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Abstract
In this paper, we present a novel set of tempo-related au-

dio features for applications in audio retrieval. As opposed

to existing feature sets commonly used in the retrieval do-

main which mainly focus on local spectral characteristics

of the audio signal, our features capture its local temporal

behaviour w.r.t. tempo, rhythm, and meter. As a key compo-

nent to obtaining a high level of feature robustness we intro-

duce the cyclic beat spectrum (CBS) consisting of residual

tempo classes which are constructed similarly to the well-

known pitch chroma classes. We illustrate the use of the

newly constructed features by applying them to robust time-

scale invariant audio identification.

Keywords: Cyclic beat spectrum, tempo-related audio fea-

tures, time-scale invariant audio identification

1. Introduction

Recent progress in the field of audio retrieval has led to suc-

cessful methods for solving retrieval tasks such as audio

identification [1] and audio matching [2]. Consider an audio

database containing a collection of CD recordings. Whereas

audio identification aims at identifying a short excerpt (let’s

say of about 10-30 seconds of duration) of audio as being

part of a particular audio recording taken from a particu-

lar CD, audio matching aims at automatically retrieving all

musically similar excerpts in all interpretations of the under-

lying pieces of music, which are contained in the database.

Thus, audio matching may in a sense be considered as a se-

mantically advanced retrieval problem.

Existing audio features used for audio retrieval are mainly

spectral features (e.g., based on spectral flatness, short-time

Fourier analysis, chroma analysis) capturing local spectral

or harmonic behaviour of a signal [3]. In some cases the

temporal progression of spectral features is incorporated,

e.g., by considering feature sequences [2, 4]. However, not

all excerpts of music audio are suitably characterized by

their harmonic contents only. Examples are excerpts with

monotonous harmonies or only slowly changing harmonic
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progressions, as well as non-harmonic excerpts such as per-

cussive parts. As a consequence, the above cited retrieval

methods are not equally successful for all kinds of music.

In this paper, we suggest a novel set of audio features

which are inspired by the musical parameters of tempo, me-

ter, and rhythm. The focus on those parameters is moti-

vated by the fact that fragments of audio which do not ex-

hibit a salient harmonic progression may be frequently bet-

ter characterized using local beat patterns. In our approach,

we first describe a method for extracting robust local tempo

features. As a key idea to achieve robustness we propose

to combine techniques for tempo extraction with a modu-

lar technique which reduces the estimated tempo in beats

per minute (BPM) to an equivalence class of tempi. From

those tempo classes we construct the cyclic beat spectrum

(CBS) which serves as a basis for subsequently designed lo-

cal rhythm- and meter-related features.

As an application in the domain of audio retrieval, we

consider the robust identification of time-scaled music au-

dio. Such kind of time-scaling frequently occurs in broad-

cast scenarios where the audio playback speed is varied in

order to attract the listeners attention. It turns out that using

the proposed features, a robust audio identification is still

possible for scaling factors of ±20% and for severe addi-

tional distortions of the audio signal such as lossy compres-

sion, analog transmission, and noise addition. Hence, the

proposed features can be used to substantially improve ex-

isting methods for time-scale invariant audio identification.

Furthermore, because of their semantic expressiveness, the

features may be used in combination with existing harmony-

based feature sets to improve the performance in MIR tasks

such as audio matching [2] and audio structure analysis [5].

The paper is organized as follows. Section 2 briefly re-

views related work. In Section 3 we propose the CBS as

a robust tempo-related audio feature. Subsequently, the fo-

cus of Section 4 is on the extraction of rhythm- and meter-

related features. The application of the proposed features to

the robust identification of time-scaled audio is described in

Section 5.

2. Related Work

There has been a significant amount of research on extract-

ing the musical parameters of tempo, rhythm, and meter,

see [6] for an overview. Instead of focussing on extracting



strictly musically meaningful features, in this research we

follow an approach previously proposed by Scheirer [7] to

first derive basic tempo-related features. Those features are

subsequently used to construct more robust features which

are motivated by the notions of musical tempo, rhythm, and

meter, although they do not exactly correspond to their mu-

sical relatives. In contrast to existing approaches, our meter-

and rhythm-related features are invariant w.r.t. time scaling

of the underlying audio signal, which makes them particu-

larly useful for time-scale invariant audio identification.

