
feature sequenceof D and denote byF [D]. If K is the number of
F-segments ofD and ifD(tk) for tk ∈ [1 : T], 1≤ k≤ K, is a pose of
thek-th segment, thenF [D] = (F(D(t1)),F(D(t2)), . . . ,F(D(tK))).
For example, for the data streamDwalk and the feature functionF2

from Fig. 3, we obtain

F2[Dwalk] =
(

(1
1),(

0
1),(

1
1),(

1
0),(

1
1),(

0
1),(

1
1),(

1
0),(

1
1),(

0
1)
)

. (3)

Obviously, any two adjacent vectors of the sequenceF [D] are dis-
tinct. The crucial point is that time invariance is incorporated into
the F-segments: two motions that differ by some deformation of
the time axis will yield the sameF-feature sequences. This fact is
illustrated by Figs. 5 and 6. Another property is that the segmenta-
tion automatically adapts to the selected features, as a comparison
of Fig. 3 and Fig. 5 shows. In general, fine features, i.e., feature
functions with many components, induce segmentations withmany
short segments, whereas coarse features lead to a smaller number
of long segments.

The main idea is that two motion capture data streamsD1 and
D2 can now be compared via theirF-feature sequencesF [D1] and
F [D2] instead of comparing the data streams on a frame-to-frame
basis. This has several consequences: first, since spatial and tem-
poral invariance are incorporated in the features and segments, one
can use efficient methods from (fault-tolerant) text retrieval to com-
pare the data streams instead of applying cost-intensive techniques
such as DTW at the frame level. Second, the numberK of segments



Figure 3: F2-segmentation ofDwalk, where F2-equivalent poses are indicated
by uniformly colored trajectory segments. The trajectories of the joints ‘head-
top’,‘rankle’,‘lankle’,‘rfingers’, and ‘lfingers’ are shown.

Figure 4: Right foot kick followed by a left hand punch. The segments are in-
duced by a 4-component feature function comprising the thresholded angles for ‘rknee’
(Fig. 1 (g)) and ‘lelbow’ as well as features describing the relations “right foot raised”
and “left hand in front” (Fig. 1 (b)).

is generally much smaller than the numberT of frames, which ac-
counts for very efficient computations. Finally, the user-specified
selection of motion aspects can be realized by considering certain
components ofF [D1] andF [D2] in the comparison, see Sect. 5.

5 Indexing and Retrieval

In the following, we think of a database as a collectionD =
(D1,D2, . . . ,DN) of motion capture data streams (documents)Dn,
n∈ [1 : N]. To simplify things, we may assume thatD consists of
one large documentD by concatenating the documentsD1, . . . ,DN,
keeping track of document boundaries in a supplemental datastruc-
ture. Furthermore, we fix a feature functionF comprising as com-
ponents all the features from which the user may select (consisting,
e.g., of the 31 features of Table 1). In Sect. 5.1, we present the
basic idea of an exact hit with respect toF , formalizing the notion
of similarity between motion clips. To account for the user’s fea-
ture selection as well as uncertainties in the query, we introduce
the concept of a fuzzy hit, softening the notion of an exact hit, see
Sect. 5.2. To afford an efficient retrieval, exact as well as fuzzy, we
once and for all perform a preprocessing step, in which we construct
a query-independent index structure forF based on inverted lists.
In Sect. 5.3, we explain how to control the number of index words
by accepting a small computational and storage overhead. The con-
cepts introduced in this section are well known in other domains, cf.
Clausen and Kurth [2004].

5.1 Hits and Index-Based Search

Intuitively, we want to consider two motion clips as similarif they
exhibit the same progression of geometric constellations or, in other
words, if they have the same feature sequence. Anexact F-hitis de-
fined to be a segment numberk∈N such thatF [Q] is a subsequence
of consecutive feature vectors in theF-sequenceF [D] starting from
thek-th segment. For short, we then writeF [Q] ⊏k F [D]. In other

Figure 5: Restricting F2 = (F r ,F l ) to its first component results in anF r -
segmentation, which is coarser than theF2-segmentation shown in Fig. 3.

