
EFFICIENT INDEXING AND RETRIEVAL OF MOTION CAPTURE DATA
BASED ON ADAPTIVE SEGMENTATION

Meinard Müller, Tido R̈oder, and Michael Clausen

University of Bonn
Department of Computer Science

{meinard,roedert,clausen}@cs.uni-bonn.de

ABSTRACT

In this paper we propose a unified approach to efficient in-
dexing and content-based retrieval of human motion capture
data as used in data-driven computer animation or computer
vision. Opposed to other data formats such as music or
video, the kinematic chain (a kind of human skeleton) as
underlying model of motion capture data allows to intro-
duce qualitative boolean features describing geometric rela-
tions of specified points of the body. In combination with
such geometric features, we introduce the concept of adap-
tive temporal segmentation of motion data streams, which
accounts for the spatio-temporal invariance needed to iden-
tify logically related motions. This allows us to adopt ef-
ficient indexing and fault-tolerant retrieval methods suchas
fuzzy search. Here, the crucial point is that our adaptive seg-
mentation not only adjusts to the granularity of the feature
function but also to the fuzziness of the query. We present
experimental results on a test data set of more than one mil-
lion frames corresponding to180 minutes of motion capture
data. The linearity of our indexing algorithms guarantees
the scalability of our results to much larger data sets.

1. INTRODUCTION

In the past two decades, motion capturing has become an
important tool for synthesizing realistic motion sequences
for computer-animated movies or video games. The gener-
ation of motion capture data still constitutes a time-consu-
ming and expensive process due to the high cost of record-
ing equipment and the required manual post-processing.
Therefore, numerous suggestions have been made how to
reuse motion capture data by modifying and adapting exist-
ing motion clips via editing and morphing techniques, see,
e.g., [1, 5, 7, 9]. Such techniques depend on motion capture
databases covering a broad spectrum of motions in various
characteristics. Only recently, larger collections of motion
material such as [4] have become publicly available.

In order to fully exploit motion databases, one needs
efficient algorithms for content-based and fault-tolerant

Fig. 1. Upper: seven poses from a side kick sequence.
Lower: corresponding poses for a front kick.

search allowing to automatically identify and extract user-
specified motions. Here, the motion clips to be retrieved
may be specified in various ways at different semantic lev-
els. One possible specification could be a rough textual
description such as “a kick of the right foot followed by
a punch”. Another query mode would involve a short
query motion clip, the task being to automatically locate all
database motions that are in some sense similar to the query.
This kind of problem, commonly referred to ascontent-
based retrieval, is at the heart of this paper.

The crucial point in content-based motion retrieval is the
notion of “similarity” used to compare different motions.
Intuitively, two motions may be regarded as similar if they
represent variations of the same action or sequence of ac-
tions, see [7]. Here the variations may concern the spatial as
well as the temporal domain. For example, the kicks shown
in Fig. 1 describe the same kind of motion even though they
differ considerably with respect to direction and height of
the kick. In other words,logically similarmotions need not
benumerically similar, as is also pointed out in [7].

To handle queries in form of an example motion clip,
we suggest new types ofqualitative, geometric featuresop-
posed toquantitative, numerical featuresused in previous
approaches, see Sect. 1.1. These features, as illustrated by
Fig. 3, exploit the existence of a skeletal model underlying
the motion capture data format, which allows each frame of
the motion data stream to be interpreted as a skeletal pose.
We show how pose-based geometric features, accounting
for spatial invariance, induce anadaptive temporal segmen-

tation of the motion data streams, accounting for temporal
invariance. Based on these two concepts, the motion cap-
ture data streams are transformed into coarsesequences of
geometric configurations, see Sect. 2; two motion clips are
considered as similar if they coincide (more or less) at this
sequence level.

The trick is that by incorporating robustness against
spatio-temporal variations (as typical for logically related
motions) into the geometric features and adaptive segments,
we are able to employ standard information retrieval tech-
niques using an index of inverted lists [12]. Here, the fea-
ture vectors serve as index words, and indexing is carried
out at the segment level rather than at the frame level. In
particular, the time and space required to build and store our
index structure islinear, opposed to thequadraticcomplex-
ity of strategies based on dynamic time warping (DTW), cf.
Sect. 1.1.

To account for uncertainties in the query, we adopt the
concept offuzzy search, see [3]. Here, our contribution is
to extend the concept of adaptive temporal segmentation,
adjusting segment lengths within a match not only to the
granularity of the feature function but also to the fuzziness
of the query. The crucial point is that the resultingadaptive
fuzzy hitscan be computed very efficiently using the same
index structure as for the case of exact hits.