A general overview on audio identification techniques is

given in [3]. The problem of audio identification for broad-

cast scenarios including time-scaled audio identification for

relatively small scaling factors is investigated in [4]. The

basic approach to efficient audio identification used in this

paper is described [8]. An extension of this approach to

time-scale invariant audio identification is discussed in [9]

where, however, the proposed features lack some robustness

against signal distortions. In the Beat-ID system, finger-

prints derived from a beat analysis are used for audio iden-

tification [10]. However, time-scaled audio material is not

considered.

Rhythmic features have previously been proposed as a

measure of musical similarity [11]. The approach is based

on using a global beat spectrum to compare two musical

pieces as a whole. In contrast, in this paper we use a kind of

local beat spectrum to derive our CBS features.

The principle of making features robust by using resid-

uals, which will be exploited later on, has been previously

used to construct chroma features. Those pitch-related fea-

tures are constructed by replacing all pitches of the well-

tempered scale by 12 chroma classes each corresponding to

one of the 12 notes C,C#, . . . , B [12]. Due to the identi-

fication of octaves, chroma features are robust to, e.g., vari-

ations in harmonics and timbre. Correspondingly, the pro-

posed CBS features robustly represent certain tempo classes.

3. Robust Tempo-Related Features

The extraction of tempo-related features proceeds in two

steps. First, a tempo analysis of the music audio is per-

formed using a comb filter bank. Then some post process-

ing results in a so called beat spectrogram which may be

interpreted as a time-tempo representation of the input sig-

nal. Subsequently, for each time instant we calculate a CBS

from which we extract local tempo classes.

3.1. Tempo Analysis

In a prepocessing step, a lowpass filter with 7350 Hz cut-

off frequency and downsampling to 14.7 kHz is applied to

an input signal x in order to restrict the signal contents to

a frequency range covering the fundamental frequencies of

western musical notes and to eliminate timbre information.

A short time Fourier transform of step size 4.4 ms and a

window size of M = 1024 samples is applied to generate
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Figure 1. From top to bottom: Novelty curve of first 30 seconds

taken from Baby one more time by Britney Spears, correspond-

ing beat spectrogram, and excerpt of the local beat spectrum

for sample position 3000 (corresponding to the boxed region).

a sequence X(1),X(2), . . . of M -dimensional spectral vec-

tors, i.e., X(t) = (X(t, 0), . . . ,X(t,M − 1)). To extract

spectral changes, first the positive novelty

N [x](t) :=

M/2−1
∑

k=0

max(|X(t + 1, k)| − |X(t, k)|, 0)

is calculated. Using an approach similar to Scheirer [7], we

then apply a comb filter bank to N [x], where the ouput

yp(t) := (1 − α)N [x](t) + αyp(t − p)

of each recursive filter yp is parametrized by the resonance

period p and a fixed resonance factor α, which will be cho-

sen as α = 0.5 for the purpose of this paper. For a partic-

ular underlying sampling rate, each resonance period p (in

samples of the novelty curve) corresponds to a (reciprocal)

tempo value b(p) in beats per minute (BPM). Omitting tech-

nical details, we choose the resonance periods to cover a

tempo range of 40–320 BPM for the experiments discussed

later on. To emphasize resonance frequencies, we perform

a smoothing operation on each of the resonator filter bands.

