An Information Retrieval System
for Motion Capture Data

Bastian Demuth!, Tido Roder', Meinard Miiller!, and Bernhard Eberhardt?

! Universitiat Bonn, Institut fiir Informatik 111
Romerstr. 164, 53117 Bonn, Germany
{demuth, roedert, meinard}@cs.uni-bonn.de
2 Hochschule der Medien, Fachhochschule Stuttgart
Nobelstr. 10, 70569 Stuttgart, Germany
eberhardt@hdm-stuttgart.de

Abstract. Motion capturing has become an important tool in fields
such as sports sciences, biometrics, and particularly in computer anima-
tion, where large collections of motion material are accumulated in the
production process. In order to fully exploit motion databases for reuse
and for the synthesis of new motions, one needs efficient retrieval and
browsing methods to identify similar motions. So far, only ad-hoc meth-
ods for content-based motion retrieval have been proposed, which lack
efficiency and rely on quantitative, numerical similarity measures, mak-
ing it difficult to identify logically related motions. We propose an effi-
cient motion retrieval system based on the query-by-example paradigm,
which employs qualitative, geometric similarity measures. This allows
for intuitive and interactive browsing in a purely content-based fashion
without relying on textual annotations. We have incorporated this tech-
nology in a novel user interface facilitating query formulation as well as
visualization and ranking of search results.

1 Introduction

In the past two decades, motion capture systems have been developed that allow
to track and record human motions at high spatial and temporal resolutions. The
resulting motion capture data, typically consisting of 3D trajectories of markers
attached to a live actor’s body, is used to analyze human motions in fields such as
sports sciences and biometrics (person identification), and to synthesize realistic
motion sequences in data-driven computer animation. Even though there is a
rapidly growing corpus of motion data, there still is a lack of efficient motion
retrieval systems that allow to identify and extract user-specified motions.
Previous retrieval systems often require manually generated textual annota-
tions, which roughly describe the motions in words. Since the manual genera-
tion of reliable and descriptive labels is infeasible for large data sets, one needs
efficient content-based retrieval methods such as techniques based on the query-
by-example paradigm. The crucial point in such an approach is the notion of
similarity used to compare the query with the documents to be searched. For

2 Demuth et al.

(43¢ S Ceef !
CEEFIMARRSEES

Fig. 1. Top: 14 poses from a forceful jump. Bottom: 14 poses from a weak jump.

Input: Short query motion clip.
Feature selection.
Fault tolerance settings.
Procedure: Automatic conversion of query motion into a sequence of geometric
configurations (with respect to the selected features).
Index-based retrieval, post-processing, and ranking.
Output: Ranked list of hits.

Fig. 2. Overview of the retrieval process based on the query-by-example paradigm.

the motion scenario, two motions may be regarded as similar if they represent
variations of the same action or sequence of actions, see [4]. These variations
may concern the spatial as well as the temporal domain. For example, the jumps
shown in Fig. 1 describe the same kind of motion even though they differ con-
siderably with respect to timing, intensity, and execution style (note, e.g., the
arm swing). In other words, logically similar motions need not be numerically
similar, as is also pointed out in [4].

In this paper, we present a motion retrieval system that allows for efficient
retrieval of logically related motions based on the query-by-example paradigm,
see Fig. 2 for an overview. As opposed to previous approaches that are based on
quantitative, numerical features, our approach is based on qualitative, relational
features, which describe certain geometric constellations between specified points
of the body. As will be described in Sect. 2, such relational features are not only
robust to spatio-temporal variations (thus providing a basis for the identification
of logically related motions) but are also ideally suited for indexing (speeding
up the retrieval process considerably). The front end of our retrieval system
consists of a graphical user interface facilitating intuitive query formulation as
well as visualization and ranking of search results, see Sect. 3. Finally, we report
on some of our experiments in Sect. 4. For more experimental details and re-
sult videos, we refer to http://www-mmdb.iai.uni-bonn.de/projects/mocap/
RetrievalGUI.html.