Figure 6: The left part shows five steps of a slow walking motion performed by
an elderly person resulting in exactly the sameF r -feature sequence as the much faster
motion of Fig. 5. The right part shows a possible query motionresulting in theF2-
feature sequence of the example given in (8).

words, ifF [Q] = (v1,v2, . . . ,vL) with vℓ ∈ {0,1} f for 1≤ ℓ≤ L and
F [D] = (w1,w2, . . . ,wM) with wm ∈ {0,1} f for 1≤ m≤ M, then

F [Q] ⊏k F [D] ⇔ wk = v1,wk+1 = v2, . . . ,wk+L−1 = vL. (4)

Note that even though this concept of a hit is exact at the feature and
segment level, it still permits a lot of spatial and temporalvariation
at the frame level. The set of all exactF-hits in the databaseD is
given by

HD (F [Q]) := {k∈ [1 : M] | F [Q] ⊏k F [D]}. (5)

The important point is that the setHD (F [Q]) can be evaluated very
efficiently usinginverted lists. To this end, we store a list

L(v) := HD ((v)) = {k ∈ [1 : M] | (v) ⊏k F[D]} (6)

for each feature vectorv∈ {0,1} f . An elementk∈ L(v) tells us that
thek-th feature vector ofF [D] equalsv. Let F [Q] = (v1,v2, . . . ,vL)
as before; then it is easily verified that

HD (F [Q]) =
⋂

ℓ∈[1:L]

(L(vℓ)− ℓ+1), (7)

where we setL(v)− ℓ+1 := {k− ℓ+1 | k∈ L(v)}. In other words,
HD (F [Q]) can be obtained by intersecting suitably shifted inverted
lists corresponding to the feature vectors ofF [Q]. This suggests
to build an index in the following manner: compute and store for
each feature vectorv∈ {0,1} f the inverted listL(v), which can be
done in a preprocessing step, independently of any query. Keep
the entriesk within each listL(v) sorted according to the canonical
ordering ofZ. Then the computation of unions and intersections
of the inverted lists can be processed efficiently using merge opera-
tions or binary search. The resulting index consisting of all inverted
listsL(v) will be denoted byIDF .

As an example, considerD = Dwalk and F = F2 from Fig. 3.
Then L((1

1)) = {1,3,5,7,9}, L((0
1)) = {2,6,10}, L((1

0)) = {4,8},



andL((0
0)) = /0. Now, assume that for a queryQ one obtains the

F-feature sequenceF [Q] = ((1
0),(

1
1),(

0
1)), then

HD (F [Q]) = L((1
0))∩

(

L((1
1))−1

)

∩
(

L((0
1))−2

)

= {4,8}∩{0,2,4,6,8}∩{0,4,8} (8)

= {4,8}.

In other words, there are twoF-hits for Q starting with the fourth
and eighth segment ofF [D], respectively.

5.2 Fuzzy Search with Adaptive Segmentation

The feature functionF is chosen to cover a broad spectrum of as-
pects appearing in all types of motions. Therefore, considering a
specific motion class, many of the features are irrelevant for re-
trieval and should be masked out to avoid a large number of false
negatives due to over-specification. For example, considering lo-
comotion, the user may not be interested in any movement of the
arms. Furthermore, the user may be unsure about certain parts of
the query and may want to leave them unspecified. To handle such
situations, we introduce the concept offuzzy search. Instead of con-
sidering a feature sequenceF [Q] = (v1,v2, . . . ,vL) of a queryQ, we
now allow for eachvℓ a finite setVℓ ⊆ {0,1} f with vℓ ∈Vℓ, which
can be thought of as a set ofalternativesto vℓ. Then afuzzy query
is defined to be a sequenceF [Q]fuz := (V1,V2, . . . ,VL) of fuzzy sets
such thatVℓ ∩Vℓ+1 = /0 for 1≤ ℓ < L. (In case the latter intersec-
tion condition—introduced for technical reasons—is not fulfilled,
we iteratively conjoin adjacent sets with nonempty intersection un-
til we end up with a sequence having the desired property. Note
that this procedure corresponds to coarsening the segmentation of
the query.) Extending the definition of (4), afuzzy hitis an element
k∈ [1 : M] such thatF [Q]fuz ⊏k F [D], where we set