The remainder of this paper is organized as follows. We
close this section with a discussion of related work and
some basic facts about motion capture data, while fixing
the notation for the subsequent sections. In Sect. 2 we
give an overview of the two concepts of geometric features
and adaptive temporal segmentation, details having been de-
scribed in the work [8]. Sect. 3 constitutes the core of this
paper. Based on the query-by-example paradigm, we show
how logically related motions can be efficiently retrieved
from a motion database using a linear-space index structure.
We then introduce the concept of fuzzy queries and adaptive
fuzzy hits and give a detailed account on how to retrieve
such hits. We present experimental results in Sect. 4 and
conclude with possible directions for future work in Sect. 5.

1.1. Related work

Only recently, motion capture data has become publicly
available on a larger scale as provided by [4], reinforcing the
demand for efficient indexing and retrieval methods. Such
methods are necessary to efficiently retrieve logically re-
lated motions, which can then be processed via editing and
morphing techniques, see, e.g., [1, 5, 7, 9] and the refer-
ences therein. So far, only little work has been published on
motion capture indexing and retrieval based on the query-
by-example paradigm. We give a short overview of the rel-
evant literature. To identify motions similar to a given query
motion, the authors of [13] proceed in two stages: they first
identify start and end frames of possible candidate clips uti-

lizing a pose-based index and then compute the actual dis-
tance from the query via DTW. In [7], numerically simi-
lar motions are identified by means of a DTW-based index
structure termedmatch web. A multi-step search spawning
new queries from previously retrieved motions allows for
the identification of logically similar motions using numer-
ically similar motions as intermediaries. However, major
drawbacks to DTW are its quadratic running time and stor-
age requirements, making DTW infeasible for large data
sets. To speed up similarity search, the authors of [6] use
an index structure based on bounding envelopes allowing to
identify similar motion fragments that differ by some uni-
form scaling factor with respect to the time axis. In com-
paring individual frames of the data streams, all of these
approaches rely onnumericalcost measures.

The idea of consideringgeometric(combinatorial, re-
lational, qualitative) features instead of numerical (metri-
cal, quantitative) features is not new and has already been
applied in other domains such as visual object recognition
in 2D and 3D or action recognition and tracking, see, e.g.,
[2, 10] and references therein. The following observations
are of fundamental importance, see [2]: firstly, relational
structures are not only interesting for general recognition
problems (due to their invariance properties) but also ide-
ally suited for indexing (due to their discrete nature). Sec-
ondly, relational similarity of shapes correlates quite well
with perceptual (logical)similarity. These principles moti-
vate the usage of sequences of geometric configurations in
order to identify logically similar movements.

1.2. Motion capture data

The most common recording technology for motion capture
data uses an array of digital cameras to three-dimensionally
track reflective markers attached to a live actor’s body, see,
e.g. [11]. The tracking data can then be post-processed to
obtain a multi-stream of 3D trajectories corresponding to
the joints of a fixed skeletalkinematic chainas indicated by
Fig. 2. A full set of 3D coordinates describing the joint po-
sitions of a kinematic chain for a fixed point in time is also
referred to as apose. In this paper, a motion capture data
stream is thought of as a sequence of poses, typically sam-
pled at30–600 Hz. Mathematically, a pose can be regarded
as a matrixP ∈ R

3×J , each column ofP corresponding to
the 3D coordinates of a joint. Here,J denotes the number
of joints, e.g.,J = 24 in the skeleton shown in Fig. 2. Then,
a motion capture data streamD can be viewed as a function
D : [1 : T] → P ⊂ R

3×J , whereT denotes the number
of poses,[1 : T] := {1, 2, . . . , T} corresponds to the time
axis (for a fixed sampling rate), andP denotes the set of
poses. The 3D curve described by a single joint is termed
trajectory, so motion capture data can also be viewed as a
multi-stream of time-synchronized trajectories, see Fig.5.
In a sense, motion capture data has a much richer seman-

headtop
head
neck

lclavicle rclavicle
lshoulder rshoulder

lelbow relbow

lwrist rwrist

lfingers rfingers

chest
belly

root
lhip rhip

lknee rknee

lankle
rankle

ltoes rtoes

Fig. 2. Skeletal kinematic chain model consisting of rigid
body segmentsflexibly connected byjoints, which are high-
lighted by circular markers and labeled with joint names.

tic content than, for example, pure video data of a motion,
since the position and the meaning of all joints is known for
every pose. In recent approaches such as [6, 7] poses are
compared based on a numerical distance measure defined in
a joint-wise manner. Our approach differs fundamentally by
exploiting the geometric relations between the joints, which
capture salient characteristics of logically related motions.