We close this section with a discussion of related work. So far, only little work
has been published on motion capture indexing and retrieval based on the query-
by-example paradigm. To account for spatio-temporal variations, most previous

Lecture Notes in Computer Science 3

approaches rely on the technique of dynamic time warping (DTW), see [2,4, 8].
However, major drawbacks to DTW are its quadratic running time and storage
requirements, making DTW infeasible for large data sets. To speed up similarity
search, Keogh et al. [3] use an index structure based on bounding envelopes,
allowing to identify similar motion fragments that differ by some uniform scaling
factor with respect to the time axis. In comparing individual frames of the data
streams, all of these approaches rely on numerical cost measures. As a first
step towards logical similarity, Liu et al. [5] compare motions based on a so-
called cluster transition signature that is immune to temporal variations. To
bridge the semantic gap between logical similarity as perceived by humans and
computable numerical similarity measures, Miiller et al. [6] introduce a new type
of qualitative geometric features and induced motion segmentations, yielding
spatio-temporal invariance as needed to compare logically similar motions.

The main contribution of the present paper is to extend the concepts from [6]
in the following ways: we define new classes of generic relational features grasping
important aspects of an actor’s motion patterns, which prove to be well-suited
for content-based motion retrieval. A novel Feature Design GUI allows to instan-
tiate the generic features into semantically meaningful feature sets, supported
by suitable optimization and visualization tools. As a further contribution, we
present a Retrieval GUI based on the query-by-example paradigm that includes
a novel ranking strategy and facilitates merging operations on hits.

2 Relational Motion Features

The most common recording technology for motion capture data uses an array of
digital cameras to three-dimensionally track reflective markers attached to a live
actor’s body, see, e.g. [7]. The tracking data can then be post-processed to obtain
a multi-stream of 3D trajectories corresponding to the joints of a fixed skeletal
kinematic chain as indicated by Fig. 3. A full set of 3D coordinates describing
the joint positions of a kinematic chain for a fixed point in time is also referred
to as a pose. A motion capture data stream is thought of as a sequence of poses
or frames, typically sampled at 30-600 Hz.

In a sense, motion capture data has a much richer semantic content than, for
example, pure video data of a motion, since the position and the meaning of all
joints is known for every pose. This fact can be exploited by considering relational
features that describe (boolean) geometric relations between specified points of
a pose or short sequences of poses, see [6]. We explain the main idea of such
features by means of some typical examples. Consider the test whether the right
foot lies in front of (feature value one) or behind (feature value zero) the plane
spanned by the center of the hip (the root), the left hip joint, and the left foot,
cf. Fig. 3 (a). Interchanging left with right, one obtains the analogous feature for
the other leg. A combination of these features is useful to identify locomotion
such as walking or running. A similar feature is defined by the oriented plane
fixed at the left and right shoulders and the root, shifted one humerus length to
the front: checking whether the left hand is in front of or behind this plane, one

4 Demuth et al.

Iclavicle
Ishoulder

lelbow

Iwrist Thip

rwrist) | / _ \
S \
. g/46’/7 Ir "N, i JN
nee rKnee / A l -
ltoes ‘rankle rtoes X >> ‘ J \ , \ @K/ D %

Fig. 3. Left: skeletal kinematic chain model consisting of rigid body segments flexibly
connected by joints, which are highlighted by circular markers and labeled with joint
names. Right: qualitative features describing geometric and kinematic relations between
the body points of a pose that are indicated by thickened markers.

Ifingers

obtains a feature suitable to identify left punches, see Fig. 3 (b). The feature
indicated by Fig. 3 (¢) checks whether the right hand is moving into the direction
determined by the belly-chest segment. Other types of relational features express
whether specified points of the body are close together, yielding, for example,
“touch” detectors for the two hands, a hand and a leg, or a hand and the head
(Fig. 3 (d)—(f)). We also use relational features to check if certain parts of the
body such as the arms or the legs are bent or stretched (Fig. 3 (g)).