F [Q]fuz ⊏k F [D] :⇔ wk ∈V1,wk+1 ∈V2, . . . ,wk+L−1 ∈VL (9)

with F [D] = (w1,w2, . . . ,wM) as above. Obviously, the caseVℓ =
{vℓ} for 1≤ ℓ≤ L reduces to the case of an exact hit, cf. (4). Similar
to (5), the set of all fuzzy hits is defined to be

HD (F [Q]fuz) := {k ∈ [1 : M] | F [Q]fuz ⊏k F [D]}. (10)

In analogy to (7), the setHD (F [Q]fuz) can be computed via

HD (F [Q]fuz) :=
⋂

ℓ∈[1:L]

(L(Vℓ)− ℓ+1) with L(Vℓ) :=
⋃

v∈Vℓ

L(v).

(11)
Obviously, the admission of alternatives can be realized very ef-
ficiently in terms of unions of inverted lists, thus avoidingthe
∏L

ℓ=1 |Vℓ| individual queries for all combinations of fuzzy features
that (9) might suggest to be necessary.

The fuzzy concept introduced above is not yet exactly what we
want: so far, the fuzziness only refers to the spatial domain(al-
lowing alternative choices for the pose-based features) but ignores
the temporal domain. More precisely, the segmentation ofD is
only determined by the feature function, disregarding the fuzzi-
ness of the fuzzy queryF [Q]fuz. To adjust the temporal segmen-
tation to the fuzziness of the query, we proceed as follows: let
F [D] = (w1,w2, . . . ,wM) be theF-feature sequence ofD. Suppos-
ing wk ∈ V1 with wk−1 /∈ V1 for some indexk1 := k ∈ [1 : M], we
determine the maximal indexk2 ≥ k1 with wm ∈ V1 for all m =
k1,k1 +1, . . . ,k2−1 and concatenate all segments corresponding to
thesewm into one large segment. By construction,wk2 /∈V1. Only
if wk2 ∈V2, we proceed in the same way, determining some maxi-
mal indexk3 > k2 with wm ∈ V2 for all m= k2,k2 + 1, . . . ,k3−1,
and so on. In case we find a sequence of indicesk1 < k2 < .. . < kL

constructed iteratively in this fashion, we say thatk ∈ [1 : M] is an
adaptive fuzzy hit.

In other words, when comparing the fuzzy queryF [Q]fuz with a
documentD, theF-segmentation ofD is coarsened to obtain maxi-
mal runs of frames with respect to a setVℓ of feature vectors rather
than to a single feature vectorvℓ. The above procedure not only
checks for the existence of such adaptive fuzzy hits but alsocon-
structs the respective adaptive segmentation corresponding to the
fuzzy query. Again, one can efficiently compute the set of alladap-
tive fuzzy hits, denoted byHD (F [Q]ad

fuz), based on the inverted lists
of our index. The details are of rather technical nature and will be
published elsewhere.

We illustrate the above procedure by continuing our exampleD =
Dwalk and F = F2 from Fig. 3. Let’s start with a fuzzy query
F [Q]fuz = (V1,V2,V3) with V1 = V3 = {(0

0),(
0
1)} andV2 = {(1

0),(
1
1)}.

Looking at the feature sequenceF [D] shown in (3), one easily de-
rives thatHD (F [Q]ad

fuz) = {2,6}, i.e., there are exactly two adap-
tive fuzzy hits in D (opposed toHD (F [Q]fuz) = /0). We have
k1 = 2, k2 = 3, k4 = 6 for the first hit andk1 = 6, k2 = 7, k3 = 10 for
the second hit. In the case of the first hit, for example, this means
thatV1 corresponds to segment 2 ofF [D], V2 to segments 3–5, and
V3 to segment 6, amounting to a coarsened segmentation ofD.

The fuzzy query in the previous example was chosen in such a way
that the adaptive fuzzy hits with respect toF2 = (F r ,F l ) correspond
to the exact hits with respect to the feature functionF r , which is
the first component ofF2. More generally, it is easily verified that
restricting the feature functionF : P → {0,1} f to some of itsf
components can be simulated by a special choice of fuzzy setsin
adaptive fuzzy searching.