2. GEOMETRIC FEATURES AND INDUCED
TEMPORAL SEGMENTATION

We now define various kinds ofgeometric featuresdescrib-
ing geometric relations between specified points of the kine-
matic chain for a fixed, isolated pose. To this end, we need
the notion of aboolean feature, which we describe math-
ematically as a boolean functionF : P → {0, 1}. Obvi-
ously, any boolean expression of boolean functions (evalu-
ated pose-wise) is a boolean function itself, the most promi-
nent examples being the conjunctionF1 ∧ F2 and the dis-
junctionF1 ∨ F2 of boolean functionsF1 andF2. Forming
a vector off boolean functions for somef ≥ 1, one obtains
a combined functionF : P → {0, 1}f . Subsequently,F
will be referred to as afeature functionand the vectorF (P)
as afeature vectoror simply afeatureof the poseP ∈ P.
Any feature function can be applied to a motion capture data
streamD : [1 : T] → P in a pose-wise fashion, which is
expressed by the compositionF ◦ D.

There are numerous classes of semantically meaningful
geometric features. We explain the essential ideas by means
of the examples shown in Fig. 3 and refer to [8] for a more
detailed account. As a first example, consider the oriented
plane determined by the left ankle, the left hip, and the root
joint (Fig. 3 (a)). When the right foot lies in front of that
plane, the geometric featureF r is defined to assume the
value one, otherwise zero. Obviously, the featureF r(P) is
1 for a poseP corresponding to a person standing upright. It

(a) (b) (c)

(d) (e) (f) (g)

Fig. 3. Various geometric features describing geometric re-
lations between the joints of a pose.

assumes the value0 when the right foot moves to the back or
the left foot to the front, which is typical walking or running
motions (Fig. 5). Interchanging corresponding left and right
joints in the definition ofF r and flipping the orientation of
the resulting plane, we obtain another feature function de-
noted byF l. Let us have a closer look at the feature function
F := F r ∧ F l, which is1 if and only if both, the right and
the left toes, are in front of the respective planes. It turnsout
thatF is very well suited to characterize any kind of walk-
ing or running motions. If a data streamD : [1 : T] → P
describes such a locomotion, thenF ◦ D exhibits exactly
two peaks for any locomotion cycle, from which the speed
of the motion can easily be deduced (see Fig. 4). Further-
more, the featureF is invariant under global orientation and
position, the size of the skeleton, and various local spatial
deviations such as sideways and vertical movements of the
legs. Of course,F also leaves the upper body unconsidered.

A similar feature is defined by the oriented plane fixed
at the left and right shoulders and the root, shifted one
humerus length to the front: checking whether the left hand
is in front of or behind this plane, one obtains a feature suit-
able to identify left punches, see Fig. 3 (b). Similarly, con-
sidering the plane that is normal to the spine and fixed at
the neck, one can check whether a hand is below or above
the neck (Fig. 3 (c)). Other types of geometric features
express whether specified points of the body are close to-
gether, yielding, for example, “touch” detectors for the two
hands, a hand and a leg, or a hand and the head (Fig. 3 (d)–
(f)). We also use geometric features to check if certain parts
of the body such as the arms or the legs are bent or stretched
(Fig. 3 (g)). Note that geometric features are invariant under
global transformations and local spatial deformations.

Induced temporal segmentation

Let F : P → {0, 1}f be a fixed feature function. Then an
F -segmentof a data streamD is defined to be a substream

F r ◦ D

F l ◦ D

0 20 40 60 80 100

(F r ∧ F l) ◦ D

Fig. 4. Boolean featuresF r, F l, andF r ∧F l applied to the
100-frame walking motionD = Dwalk of Fig. 5.

of D of maximal length consisting of consecutive frames
that exhibit the same feature value. For example, applying
the feature functionF 2 := (F r, F l) : P → {0, 1}2 to the
walking motionD = Dwalk results in a temporal segmenta-
tion of D into 11 segments, as shown in Fig. 5. Note that no
pose with feature vector(0, 0) appears in this example.

It is this feature-dependent segmentation that accounts
for the postulated temporal invariance, the main idea being
that motion capture data streams can now be compared at
the segment level rather than at the frame level. To be more
precise, let us start with the sequence ofF -segments of a
motion capture data streamD. Since each segment corre-
sponds to a unique feature vector, the segments induce a
sequence of feature vectors (orsequences of geometric con-
figurations, as denoted in the introduction), which we also
refer to asF -feature sequenceof D and denote byF [D].
If M is the number ofF -segments ofD and if D(tm) for
tm ∈ [1 : T], 1 ≤ m ≤ M , is any pose of them-th segment,
thenF [D] = (F (D(t0)), F (D(t2)), . . . , F (D(tM))). For
example, the data streamD = Dwalk and the feature func-
tion F 2 from Fig. 5 yields

F 2[D] =
(

(1

1),(
0

1),(
1

1),(
1

0),(
1

1),(
0

1),(
1

1),(
1

0),(
1

1),(
0

1),(
1

1)
)

. (1)

Obviously, any two adjacent vectors of the sequence
F [D] are distinct. The crucial point is that time invari-
ance is incorporated into theF -segments: two motions that
differ by some deformation of the time axis will yield the
sameF -feature sequences. In general, fine features, i.e.,
feature functions with many components, induce segmen-
tations with many short segments, whereas coarse features
lead to a smaller number of long segments.