By looking at maximal runs of consecutive frames yielding the same feature
values for a fixed combination of frame-based relational features, one obtains a
temporal segmentation of motion data streams, see Fig. 4. In order to compare
two different motions, each motion data stream is coarsened by transforming it
into a segment-based progression of feature values. Two motion clips are then
considered as similar if they possess (more or less) the same progression of fea-
ture values. For further details, we refer to [6]. The main point is that relational
features are invariant under global orientation and position, the size of the skele-
ton, and local spatial deformations, whereas the induced segmentation introduces
robustness to temporal variations.

2.1 Feature Design

To facilitate retrieval in large motion databases containing a great variety of
motions, it is essential to provide the end-user of our retrieval system with a
semantically rich set of features covering different body parts and various aspects
of motions. Of course, the requirements to such a feature set will heavily depend
on the intended application. The goal of our retrieval system is to search for
motion clips in view of their rough course of motion. In this paper, we describe
an exemplary system based on a set of 22 features, see Table 1.

In constructing such a feature set, we started with a small set of generic
boolean features, which encode certain joint constellations in 3D space and time.

Lecture Notes in Computer Science 5

T d TR

©)eee (@)>>> (oo

p—

Fig. 4. Segmentation of a parallel leg jumping motion with respect to a combina-
tion of the feature “left knee bent” and the feature “right knee bent”. Here the nine
segments correspond to the sequence ((3),(2),(}),(9),(9):(2),(2),(2),(3)) of feature values.
Poses assuming the same feature values are indicated by identically marked trajectory

segments. The trajectories of the joints ‘headtop’ and ‘rankle’ are shown.

gen. feature | ID |set | j; J2 73 Ja (oY description
F((jél’iﬁjs i74) Fy £ | root lhip Itoes rankle | 0.3 hl | foot in front
F[ijg‘}flin]:’ id4) F3 ¢ | lhip rhip rhip rankle | 0.5 hl | leg sideways
pli1.92.33) Fs ¢ | rhip rknee rankle 110° | knee bent
a,bent Fr u | rshoulder | relbow rwrist 110° elbow bent
D) Fo £ | root rankle 6 hl/s | foot fast
a,fast F11 | u |rshoulder | rwrist 6 hl/s | hand fast
Fiz | £ |root belly rankle 2 hl/s | foot moves up
Fli1.d2533) Fi5 | u | belly chest rwrist 3 hl/s | hand moves up
a,move Fi7 | u | chest belly rwrist 3 hl/s | hand moves down
Fi9 | u | neck rshoulder | rwrist 3 hl/s | hand moves sideways
Fc(yj}l;gg",?:j‘l) Fa1 | u |root Ishoulder | rshoulder | rwrist | 3 hl/s | hand moves forward

Table 1. The feature set used in our experiments. All described features pertain to
the right half of the body. Analogous versions for the left body parts exist and are
assigned the even IDs Fy, Fy, ... F2. The abbreviation “hl” denotes the relative length
unit “humerus length”, which is used to handle differences in absolute skeleton sizes.

In particular, we used the following generic features:

wvine s Fatitone s Foltouehs Fatvent””s Faat + PO, Pl
Each of these features assumes either the value one or the value zero and depends
on a set of joints, denoted by ji, jo,. .., and on a threshold value o € R. The first
generic feature assumes the value one iff joint j, has a signed distance greater
than « from the oriented plane spanned by the joints j1, jo and js. For example,
setting j; =‘root’, jo =‘rhip’, j3 =‘rankle’, j, =‘lankle’, and a = 0.3, one obtains
the feature of Fig. 3 (a). The same test is described by Fgl’m’“;“), but here we

,nplane
define the plane in terms of a normal vector (given by j; and j3), and fix it at js.