Fuzzy search can be complemented by the concept ofm-mismatch
search, introducing another degree of inexactness. Anm-mismatch
hit permits up tom< |F [Q]| feature segments withinF [Q] to dis-
agree with the database, i.e., it permits up tom of the demanded
equalities in (4) to be unsatisfied. To prevent arbitrary matches,
it is possible to restrict the positions withinF [Q] where such mis-
matches may occur.m-mismatch hits allow for spatial variations
via deviating feature values, whereas the temporal structure of
the query must be matched exactly. Efficient dynamic program-
ming algorithms form-mismatch queries exist, see Clausen and
Kurth [2004] for further details.

5.3 Indexing

Recall that the indexIDF as introduced in Sect. 5.1 consists of 2f

inverted listsL(v), each of which corresponds to the feature vec-
tor v ∈ {0,1} f . The lists contain segment positions of theF-
segmentation (rather than frame positions), and each segment posi-
tion appears in exactly one list. As a consequence, the indexsize
is roughly proportional to the number of segments of all documents
in the databaseD (in practice, we also store the segment lengths
so the frame positions can be recovered). In view of efficiency, we
have to deal with the problem that the number 2f of inverted lists
is far too large in practice. For example, for our case off = 31
we obtain 231 lists. Typically, the segment positions distribute over
a large number of different lists, which makes the retrievalpro-
cess computationally expensive due to the large number of required
merging and intersecting operations. To cope with this problem,
we proceed as follows: we divide the set of our 31 boolean fea-
tures into the three setsFℓ (11 features),Fu (12 features), andFm
(8 features) as indicated by Table 1. Identifying the sets with the
corresponding feature function, we then construct separate indexes
IDℓ , IDu , andIDm . Then, retrieval amounts to querying the individual



Index f 2f #(lists) #(frames) #(segs)MB bytes
seg tr t f ti ∑ t

I60
ℓ 11 2048 409 425,294 21,1080.72 35.8 26 10 6 42

I180
ℓ 11 2048 550 1,288,846 41,5871.41 35.5 71 26 13 110

I60
u 12 4096 642 425,294 53,0361.71 33.8 26 13 10 49

I180
u 12 4096 877 1,288,846 135,7424.33 33.4 71 33 25 129

I60
m 8 256 55 425,294 19,0670.60 33.0 26 20 3 49

I180
m 8 256 75 1,288,846 55,5261.80 34.0 71 54 12 137

Table 2:Feature computation and index construction. Running timesare in seconds.

1–9 hits 10–99 hits ≥ 100 hits
Type, #(segs)

µh σh µt (ms) µh σh µt (ms) µh σh µt (ms)
exact,|Q| = 5 3.0 2.4 16 44 28 20 649 567 144
exact,|Q| = 10 1.7 1.6 17 34 22 26 239 147 71
exact,|Q| = 20 1.1 0.6 19 32 26 36 130 5 52
fuzzy, |Q| = 5 3.6 2.5 23 44 27 29 1,878 1,101 291
fuzzy, |Q| = 10 2.4 2.1 28 40 26 35 1,814 1,149 281
fuzzy, |Q| = 20 2.0 1.9 42 36 24 35 1,908 1,152 294

Table 3: Statistics on 10,000 random queries inI180
u using different query modes

and query sizes, grouped by the number of hits,h. µh andσh are the average/standard
deviation ofh for the respective group,µt is the average query time in milliseconds.

indexes and post-processing the resulting hits by additional merg-
ing and/or intersecting operations. However, the number ofsuch
additional operations is by far outweighed by the savings resulting
from the significantly reduced overall number (211+212+28) of in-
verted lists. Furthermore, list lengths are in practice well-balanced
and medium-sized, allowing for fast merging and intersecting oper-
ations. A minor drawback is that the indexesIDℓ , IDu , andIDm require
an amount of memory linear in the overall number ofFℓ-, Fu-, and
Fm-segments inD , respectively. This effect, however, is attenuated
by the fact that segment lengths with respect toFℓ-, Fu-, andFm are
generally larger compared toF-segment lengths, resulting in fewer
segments.