This results in the beat spectrogram B = B[x], with

B(t, p) :=

r
∑

τ=−r

|yp(t + τ)|2

representing the amount of resonance for a resonance period

of p samples contained in a neighborhood of 2r+1 samples

around time position t. Here we choose r = 2300 such that

smoothing is performed in a window corresponding to 20

seconds of duration. In what follows we will be interested
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Figure 2. Calculation of CBS: input signal (time domain) con-

sisting of two periodic clicks (top), tempo analysis covering 8

tempo octaves (center), summed CBS (bottom).
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Figure 3. The CBS (bold curve) is obtained by summing up

tempo intensities of all eight tempo octaves.

in values of the beat spectrogram for a fixed time position

t. Correspondingly, the columns B(t, ·) of B will be called

(local) beat spectrum at position t.

Fig. 1, from top to bottom, shows the novelty curve of

the first 30 seconds taken from Baby one more time by Brit-

ney Spears, the beat spectrogram, and an excerpt of the lo-

cal beat spectrum at position 3000. Note that the tempi are

given in BPM. The sequence of beats in the underlying mu-

sic may be observed as sequence of pulses in the novelty

curve, inducing resonances in the outputs of the comb filters

which occur as bright rows in the beat spectrogram (second

graphic) and as peaks in the local beat spectrum (bottom

graphic).

3.2. Cyclic Beat Spectrum

A canonical approach to extract local tempi of a signal x
at position t now consists of determining the peak positions

of the beat spectrum vector B(t, ·) (see bottom graphic of

Fig. 1). Unfortunately, the beat spectrum not only empha-

sizes the fundamental tempo but also the corresponding har-

monics, i.e., the 2-, 3-, 4-,. . . fold tempo, and subharmonics,

i.e., the 1/2-, 1/3-, 1/4-,. . . fold tempo, and therefore tempo

confusions are likely to occur. As an illustration, consider

Fig. 2, showing an excerpt of a local beat spectrum of an

input signal consisting of two superimposed sequences of

periodic clicks with a ratio of 1:3 of the corresponding click-

frequencies G and g. Let H1,H2, . . . and S1, S2, . . . denote

the harmonics and subharmonics of G, whereas h1, h2, . . .
and s1, s2, . . . denote the harmonics and subharmonics of g.

Clearly, in the local beat spectrum the fundamental of G is

superimposed with a harmonic of g whereas the fundamen-

tal of g coincides with a subharmonic of G. Furthermore,

the subharmonics constitute some dominant peaks with am-

plitudes close to those of the fundamentals. Hence, a simple

peak picking approach is likely to confuse the real (funda-

mental) tempi with the (sub-) harmonics’ tempi.

To avoid such kind of tempo confusion and hence make

the extracted local tempi more robust, we propose to iden-

tify fundamental tempo frequencies and their 2k-fold (sub-)

harmonics, k an integer, using a concept similar to that of

chroma classes in the pitch domain [12]. For this, we first

subdivide the local beat spectrum into tempo octaves. In

analogy to musical octaves, where two notes are assigned

the same chromatic pitch if their frequencies f1, f2 are re-

lated by f1 = 2kf2 for an integer k, we partition the beat

spectrum into tempo octaves by assigning two tempi ν1 and

ν2 the same tempo class, if ν1 = 2kν2 for an integer k.

Choosing 10 BPM as a lower tempo limit, tempo octave

1 covers the range of [10, 20) BPM, tempo octave 2 cov-

ers [20, 40) BPM, etc. For sake of illustration, we chose the

beat spectrum in Fig. 2 to cover the first eight tempo octaves.

Note that in this figure, the tempo axis is spaced logarithmi-

cally, hence all of the octaves are of equal size.

In a second step, we add up all tempi corresponding to

the same tempo class. To be more precise, for a fixed posi-

tion t, assume that we start with a beat spectrum B(t, p1),
. . . , B(t, pA) calculated for A logarithmically spaced tempi

ν1, . . . , νA, where for each k, pk = b−1(νk) is the reso-

nance period corresponding to tempo νk. In particular, we

fix ν1 at a certain tempo (in BPM) and let νi := 2(i−1)/Lν1

for an integer L with A = LK. Hence each tempo octave is

sampled at L tempi. The CBS ~c(t) = (c(t, i))L
i=1 at position

t is then calculated by summing over all tempo octaves:

c(t, i) :=

K−1
∑

k=0

B(t, pi+kL).