The main idea is that two motion capture data streams
D1 andD2 can now be compared via theirF -feature se-
quencesF [D1] and F [D2] instead of comparing the data
streams on a frame-to-frame basis. This has several advan-
tages:

1. One can decide which aspects of the motions to focus on
by picking a suitable feature functionF .

2. Since spatial and temporal invariance are already in-
corporated in the features and segments, one can use
efficient methods from (fault-tolerant) string matching
to compare the data streams instead of applying cost-
intensive techniques such as DTW at the frame level.

(1
0
) (0

1
) (1

1
)

1 2 3 4 5 6 7 8 9 10 11

Fig. 5. F 2-segmentation ofD = Dwalk, where F 2-
equivalent poses are indicated by identically marked tra-
jectory segments. The trajectories of the joints ‘head-
top’,‘rankle’, and ‘rfingers’ are shown.

3. In general, the numberM of segments is much smaller
than the numberT of frames, which accounts for very
efficient computations.

In the next section, we will see how our concept leads to
an efficient method of indexing motion capture data in a
semantically meaningful way.

3. INDEXING AND FAULT-TOLERANT
RETRIEVAL

In this section, we use the following notations. The database
consists of a collectionD = (D1,D2, . . . ,DI) of motion
capture data streams or documentsDi, i ∈ [1 : I]. To sim-
plify things, we may assume thatD consists of one large
documentD by concatenating the documentsD1, . . . ,DI ,
keeping track of document boundaries in a supplemental
data structure. The queryQ consists of an example mo-
tion clip. We fix a feature functionF : P → {0, 1}f

and use the notationF [D] = ~w = (w0, w1, . . . , wM) and
F [Q] = ~v = (v0, v1, . . . , vN) to denote the resultingF -
feature sequences ofD andQ, respectively. The document
D = Dwalk with F = F 2, as shown in Fig. 5, will serve as
a running example.

3.1. Index

To index our databaseD with respect toF , we use stan-
dard techniques based on inverted lists, see, e.g., [12]. For
each feature vectorv ∈ {0, 1}f we store theinverted list
L(v) consisting of the indicesm ∈ [1 : M] of the sequence
~w = (w0, w1, . . . , wM) with v = wm. L(v) tells us which
of theF -segments ofD exhibit the feature vectorv. For our
exampleD = Dwalk andF = F 2 we obtain from (1) the in-
verted listsL((1

1)) = {1, 3, 5, 7, 9, 11}, L((0

1)) = {2, 6, 10},
L((1

0)) = {4, 8}, andL((0

0)) = ∅. Inverted lists are sets
represented as sorted, repetition-free sequences. Depending

on the context, our notation for inverted lists and derived
objects will switch between sequence and set notation.

In a preprocessing step, we construct an indexIDF con-
sisting of the2f inverted listsL(v), v ∈ {0, 1}f . Since we
store segment positions of theF -segmentation rather than
frame positions in the inverted lists, and since each segment
position appears in exactly one inverted list, the index size
is proportional to the numberM of segments ofD. Addi-
tionally, we store the segment lengths, so that the frame po-
sitions can be recovered. Furthermore, we keep the entriesk
within each listL(v) sorted. This accounts for fast compu-
tations of unions and intersections of the inverted lists using
merge operations or binary search, see also [3].

In Sect. 4.1 we will report on the running time behav-
ior and memory requirements of our actual implementation.
We then also discuss how to handle the case for feature func-
tions with a large number of components by splitting up an
index with a large number of lists into several indices con-
sisting of a smaller number of lists.

3.2. Hits

Recall that two motion clips are considered as similar (with
respect to the selected feature function) if they exhibit the
same feature sequence. Adapting concepts from [3], we in-
troduce the following notions. Let~w = (w0, w1, . . . , wM)
and~v = (v0, v1, . . . , vN) be the feature sequences of the
database and the query, respectively. Then anexact hitis an
elementk ∈ [0 : M] such that~v is a subsequence of con-
secutive feature vectors in~w starting from indexk. In other
words, writing in this case~v ⊏k ~w, one obtains

~v ⊏k ~w :⇔ ∀i ∈ [0 : N] : vi = wk+i. (2)

The set of all exact hits in the databaseD is then given by

HD(~v) := {k ∈ [0 : M] | ~v ⊏k ~w}. (3)

Obviously,HD(~v) can be evaluated very efficiently by in-
tersecting suitably shifted inverted lists:

HD(~v) =
⋂

n∈[0:N]

(L(vn) − n), (4)

where the addition and substraction of a list and a number
is understood component-wise for every element in the list.
Instead of additively adjusting the inverted lists (which are
in general long) one can also adjust the lists appearing as
intermediate results (which are in general much shorter).
From (4) it is easy to see that the following iterative algo-
rithm, which will be extended in Sect. 3.3, computes the set
of exact hits.