6 Experiments and Results

6.1 Indexing

We implemented our indexing and retrieval algorithms in Matlab
and tested them on a databaseD180 containing more than one mil-
lion frames of motion capture data (180 minutes sampled at 120
Hz). The experiments were run on a 3.6 GHz Pentium 4 with
1 GB of main memory. The resulting indexes are denoted byI180

ℓ ,
I180
u , and I180

m . In its columns, Table 2 shows the numberf of
feature components, the number 2f of inverted lists, the number
of nonempty inverted lists, the overall number of frames in the
database, the overall number of segments of the corresponding seg-
mentation, the index size in MB, the number of bytes per segment,
and four running timestr , t f , ti , and∑ t, measured in seconds.tr is
the portion of running time spent on data read-in,t f is the feature
extraction time,ti is the inverted list build-up time, and∑ t is the
total running time. To demonstrate the scalability of our result, we
quote analogous numbers for the indexesI60

ℓ , I60
u andI60

m built from
a subsetD60 of D180 corresponding to 60 minutes of motion cap-
ture data. The total size ofD180 represented in the text-based AMC
motion capture file format was 600 MB, a more compact binary
double precision representation required about 370 MB. Typical in-
dex sizes ranged between 0.7 and 4.3 MB, documenting the drastic
amount of data reduction our scheme achieves.

Figure 7:Selected frames from 16 query-by-example hits for a left hand punch. The
query clip is highlighted. Query features:F1

u , F2
u , F7

u , F8
u ; see Table 1.

Figure 8:Selected frames from 9 query-by-example hits for a squatting motion. The
query clip is highlighted. Query features:F5

ℓ , F6
ℓ , F7

ℓ , F10
ℓ , F11

ℓ ; see Table 1.

Table 2 shows that the number of segments (with respect toFℓ, Fu,
andFm) was only about 3 to 12 percent of the number of frames
contained in the database. Observe that index sizes are proportional
to the number of segments: the average number of bytes per seg-
ment is constant for all indexes. The total indexing time islinear in
the number of frames. This fact is very well reflected in the table:
for example, it took 42 seconds to buildI60

ℓ , which is roughly one
third of the 110 seconds that were needed to buildI180

ℓ . Note that
more than half of the total indexing time was spent on readingin the
data, e.g., 71 seconds for the 180-minute index. The scalability of
our algorithms’ running time and memory requirements permits us
to use much larger databases than those treated by Kovar and Gle-
icher [2004], where the preprocessing step to build a match web is
quadratic in the number of frames (leading, e.g., to a running time
of roughly 3,000 seconds for a database containing only 37,000
frames).

6.2 Retrieval

The running time to process a query very much depends on the
size of the database, the query length (the number of segments),
the user-specified fuzziness of the query, as well as the number of
resulting hits. In an experiment, we posed 10,000 random queries
(guaranteed to yield at least one hit) for each of six query scenar-
ios to the indexI180

u , see Table 3. For example, finding all exact
Fu-hits for a query consisting of 5/10/20 segments takes on aver-
age 16–144/17–71/19–52 milliseconds, depending on the number
of hits. Finding all adaptive fuzzyFu-hits for a query consisting of
5/10/20 segments, where each fuzzy set of alternatives has a size
of 64 elements, takes on average 23–291/28–281/42–294 ms.

Fig. 7 depicts all resulting 16 hits from a query for a punch (retrieval
time: 12.5 ms), where only the four featuresF1

u /F2
u (right/left hand

in front) andF7
u /F8

u (right/left elbow bent) have been selected, see
Table 1. These four features induce an adaptive segmentation of the
query consisting of six segments, which suffice to grasp the gist of
the punching motion. Further reducing the number of features by



Figure 9:Selected frames from 19 query-by-example hits for a right foot kick. The
query clip is highlighted. Query features:F3

ℓ , F4
ℓ , F7

ℓ , F8
ℓ ; see Table 1.

selecting onlyF2
u andF8

u induces a 4-segment query sequence and
results in 264 hits, comprising various kinds of punch-likemotions
involving both arms. Finally, increasing the number of selected
features by addingF3

u /F4
u induces an 8-segment query sequence

resulting in a single hit.