In our experiments, we selected ν1 := 40, L = 30, and A =
90, resulting in the above range of 40–320 BPM covering

K = 3 tempo octaves.

As for any tempo ν, all tempi of the form 2kν are iden-

tified, the resulting spectrum may indeed by considered as

cyclic. A visual representation accounting for this fact is
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Figure 4. Criteria for local (i), global (ii), windowed (iii) signif-

icance are combined to yield significant maxima (iv).

shown in Fig. 3 where the eight tempo octaves are plotted

as closed curves which are stacked over each other. The

CBS resulting from summing over all octaves is depicted as

a bold curve.

A (cyclic) tempo estimate at position t of the novelty

curve may be then obtained from the CBS ~c(t) by choos-

ing ν′(t) := argmaxℓc(t, ℓ). Note that due to the modular

approach, ν′(t) only corresponds to a class of tempi rather

than to a concrete tempo. To obtain explicit tempo values

for a position t, we choose the tempo octave in the range

of [80, 160) BPM as a representative and define ν(t) :=
80 · 2ν′(t)/L. This choice is motivated by the observation

that the true musical tempo of many pieces lies in this par-

ticular BPM-range. The local beat period P (t) at position t
may then be defined as the reciprocal value P (t) := 1/ν(t).
We finally note that several local tempi may be estimated

by considering the first few significant local maxima of the

CBS.

4. Rhythm and Meter Features

Whereas tempo classes may be estimated for each sample

position of the novelty curve, rhythm- and meter-related fea-

tures are only estimated with respect to beat positions within

the underlying audio. In this section, we first describe a

novel method for the time-scale invariant extraction of beat

positions. We subsequently describe how time-scale invari-

ant rhythm- and meter-related features are extracted based

on those beat positions and the estimated local beat periods.

4.1. Detection of Beat Positions

Several methods for extracting beat positions from a sig-

nals novelty curve N have been described in the literature.

We propose to combine the following three criteria to de-

tect significant maxima of N which we will then assume

to correspond to beat positions. In particular, for each lo-

cal maximum at position t of N we calculate the maximum

left-sided and right-sided intervals

1. [t − kℓ : t] and [t : t + kr], such that N is strictly
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Figure 5. Extraction of rhythm feature R(t) = |τ − t|/P (t) at

beat position t.

increasing and decreasing resp. (local significance),

2. [t−κℓ : t] and [t : t+κr], such that N(t) is the global

maximum on both intervals (global significance),

3. [t−kℓ : t] and [t : t+kr], such that N(t) is the global

maximum of the novelty curve windowed by a trian-

gular window centered at t and extending kℓ samples

to the left and kr samples to the right (windowed sig-

nificance),

resulting in six significance values (kℓ, kr, κℓ, κr,kℓ,kr).
For a local maximum to be significant, we require that each

of its significance values exceeds a particular fraction of a

beat period: First, to eliminate small local maxima resulting

from noisy signal parts, we require the local significance to

exceed θ1 := 1/16 of a beat period. To achieve a minimum

inter onset interval (IOI), we furthermore require the global

significance to exceed θ2 := 1/2 of a beat period. Finally,

to avoid significance assignments to smaller peaks in noise-

like passages, we require the windowed significance values.

to exceed θ3 := 3/2 of a beat period. The significance val-

ues assigned to a maximum at position t hence depend on

the beat period at t. In particular,

m(t) := min

(

kℓ

θ1
,
kr

θ1
,
κℓ

θ2
,
κr

θ2
,
kℓ

θ3
,
kr

θ3

)

is the maximum beat period such that all three significance

requirements are satisfied, and a maximum at t is considered

as significant if an only if m(t) exceeds the beat period P (t).
The upper three curves of Fig. 4 illustrate each of the

three individual criteria used for extracting significant max-

ima. Extracted maxima according to those criteria are plot-

ted as vertical lines. The bottom plot shows the combined

criterion, where all of the three requirements are combined.