(1) L0 := L(v0) + 1
(2) Ln+1 := (Ln ∩ L(vn+1)) + 1 for n = 0, . . . , N − 1
(3) HD(~v) = LN − (N + 1)

As an illustration, we apply this algorithm to our run-
ning exampleD = Dwalk andF = F 2 and the query se-
quence~v = ((1

0),(
1

1),(
0

1)). Recall that in this caseL((1

1)) =
{1, 3, 5, 7, 9, 11}, L((0

1)) = {2, 6, 10}, andL((1

0)) = {4, 8}.

(1) L0 := L((1

0)) + 1 = {5, 9}
(2) L1 := ({5, 9} ∩ {1, 3, 5, 7, 9, 11}) + 1 = {6, 10}

L2 := ({6, 10} ∩ {2, 6, 10}) + 1 = {7, 11}
(3) HD(~v) = L2 − 3 = {4, 8}

In other words, there are two exact hits for~v starting
with the fourth and eighth element of~w, respectively.

3.3. Fuzzy hits

In many situations, the user may be unsure about certain
parts of the query and wants to leave certain parts of the
query unspecified. Or, the user might want to mask out
some of thef components of the feature functionF to ob-
tain a less restrictive search leading to more hits. To handle
such situations, we introduce the concept offuzzy search.

The idea is to allow at each position in the query se-
quence a whole set of possible, alternative feature vectors
instead of a single one. This is modeled as follows. A
fuzzy setis a subsetV ⊂ {0, 1}f with corresponding list
L(V) :=

⋃

v∈V L(v). Then afuzzy queryis defined to be

a sequence~V = (V0, V1, . . . , VN) of fuzzy sets such that
Vn ∩ Vn+1 = ∅ for 0 ≤ n < N . (In case the latter inter-
section condition is not fulfilled, we iteratively conjoin ad-
jacent sets with nonempty intersection until we end up with
a sequence having the desired property. Note that this pro-
cedure corresponds to coarsening the segmentation of the
query.) Extending the definition in (2), afuzzy hitis an ele-
mentk ∈ [0 : M] such that~V ⊏k ~w, where

~V ⊏k ~w :⇔ ∀i ∈ [0 : N] : Vi ∋ wk+i. (5)

Obviously, the caseVn = {vn} for 0 ≤ n ≤ N reduces to
the case of an exact hit. Similar to (3), the set of all fuzzy
hits is defined to be

HD(~V) := {k ∈ [0 : M] | ~V ⊏k ~w}. (6)

In analogy to (4), the setHD(~V) can be computed via

HD(~V) =
⋂

n∈[0:N]

(L(Vn) − n). (7)

This formula shows that the complexity of computing
HD(~V) is proportional to

∑N
n=0 |Vn| and not to

∏N
n=0 |Vn|,

as might be suspected in view of (5), see also [3].

3.4. Adaptive fuzzy hits

The concept of fuzzy search as introduced above is not yet
exactly what we want: so far, the fuzziness only refers to the

F2[D]

AFH 1

AFH 2

(

1

1

)

1
(

0

1

)

2
(

1

1

)

3
(

1

0

)

4
(

1

1

)

5
(

0

1

)

6
(

1

1

)

7
(

1

0

)

8
(

1

1

)

9
(

0

1

)

10
(

1

1

)

11

Fig. 6. Upper row: feature sequence~w = F 2[D]. Below:
two adaptive fuzzy hits (AFH).

spatial domain (allowing alternative choices for the pose-
based features) but ignores the temporal domain. More
precisely, the segmentation of the documentD is only de-
termined by the feature function, disregarding the fuzzi-
ness of the fuzzy query~V . For example, considering the
fuzzy query~V = (V0, V1, V2) with V0 = V2 = {(0

1)} and
V1 = {(1

0),(
1

1)}, one easily checks thatHD(~V) = ∅.
To adjust the temporal segmentation to the fuzzi-

ness of the query, we proceed as follows: let~w =
(w0, w1, . . . , wM) be the feature sequence ofD. Suppos-
ing wk ∈ V0 with wk−1 /∈ V0 for some indexk0 := k ∈
[0 : M], we determine the maximal indexk1 ≥ k0 with
wm ∈ V0 for all m = k0, k0 + 1, . . . , k1 − 1 and concate-
nate all segments corresponding to thesewm into one large
segment. By construction,wk1

/∈ V0. Only if wk1
∈ V1, we

proceed in the same way, determining some maximal index
k2 > k1 with wm ∈ V1 for all m = k1, k1 + 1, . . . , k2 − 1,
and so on. In case we find a sequence of indicesk0 < k1 <
. . . < kN constructed iteratively in this fashion we say that
k ∈ [0 : M] is anadaptive fuzzy hitand write~V ⊏

ad
k ~w.