Fig. 8 shows 9 hits out of the resulting 33 hits for a “squatting” mo-
tion (retrieval time: 18 ms) using the five featuresF5

ℓ , F6
ℓ , F7

ℓ , F10
ℓ ,

andF11
ℓ . The induced 5-segment query sequence is characteristic

enough to retrieve 7 of the 11 “real” squatting motions contained
in the database. Using a simple ranking strategy (e.g., a temporal
heuristic comparing the sum of frame length differences between
query and hit segments), these 7 hits appear as the top hits. The
remaining 26 retrieved hits are false positives, two of which are
shown to the right of Fig. 8 as the skeletons “sitting down” ona
virtual table edge. One reason for this kind of false positives is
that the relevant feature used in the query for the squattingmotion
thresholds the knee angle against a relatively high decision value
of 120◦. Hence, the knees of the sitting skeletons are just barely
classified as “bent,” leading to the confusion with a squatting mo-
tion. Omitting the velocity featuresF5

ℓ andF6
ℓ again results in an

induced 5-segment query, this time, however, yielding 63 hits (con-
taining the previous 33 hits with the same top 7 hits). Among the
additional hits, one now also finds jumping and sneaking motions.

Finally, Fig. 9 shows all 19 query results for a “kicking” motion (re-
trieval time: 5 ms) usingF3

ℓ , F4
ℓ , F7

ℓ , andF8
ℓ . Out of these, 13 hits

are actual martial arts kicks. The remaining six motions arebal-
let moves containing a kicking component. A manual inspection
of D180 showed that there are no more than the 13 reported kicks
in the database, demonstrating the high recall percentage our tech-
nique can achieve. Again, reducing the number of selected features
leads to an increased number of hits. In general, a typical source
of false positive hits is the choice of fuzzy alternatives ina query.
For example, the ballet jumps in Fig. 9 were found as matches for
a kicking motion because only the right leg was constrained by the
query, leaving the left leg free to be stretched behind the body.

In conclusion, our technique can efficiently retrieve high-quality
hits with good precision/recall percentages provided thatthe user
adequately selects a small number of features reflecting theimpor-
tant aspects of the query motion. This, in general, requiressome
experience as well as parameter tuning. However, most features
have strong semantics, which makes feature selection a veryin-
tuitive process, see Sect. 6.3. To automate feature selection, we
propose a hierarchical approach: starting with a family of prede-
fined feature sets, systematically reduce the number of features in
these sets and pose a query with respect to each resulting feature
combination. This process is repeated until a sufficient number of
hits has been retrieved. Since this approach will generallyproduce
a large percentage of false positives—often exceeding 80%—one

’rfoot’ lowered raised lowered *

’rknee’ straight bent straight bent straight *

’lhand’ * back front back

’lelbow’ * bent straight bent

Figure 10:Scene description for the movement “right foot kick followed by a left
hand punch” as shown in Fig. 4. The symbol * indicates that a constellation is unspec-
ified. Arrows indicate which constellations are to occur simultaneously.
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Figure 11:The segment-wise time alignment of the two walking motions shown in
Fig. 5 (corresponding to the vertical axis) and Fig 6 (corresponding to the horizontal
axis) can be refined via DTW-based methods restricted to the gray area.

needs suitable ranking strategies. Here, one could refine the re-
trieval results by applying more involved DTW-based techniques,
see Sect. 7.

6.3 Towards Scene Descriptions

Often, the user will only have a sketchy idea of which kind of
movement to look for in the motion capture database, for exam-
ple a “right foot kick followed by a left hand punch.” That is,the
query may not be given as an example motion but only be spec-
ified by a vague textual description. In processing such queries,
one so far has to revert to annotations such as manually generated
descriptive labels attached to the motion data. Our indexing strat-
egy, on the other hand, is purely content-based and thus facilitates
fully automated preprocessing. Furthermore, it provides an effi-
cient way of focusing on different aspects of the motion and se-
lecting the desired search granularityafter the preprocessing stage
(and notbeforeas for manual annotations). First experiments to
implement sketchy queries such as the one above with our retrieval
technique are based on the following observation: vaguely speci-
fied motions such as kicking, punching, or clapping can oftenbe
specified by a very small set of basic geometric constellations. For
example, as depicted in Fig. 10, a kick of the right foot can bequite
well characterized by the concurrent progression of the constel-
lations “rknee straight/bent/straight/bent/straight” and “rfoot low-
ered/raised/lowered.” In addition, the intermediary constellations
“rknee bent” and “rfoot raised” should overlap at some pointin
time. Similarly, Fig. 10 shows ageometric scene descriptionfor
the motion “right foot kick followed by a left hand punch,” where
overlapping constellations are indicated by an arrow and unspeci-
fied constellations, realizable by our fuzzy concept, are indicated by
the symbol *. Now, such kinds of geometric scene descriptions can
be efficiently processed by first querying for each progression sep-
arately and then suitably intersecting the retrieved hits to account
for cooccurrence conditions. In our future work, we plan to em-
ploy statistical methods to learn such geometric scene descriptions
from example motions to fully automate queries at higher semantic
levels, see also Sect. 8.