The generic feature F C(ftloffc)h assumes the value one iff the two joints j; and jy are

closer than «. Similar generic touch detectors can also be defined for two body
segments, or a joint and a body segment, see Fig. 3 (d)—(f). The generic feature

F(Jll)gﬁt’jd) assumes the value one iff the angle between the segments determined

by (j1,72) and (j2,j3) is below the threshold «. For example in Fig. 3 (g), we set

=‘lhip’, jo =‘lknee’, j3 =‘lankle’, and o = 110°. The generic feature F(]fl,(;gf)

6 Demuth et al.

assumes the value one iff joint jo has a relative velocity with respect to j; that is
above . Similarly, the feature FY1229%) considers the velocity of joint j; relative
to joint j; and assumes the value one iff the component of this velocity in the
direction determined by (j1,j2) is above a. For example, setting j; =‘belly’,
Jj2 =‘chest’, js =‘rwrist’, one obtains the feature of Fig. 3 (c). Fé{;;{ﬁ;jg?“) has the
same semantics, but the direction is given by the normal vector of the oriented
plane spanned by j1,72 and j3. Of course, there are numerous other ways to
define semantically meaningful generic features.

To determine reasonable joint combinations as well as suitable thresholds
« for the generic features, we implemented a Feature Design GUI, which pro-
vides tools for visual feedback, statistical evaluations, and optimization. In de-
signing our features, we incorporated most parts of the body, in particular the
end effectors, so as to create a well-balanced feature set. One guiding principle
was to cover the space of possible end effector locations by means of a small
set of pose-dependent space “octants” defined by three intersecting planes each
(above/below, left/right, in front of/behind the body). Obviously, this subdivi-
sion is only suitable to capture the rough course of a motion, since the feature
function would often yield a constant output value for small-scaled motions.
Here, our new features of type Fy move turned out to effectively grasp finer mo-
tion details. In general, our boolean features are designed to be zero for large
portions of time (e.g., for a standing pose, all features assume the value zero),
but still manage to capture important motion characteristics. Threshold specifi-
cation is a delicate issue, since improper thresholds « may significantly degrade
retrieval quality. To determine a suitable « for a given feature, we proceed as
follows: we supply the system with a training set A of “positive” motions that
should yield the feature value one for most of its frames and a training set B
of “negative” motions that should yield the feature value zero for most of its
frames. The threshold « is then determined by a one-dimensional optimization
algorithm, which iteratively maximizes the occurrences of the output one for the
set A while maximizing the occurrences of the output zero for the set B. Visual
feedback about the resulting feature values aids the designer in fine-tuning o.
Further boolean features can then be derived—supported by a textual editor—by
taking boolean expression (AND, OR, XOR) of previously designed features.

2.2 Indexing

A major advantage of our approach is that all involved retrieval and indexing
algorithms are time and space efficient. Here, the crucial point is that by in-
corporating spatio-temporal invariance in the relational features and induced
segments, one can employ standard information retrieval techniques for fast
content-based and fault-tolerant retrieval based on inverted lists, see [6]. In our
system, we have divided the 22 features from Table 1 into two subsets Fy (10
features) and F, (12 features), as denoted by the column marked “set”. Fy ex-
presses properties of the lower part of the body (mainly of the legs), while F;,
expresses properties of the upper part of the body (mainly of the arms).

Lecture Notes in Computer Science 7

Given a motion database (w.l.o.g. consisting of a single motion), we create an
index I, for Fy, which consists of the inverted list representation of the temporal
segmentation of the motion, see Sect. 2. Analogously, we create a second index
I, for the feature set F;. Note that in this approach, a feature set containing
n features leads to 2" possible feature vectors, each of which may give rise to
an inverted list in the index. Thus, we restrict the maximum number of features
per index to 12, corresponding to a maximum of 4096 inverted lists. Efficient
retrieval can then be done by suitable union and intersection operations on the
inverted lists, see [6] for further details.