The set of all adaptive fuzzy hits is given by

Had
D (~V) :=

{

k ∈ [0 : M] | ~V ⊏
ad
k ~w

}

. (8)

We continue our running exampleD = Dwalk andF = F 2

from Fig. 5. Let’s once more consider the fuzzy query
~V = (V0, V1, V2) with V0 = V2 = {(0

1)} and V1 =
{(1

0),(
1

1)}, thenL(V0) = L(V2) = (2, 6, 10) andL(V1) =
(1, 3, 4, 5, 7, 8, 9, 11). Looking at the feature sequence~w il-
lustrated by Fig. 6, one easily derives thatHad

D (~V) = {2, 6}.
That is, there are exactly two adaptive fuzzy hits inD, de-
noted by AFH 1 and AFH 2 in Fig. 6 (opposed toHD(~V) =
∅). We havek0 = 2, k1 = 3, k3 = 6 for the first hit and
k0 = 6, k1 = 7, k2 = 10 for the second hit. In the case of
the first hit, for example, this means thatV0 corresponds to
segment2 of ~w, V1 to segments3–5, andV2 to segment6,
amounting to a coarsened segmentation ofD.

Now, the important point is thatHad
D (~V) can also be

computed efficiently using the same indexIDF as in the
case of an exact hit. Before describing the algorithm, we
need to introduce some more notations. Note that the list
L(V) for a fuzzy setV may contain consecutive segment
indices (opposed to an inverted listL(v)). We consider
sequences of consecutive segment indices inL(V) hav-
ing maximal length. SupposeL(V) consists ofK + 1

such sequences with starting segmentsr0 < r1 < . . . <
rK and lengthst0, t1, . . . , tK ; then we defineR(V) :=
(r0, r1, . . . , rK) andT (V) := (t0, t1, . . . , tK). For exam-
ple, if L(V) = (2, 4, 5, 6, 9, 10) thenR(V) = (2, 4, 9) and
T (V) = (1, 3, 2). Obviously, one can reconstructL(V)
from R(V) andT (V). Note that by the maximality condi-
tion one hasrk + tk < rk+1 for 0 ≤ k < K. As usual,
let ~w = (w0, w1, . . . , wM) correspond to the database and
~v = (v0, v1, . . . , vN) to the query. Then, extending the al-
gorithm in Sect. 3.2, we can compute the setHad

D (~V) as
follows:

(1) R0 := R(V0) + T (V0), T 0 := T (V0)
(2) SupposeRn andTn are known,n ∈ [0 : N − 1].

AssumeRn = (p0, . . . , pI), Tn = (q0, . . . , qI),
R(Vn+1) = (r0, . . . , rJ), T (Vn+1) = (t0, . . . , tJ),
Rn ∩ R(Vn+1) = (pi0 , . . . , piK

) = (rj0 , . . . , rjK
)

for suitable indices0 ≤ i0 < . . . < iK ≤ I and
0 ≤ j0 < . . . < jK ≤ J . Then set
Rn+1 := (Rn ∩ R(Vn+1)) + (tj0 , . . . , tjK

)
Tn+1 := (qi0 , . . . , qiK

) + (tj0 , . . . , tjK
)

(3) Had
D (~V) = RN − TN

To illustrate the algorithm, we continue our running
example. From the listsL(V0) = L(V2) = (2, 6, 10)
and L(V1) = (1, 3, 4, 5, 7, 8, 9, 11), we obtainR(V0) =
R(V2) = (2, 6, 10), T (V0) = T (V2) = (1, 1, 1) and
R(V1) = (1, 3, 7, 11), T (V1) = (1, 3, 3, 1). Then

(1) R0 := (2, 6, 10) + (1, 1, 1) = (3, 7, 11)
T 0 = (1, 1, 1)

(2) R1 := ((3, 7, 11) ∩ (1, 3, 7, 11)) + (3, 3, 1)
= (6, 10, 12)

T 1 := (1, 1, 1) + (3, 3, 1) = (4, 4, 1)
R2 := ((6, 10, 12) ∩ (2, 6, 10)) + (1, 1) = (7, 11)
T 2 := (4, 4) + (1, 1) = (5, 5)

(3) Had
D (~v) = R2 − T 2 = (2, 6).