7 Time Alignment

Recall that two motion clips are considered as similar if they pos-
sess (more or less) the same progression of geometric features.
Matching two such progressions obtained from similar motions can
be regarded as a time alignment of the underlying motion data
streams. Even though such alignments may be too coarse in view of
applications such as morphing or blending, they are quite accurate
with respect to the overall course of motion. For the time alignment
of motion data streams we therefore suggest the following two-
stage procedure: first compute (in linear time) a coarse segment-
wise alignment based on our index. Then refine this alignment
resorting to classical DTW techniques, as, e.g., describedby Ko-
var and Gleicher [2004]. The important point is that once a coarse
alignment is known, the DTW step can be done very efficiently
since the underlying cost matrix need only be computed within an
area corresponding to the frames of the matched segments. This is
also illustrated by Fig. 11, where the two walking motions ofFig. 5
and Fig 6 are aligned. In order to avoid alignment artifacts enforced
by segment boundaries, the restricted area is slightly enlarged as
indicated by the gray area. For more details on acceleratingDTW
computations we refer to, e.g., Keogh [2002].

8 Conclusions and Future Work

This paper has presented automated methods for efficient indexing
and content-based retrieval of motion capture data. One main con-
tribution of this work is the introduction of qualitative, geometric
features—opposed to quantitative, numerical features used in pre-
vious approaches. A second contribution is the concept of adaptive
temporal segmentation, by which segment lengths are not only ad-
justed to the granularity of the feature function but also tothe fuzzi-
ness of the query. It is the combination of geometric features and in-
duced segmentations that accounts for spatio-temporal invariance,
which is crucial for the identification of logically relatedmotions.
Thirdly, we have adapted the notion of fault-tolerant retrieval based
on fuzzy hits and mismatches that can be efficiently computedby
means of inverted lists. One decisive advantage of our indexstruc-
ture is that the time as well as the space to construct and store the
index is linear in the size of the database. This solves the problem
of scalability emerging in DTW-based approaches. We have also
sketched how our methods can be applied in a preprocessing step
to accelerate DTW-based time alignment of motion capture data
streams.

Future Work: One major drawback in our query scenario is that
for each query the user has to select suitable features in order to
obtain high-quality retrieval results. This is not feasible in case
one wants to batch process many different motion clips, as neces-
sary in morphing and blending applications. However, as Sect. 7
showed, our technique should not be seen as a mere alternative but
rather as a complement to previous DTW-based techniques. Using
simple geometric relations avoiding false dismissals often helps to
cut down the search space significantly without loss of quality so
that more involved cost-intensive methods may be applied for post-
processing the restricted data set. Furthermore, as first experiments
showed, geometric features also seem to be a promising tool in han-
dling low-level descriptive queries automatically. Here,the idea is
that movements can often be characterized by a typical progression
of geometric constellations corresponding to key poses. Weplan
to employ statistical methods to learn such progressions aswell as
to automatically identify expressive geometric features from typi-
cal example motions. Conversely, such progressions can then aid

in automatically annotating newly generated motion capture data.
In view of such applications, one first has to build a high-quality
manually annotated database comprising various kinds of example
motions. It would be extremely valuable to the research commu-
nity if publicly available motion databases such as CMU [2003]
were extended in that way, making experimental results compa-
rable. For example, lacking such a common database, it was not
possible for us to objectively compare and combine our retrieval
results with those of related techniques such as that of Kovar and
Gleicher [2004].
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