3 User Interaction

Recall from Fig. 2 that a query specification consists of an example motion
together with some fault tolerance settings and a suitable selection from the
relational features listed in Table 1. In this section, we illustrate the typical
workflow in our query-by-example system by means of a “jump” query as shown
in Fig. 4, while presenting the corresponding elements of our Retrieval GUI.

Step 1: Specifying an example motion. In our system, a query motion is specified
by selecting a frame range from a motion capture file, see Fig. 5 (a). Here, the se-
lected jumping motion is a small excerpt from a sequence of pre-recorded sports
movements, corresponding to segments 3-9 in Fig. 4. Note that in principle, it
would also be possible to provide an example motion by keyframing, a process
widely used in computer animation. Here, a motion is sketched by a few charac-
teristic poses that are then interpolated. In a further input mode, the example
motion could be generated on-line using suitable motion capturing hardware.

To get a better feeling for our query motion from Fig. 4, let us first focus
on the movement of the legs. Both legs are kept parallel throughout the jump
sequence and are stretched during the initial phase of arm-swing (segment 1
in Fig. 4). The legs are then bent into a half-squatting position (segments 2-3),
preparing the following push-off (starting shortly before segment 4), during which
the legs are stretched once more. In the landing phase (starting shortly before
segment 6), the legs absorb the energy of the jump by bending as deep as before
push-off. The jump sequence is concluded by stretching the legs into a normal
standing position (segments 8-9). This sequence of bending and stretching the
knees is characteristic for many kinds of parallel-leg jumping motions.

Step 2: Selecting suitable features. The above considerations show that it is
reasonable to choose the features as in Fig. 4, where kneeLeftAngle and knee-
RightAngle (corresponding to F°/F% in Table 1) were selected. This is indicated
in our GUI by a ‘+’ mark, see Fig. 5 (b). In general, the strong semantics of
geometric relations makes feature selection an intuitive process: the user can
often anticipate which features will grasp important aspects of the query.

Since in Step 1, we only selected the frames corresponding to segments 3—
9, we obtain the sequence ((}),(‘1’),(8),(‘;),(}),(;’),(8)) with respect to F5 and Fg,

8 Demuth et al.

which is a subsequence of the feature progression given in the caption of Fig. 4.
In our GUI, we represent this feature progression as a query matriz (), where
each column corresponds to a segment, each row corresponds to a feature, and
where features from the chosen index that were not selected by the user are
marked by rows of asterisks, e.g.,

Q=

= O % ¥ ¥ %
I I
O % ¥ ¥ %
SO ¥ ¥ ¥ %
AT

+

OO % ¥ ¥ %

*
5
*
*
0
1

R]

For the sake of simplicity, we omitted the features Fy, F1g, F13, and Fi4, which
are constituents of Iy. The features corresponding to each row are given to the
right of @), and the user-selected features are once more marked by a ‘+’. Such a
query matrix is automatically generated by our system as soon as the frame range
and the features have been selected (cf. Fig. 5 (c)). We visualize the structure
of the current segmentation as a multicolored bar, as shown in the lower part of
Fig. 5 (c). Here, each color corresponds to a feature vector, and the lengths of
the colored bars are proportional to the segment lengths in frames.

Step 3: Setting up fault tolerance. The query matrix shown in Fig. 5 (c) differs
from @ in that the user has inserted asterisks in columns 2, 4, and 6. These
asterisks mask out irrelevant transitions between the alternating vectors (1) and
(3) from the original feature sequence. In more detail, the feature vectors () arise
because the actor does not bend or stretch both legs at the same time. Instead,
he has a tendency to keep the right leg bent a bit longer than the left leg. There
are many possible transitions from, e.g., (1) (legs bent) to (§) (legs stretched),
such as (1) —(3), (}) =) =), or (1) —(5) —(2) —(3)- This is the reason why we
inserted the asterisk columns in Fig. 5 (c): each of the aforementioned transitions
encodes the motion “stretching the legs”, which is all that matters to our query.
Our system automatically translates the asterisk notation into a suitable query.