Finally, we want to note that fuzzy search can be com-
plemented by the concept ofm-mismatch search, see [3].
Here, one introduces another degree of inexactness by per-
mitting up tom < N of the fuzzy sets in a query~V =
(V0, V1, . . . , VN) to completely disagree with the database
sequence~w. To maintain a certain degree of control over
this mismatch mechanism, it is possible to restrict the mis-
matchable fuzzy sets within~V .

4. EXPERIMENTS AND RESULTS

We implemented our indexing and retrieval algorithms in
Matlab 6 and tested them on two databasesD180 andD60

containing roughly 1,300,000/430,000 frames of motion
capture data, respectively (180/60 minutes sampled at 120

Hz). The experiments were run on a3.6 GHz Pentium4
with 1 GB of main memory.

4.1. Indexing

Recall that our retrieval algorithms are based on merging
and intersecting operations of suitable inverted lists. Inview
of efficiency, it is important to have few lists (leading to few
merging and intersecting operations), but at the same time
it is important to have short lists (leading to fast merging
and intersecting operations), which are mutually exclusive
demands. In our experiments, it turned out that a choice of
f ∈ [8 : 12] results in a good tradeoff between these two
requirements. Since it is generally desirable to work with
larger numbers of features, we suitably divide the feature
set into several groups of8–12 features and build separate
indexes for each of these groups. Queries involving fea-
tures scattered across several indexes are then processed by
querying each respective index to yield intermediary results,
which are finally intersected to obtain the desired hits.

In our experiments, we considered31 boolean features
divided into three feature functionsFlower, Fupper, andFmix

consisting of11, 12, and8 components, respectively. The
feature functionsFlower andFupper comprised boolean fea-
tures expressing properties of the lower/upper part of the
body (mainly of the legs/arms, respectively) as described in
Sect. 2, whereasFmix consisted of boolean features express-
ing interactions of the upper and lower part as well as global
parameters such as velocities.

The total size ofD180 represented in a compact binary
double precision format was about 370 MB. Index sizes
are linear in the number of segments extracted from the
database: for example, theFlower-index forD60 contained
roughly 21,000 segments, requiring 0.72 MB of storage,
whereas the corresponding index forD180 comprised about
twice as many segments (41,000), requiring 1.41 MB. This
also shows the drastic amount of data reduction our scheme
achieves. The total indexing time is linear in the number
of frames, for example, it took42 seconds to build up the
Flower-index forD60, which is roughly one third of the110
seconds that were needed to build up the index forD180.
For both indexes, more than half of the total indexing time
was spent on reading in the data. The scalability of our algo-
rithms’ running time and memory requirements permits us
to use much larger databases than those treated in [7], where
the preprocessing step to build up a match web is quadratic
in the number of frames (leading, e.g., to a running time
of roughly 3, 000 seconds for a database containing only
37, 000 frames).

4.2. Retrieval

The running time to process a query very much depends
on the query length (the number of segments), the respec-

1–9 hits 10–99 hits ≥ 100 hitsQuery type, #(segs)
µh σh µt µh σh µt µh σh µt

exact,|Q| = 5 3.0 2.4 16 44 28 20 649 567 144
exact,|Q| = 10 1.7 1.6 17 34 22 26 239 147 71
exact,|Q| = 20 1.1 0.6 19 32 26 36 130 5 52
ad. fuzzy,|Q| = 5 3.6 2.5 23 44 27 29 1,878 1,101 291
ad. fuzzy,|Q| = 10 2.4 2.1 28 40 26 35 1,814 1,149 281
ad. fuzzy,|Q| = 20 2.0 1.9 42 36 24 35 1,908 1,152 294

Tab. 1. Statistics on10, 000 random queries in theFupper-index
for D180 for different query modes and lengths, grouped by the hit
count,h. µh andσh are the average/standard deviation ofh for
the respective group,µt is the average query time in milliseconds.

Fig. 7. Selected frames from 19 query-by-example hits for a right
foot kick. The query clip is highlighted.

tive index, as well as the number of resulting hits. In an
experiment, we posed 10,000 random queries (guaranteed
to yield at least one hit) for each of six query scenarios
to the indexI180

upper, see Table 1. For example, finding all
adaptive fuzzyFupper-hits for a query consisting of5/10/20
segments, where each setVn of alternatives had a size of
|Vn| = 64, took on average 23–291/28–281/42–294 ms.

Fig. 8 shows 9 adaptive fuzzy hits for a “squatting” mo-
tion (retrieval time: 18 ms), and Fig. 7 shows 19 adaptive
fuzzy hits for a “kicking” motion (retrieval time: 5 ms),
13 of which are actual martial arts kicks. The remaining
six motions (right hand side) are ballet moves containing a
kicking component. A manual inspection ofD180 showed
that there were no more than the 13 reported kicks in the
database. Similar findings hold for other retrieval experi-
ments, including that of Fig. 8, which demonstrates the high
recall percentage our technique achieves. As for retrieval
precision, we specifically designed our features’ offset and
threshold values to yield high acceptance rates. The two
skeletons to the right of Fig. 8 “sitting down” on a virtual
table edge illustrate this fact very well: the relevant feature
used in the query for the squatting motion thresholds the
knee angle against a relatively high decision value of120◦.
Hence, the knees of the sitting skeletons were classified as
“bent”, leading to the confusion with a squatting motion. A
further source of false positive hits is of course the choice
of fuzzy alternatives in a query: the ballet jumps in Fig. 7
were found as matches for a kicking motion because only
the right leg was constrained by the query, leaving the left

Fig. 8. Selected frames from 9 query-by-example hits for a squat-
ting motion. The query clip is highlighted.

Fig. 9. Selected frames from 15 adaptive fuzzy hits for a jump.

leg free to be stretched behind the body. Fig. 9 shows the top
15 out of 133 hits for a very coarse adaptive fuzzy “jump-
ing” query, which basically required the arms to move up
above the neck and back down, while forcing the feet to lift
off. The hits were ranked according to a simple strategy
based on a comparison of segment lengths. We omitted hits
no. 16–30, which also contained some jumps, for space rea-
sons. This example demonstrates how such coarse queries
can be applied to efficiently reduce the search space, while
retaining a superset of the desired hits.

5. FUTURE WORK

In this paper, we showed that simple geometric relations
in combination with adaptive temporal segmentation are a
powerful tool for content-based motion retrieval. For the fu-
ture, we plan to use this method to efficiently provide coarse
pre-alignments of logically similar motions, which can then
be refined by more involved DTW-based techniques, signifi-
cantly accelerating the overall alignment procedure. As first
experiments showed, geometric features also seem to be a
promising tool in handling low-level descriptive queries au-
tomatically. Here the idea is that motions can often be easily
characterized by a typical progression of geometric constel-
lations corresponding to key poses. For the future, we plan
to employ statistical methods to learn such progressions as
well as to automatically identify expressive geometric fea-
tures from typical example motions.

Acknowledgements: Some of the data used in this project
was obtained frommocap.cs.cmu.edu, which was cre-
ated with funding from NSF EIA-0196217. Some of the
data was obtained from Modern Uprising Studios. Tido
Röder is supported by the German National Academic
Foundation.

6. REFERENCES

[1] A. Bruderlin and L. Williams. Motion signal process-
ing. Computer Graphics, 29:97–104, 1995.

[2] S. Carlsson. Combinatorial geometry for shape rep-
resentation and indexing. InObject Representation in
Computer Vision, pages 53–78, 1996.

[3] M. Clausen and F. Kurth. A unified approach to
content-based and fault tolerant music recognition.
IEEE Trans. Multimedia, 6(5):717–731, 2004.

[4] CMU. Carnegie-Mellon MoCap Database.http:
//mocap.cs.cmu.edu.

[5] M. Giese and T. Poggio. Morphable models for the
analysis and synthesis of complex motion patterns.
IJCV, 38(1):59–73, 2000.

[6] E. J. Keogh, T. Palpanas, V. B. Zordan, D. Gunop-
ulos, and M. Cardle. Indexing large human-motion
databases. InProc. 30th VLDB Conf., Toronto, pages
780–791, 2004.

[7] L. Kovar and M. Gleicher. Automated extraction and
parameterization of motions in large data sets.ACM
Trans. Graphics, 23(3):559–568, 2004.

[8] M. M üller, T. Röder, and M. Clausen. Efficient
content-based retrieval of motion capture data. Sub-
mitted for publication, 2005.

[9] K. Pullen and C. Bregler. Motion capture assisted an-
imation: Texturing and synthesis. InProc. ACM SIG-
GRAPH 2002. ACM Press, 2002.

[10] J. Sullivan and S. Carlsson. Recognizing and track-
ing human action. InECCV ’02: Proc. 7th Euro-
pean Conf. on Computer Vision—Part I, pages 629–
644. Springer, 2002.

[11] Vicon. 3D Optical Motion Capture.http://www.
vicon.com.

[12] I. H. Witten, A. Moffat, and T. C. Bell. Managing
Gigabytes. Morgan Kaufmann Publishers, 1999.

[13] M.-Y. Wu, S. Chao, S. Yang, and H. Lin. Content-
based retrieval for human motion data. In16th IPPR
Conf. on Computer Vision, Graphics and Image Pro-
cessing., 2003.