Step 4: Querying, ranking and result presentation. Once the user has finalized
the query matrix, the system starts the retrieval and then presents the hits to the
user, who can browse the corresponding motion fragments in a graphical display,
see Fig. 5 (d). The hits can be post-processed by means of a new DTW-based
ranking strategy: a hit’s ranking value is determined by the cost of a cheapest
path in a cost matrix (c;;), where each entry ¢;; is the hamming distance between
the i-th vector in the feature progression of the query and the j-th vector in the
feature progression of the hit. At this stage, we use a segmentation that is induced
by a compound feature function containing all features from Table 1, regardless
of the features that were selected for the query. Note that DTW is only applied
to a generally very small number of hits that were efficiently retrieved by our
index-based approach and not to the entire database, as for most previous DTW-
based methods. Furthermore, the cost matrices are typically very small because
the query and the hits are compared at the segment level instead of the frame
level, thus working on strongly downsampled motion representations.

Lecture Notes in Computer Science 9

) speciy query by example =l5ix|
playback speed
open Mocap fle ool query name: jump_lower_final

Mocap file: CMU_86_mixed_03walkinglumpingMartial_120.amc

features (current value):

footLeftFront_. t (0)

footLeftSideways_robust (0)

footRightFront_robust (0)

. footRightSideways_robust (0)
V‘a kneeLeftangle_robust (0)+
f Frame 2060 kneeRightaAngle_robust (0)+

N -

generated Query:

XK KK KK
XK K KKK
KKK KKK

R

xg*1*

L P
setstaolquey | seendotauey | 11| >

First frame of query: 2010 Last frame of query: 2175

e [N 2000
et cad play selection

0K Cancel
e

available indexes: specified queries:

No. of its :14 (from B files)
Avg hitlength: 4.3732 sec

show hit rank hits with DTW

AMC! MU_86_mixed_{ |

Index_lower_180 =
Index_lower_20
Indei_upper 180

specify query >

load query from file

78

insert query | intersect merge | withtheta [3 _]] delete A Frame 6772
query expression: \
merge(theta = .3, jump_lower_20, jump_upper_20)

[

e

. ank speedd LI LIJ

Fig. 5. Left: query interface. Right: fourteen hits for a “jump” query on D?°. The query
motion (foreground) and a false positive hit (background) are highlighted.

Step 5: Combining queries. Our example query as it has been discussed so far
yields a large number of hits in our test database, some of which are false pos-
itive hits. For example, many squatting motions exhibit the same progression
of knee bending and stretching. To further refine our query, we can incorporate
additional constraints regarding the upper part of the body, i.e., the index I,,. To
this end, the user may specify several independent queries (on different indexes
or even on the same index), which can then be combined in a query expression
by means of merge and intersect operations, cf. Fig. 5 (e). Merging two sets of
hits H, and H> means that a hit h; € Hy is reported as a result if there is a hit
ho € Hjy that overlaps h; by more than a fraction of § € (0, 1] (relative to the

10 Demuth et al.

jump cartwheel elbow-to-knee | jumping jack punch

recall on D20 13/16 4/4 14/14 19/19 24/24

precision on D20 13/14 4/4 14/15 19/19 24/37

precision on D180 17/27 4/59 14/27 19/29 83/153

pi80 | p180 | piB0 5110 | 16 4144 51914 5110 |18 5110 | 20

query time on D180 () 0.87 0.06 0.39 0.60 0.08
ranking time on D180 (s) 4.42 5.87 1.04 1.54 4.46

total length of hits in D180 (s) 136.45 125.89 15.08 37.87 128.53

Table 2. Summary of query results. See Sect. 4 for a discussion.

length of hy, measured in seconds). Our intersection operator coincides with the
set theoretical intersection of the hits interpreted as time intervals. The results
of a combined “jump” query, which uses merging to incorporate a query that
focuses on the arm motion, are discussed in Sect. 4 and visualized in Fig. 5 (f).

Step 6: Iteratively refining the query. Assisted by the system’s feedback, a user
can modify his query at several points in the query process. Initially, he may
modify the frame range and feature selection so as to achieve a segmentation
that is characteristic, but not too specific. Here, the query matrix and the seg-
mentation bar support the user’s decisions. Short segments in the segmentation
bar hint at transitions that may be masked out by means of an asterisk column,
cf. Step 4. After inspecting the hits for the initial query, the user may reconsider
the current query settings. If, for instance, many false positive hits have been
retrieved, it often helps to extend the query motion or to incorporate additional
features that discern the query motion from the false positives. If, on the other
hand, only few hits are retrieved, the user may decrease the complexity of the
induced segmentation by reducing the number of selected features, by reducing
the length of the example motion, or by decreasing the merging parameter 6.

4 Experimental Results

Our motion retrieval system was implemented in Matlab, and experimental re-
sults were obtained on a 3.6 GHz Pentium 4 with 1 GB of main memory. We
evaluated the system on a subset D80 of the CMU database [1], which contains
about one million frames of motion capture data (~180 minutes sampled at 120
Hz) and covers a wide range of motions.

The columns of Table 2 show the results for five exemplary queries: a force-
ful jump, a cartwheel, the gymnastics motions “elbow-to-knee” and “jumping
jack”, and a punch with the right fist. Further information and result videos for

Lecture Notes in Computer Science 11

these queries can be found at http://www-mmdb.iai.uni-bonn.de/projects/
mocap/RetrievalGUI.html. In order to determine the recall (proportion of rel-
evant hits that were retrieved) of our queries, we manually annotated a subset
D20 of D8 consisting of about 145,000 frames (~20 minutes). D?° includes a
diverse range of about 15 different gymnastics motions, some walking, jogging,
jumping, climbing sequences, several martial arts moves, pantomime, and bas-
ketball motions. The precision (proportion of retrieved hits that are relevant) of
query results was evaluated on both D?° and D'8%. Qur retrieval concept focuses
on maximizing the recall for any given query, which may lead to a relatively low
precision. However, we improve the quality of our retrieval results by applying
DTW-based ranking as explained in Sect. 3. In order to evaluate this ranking, we
counted the number of relevant hits within the top 5, top 10, and top 20 positions
of the ranked hit list, denoted in Table 2 by pi®°, pis0 and piS®, respectively.

Our query for parallel-leg jumps (first column of Table 2) successfully re-
trieved 13 of the 16 jumping motions that were contained in D?°, leading to
a recall of 13/16. The three remaining jumps were missed because the actors’
knees were not bent far enough to trigger our features. The total number of hits
was 14 (cf. Figure 5 (f)), only one of which was a false positive, namely, the
squatting motion that is highlighted in Figure 5 (f). This leads to a precision of
13/14 on D?°. On D80, four additional jumps and nine additional false positives
were found, leading to a precision of 17/27. There were no false positives in the
top 5 and top 10 positions of the ranked hit list, and only one of the 17 relevant
hits did not appear in the top 20. Only 136.45 seconds of D'8%, or 1.26%, had to
be inspected by the DTW-based ranking procedure. The index-based retrieval
step took 0.87 seconds for the DY database, whereas the ranking consumed
another 4.42 seconds. Note that in general, the running time for the ranking
step correlates with the total length of the retrieved hits.

The query for cartwheels starting with the right leg in front uses only two
different features, Fy and Fig, which test whether the feet move with a high
velocity. The resulting feature sequence ((3),(9),(1),(5),(5)) reflects how the left
leg is kicked up in the air, quickly followed by the right leg. The left leg touches
the ground first, leading to a low velocity in this phase, again followed by the
right leg. This query is characteristic enough to lead to perfect precision and
recall values on D2°. Its precision on D' is very low, as there are 55 false
positive hits, but our ranking strategy places the cartwheels among the top 5
hits. In contrast to the three other examples, the cartwheel and punch queries
operated on one index only, which makes merging superfluous—hence the low
retrieval times of 0.06 and 0.08 seconds, respectively.

For the gymnastics motions “elbow-to-knee” and “jumping jack”, a larger
number of spurious hits was returned on D'8% but our ranking succeeds in
placing the relevant hits at the top of the list. The queries “cartwheel”, “elbow-
to-knee”, and “jumping jack” achieve perfect recall values on D?°. No additional
relevant hits for these queries appear in the results for D8 because to our
knowledge, all of these rather specific motions are already contained in the subset
D20 of D89, For characterizing right-handed punches, we used Fy, Fi1, Fa1, and,

12 Demuth et al.

to improve precision, Fas. Once again, the recall on D?° is perfect, while the
precision is 24/37. On D80 the precision decreases to roughly 50%, but this is
successfully compensated for by our ranking.

5 Conclusions and Future Work

In this paper, we presented a Retrieval GUI for content-based motion retrieval,
where the query consists of a motion clip as well as a user-specified selection of
motion aspects to be considered in the retrieval process. Based on the concept of
quantitative relational features as introduced in [6], we suggested several generic
boolean features, which can then be used—aided by our Feature Design GUI—
to determine a set of semantically meaningful features covering a wide range
of motion aspects. Being in a way conceptually orthogonal to computationally
expensive DTW-based strategies, our technique is ideally suited to efficiently
cut down the search space in a pre-processing step, thus making DTW-based
techniques applicable to large data sets. This finding is supported by our exper-
imental results, see Sect. 4.

Motion reuse based on morphing and blending as used in computer ani-
mation may require batch techniques to automatically retrieve suitable motion
fragments. To this end, we plan to automate the feature selection step using
statistical methods. Furthermore, we are developing and analyzing DTW-based
ranking strategies based on different cost measures. First experiments showed
that our relational approach to motion description not only constitutes a possible
framework for flexible and efficient retrieval mechanisms, but also for automatic
classification and annotation of motion data.

References

1. CMU, Carnegie-Mellon MoCap Database. Created with funding from NSF EIA-
0196217. http://mocap.cs.cmu.edu, 2003.

2. K. ForBEs AND E. FIUME, An efficient search algorithm for motion data using
weighted PCA, in SCA ’05: Proc. 2005 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, New York, NY, USA, 2005, ACM Press, pp. 67-76.

3. E. J. KeocH, T. PaLraNAs, V. B. ZOrRDAN, D. GUNOPULOS, AND M. CARDLE,
Indezing large human-motion databases, in Proc. 30th VLDB Conf., Toronto, 2004,
pp. 780-791.

4. L. KOvAR AND M. GLEICHER, Automated extraction and parameterization of mo-
tions in large data sets, ACM Trans. Graph., 23 (2004), pp. 559-568.

5. G. Liu, J. Zuang, W. WANG, AND L. McMILLAN, A system for analyzing and
indexing human-motion databases, in SIGMOD ’05: Proc. 2005 ACM SIGMOD Intl.
Conf. on Management of Data, New York, NY, USA, 2005, ACM Press, pp. 924-926.

6. M. MULLER, T. RODER, AND M. CLAUSEN, Efficient content-based retrieval of

motion capture data., ACM Trans. Graph., 24 (2005), pp. 677-685.

VICON, 38D optical motion capture. http://www.vicon. com.

8. M.-Y. Wu, S. CHAO, S. YANG, AND H. LIN, Content-based retrieval for human mo-
tion data, in 16th IPPR Conf. on Computer Vision, Graphics and Image Processing,
2003, pp. 605-612.

~