4.2. Rhythm Features

The features proposed in the following are motivated by the

musical notion of rhythm, i.e., the relative durations of sub-

sequent notes and pauses within a local neighborhood of a

piece of music. As we do not extract pauses, the following

feature class is constructed using note- (or, more precisely,

beat-) information only. Furthermore, as we use the posi-

tive novelty curve, the detected significant peaks do more

likely represent onsets of actual notes rather then note ends.
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Figure 6. Extraction of a 6D meter feature at beat position t.

The basic idea behind constructing rhythm-based features

now consists of considering ratios of subsequent significant

maxima and local beat periods. Fig. 5 shows a novelty curve

with significant maxima indicated by the label sig. To assign

a rhythm-like feature to a position t containing a significant

maximum, we first determine the position τ of the next sig-

nificant maximum and let R(t) := |τ − t|/P (t).

4.3. Meter Features

The musical meter encodes the accentuation of successive

notes resp. beat positions. Although the succession of ac-

centuated and unaccentuated beats musically is of periodic

nature, the local meter of an actual performance is generally

only pseudo-periodic. To measure the local accentuation in

a neighborhood of a particular beat position t, we sample the

novelty curve around t using a sampling interval of a quarter

beat period P (t):

M(t) := (N(t + round(kP (t)/4)) )5k=0

defines a local 6D meter feature at position t, see Fig. 6,

where the sampling positions kP (t)/4 are rounded to the

next sample position of the novelty curve. Note that al-

though this choice of sampling positions seemingly favors

rhythms related to quarters, our experiments show that the

resulting features are meaningful also for other rhythm types.

To conclude this section we note that a final postprocess-

ing step, where P (t), R(t), and M(t) are quantized to some

suitable sets of feature classes is performed as a preparatory

step for the subsequent index-based audio identification. For

example, instead of allowing a continuous range of meter

features, M(t) is quantized to a set of 32 meter classes.

5. Robust Identification of Time-Scaled Audio

To apply the proposed features to robust audio identification

we first summarize a previously proposed method for effi-

cient index-based audio identification and its adaptation to

time-scale invariant audio identification [9]. We then apply

the proposed features in an analogous fashion. Finally, we

give some test results of the resulting retrieval method.

5.1. Robust Audio Identification

We consider a database D of n audio signals (x1, . . . , xn).
Using a suitable feature extractor F , each signal xi is pro-

cessed to yield a feature set F [xi] consisting of pairs [t, f ],

Table 1. Identification rates for differently time-scaled queries

and top-5 rates (correct match is among the top 5 matches).

Scaling [%] 79 84 89 94 97

ID rate [%] 87 95 98 98 98

Top-5 rate [%] 90 97 99 99 99

Scaling [%] 103 106 112 119 126

ID rate [%] 99 98 98 94 90

Top-5 rate [%] 99 99 99 96 93

where f denotes a feature class and t ∈ Z a sample po-

sition. Then, [t, f ] ∈ F [xi] means that a feature of class

f is assigned to position t of xi. Note that we do not re-

quire the assigned features to be spaced regularly on the

time axis. After feature extraction, we obtain the feature

sets F [D] := (F [x1], . . . , F [xn]).
To identify a query signal q, the feature set F [q] is ex-

tracted and the actual audio identification is performed based

on the feature sets F [D]. In particular, a match to a query

q is given by a document ID i and a shift parameter T such

that F [q] + T ⊆ F [xi], i.e., the T -shifted query features

F [q] + T := {[t + T, f ] | [t, f ] ∈ F [q]}

coincide with features extracted from signal xi [8].

As time-scaled audio signals result in time-scaled feature

sets, this approach is not suitable to identify time-scaled au-

dio signals. To extend the approach to facilitate the iden-

tification of time-scaled audio, we introduce an additional

feature component s reflecting the time-scale of a particular

feature. Then, features are of the form [t, s, f ] and a feature-

based match now is a document ID i, a shift parameter T ,

and a scaling parameter S such that S · F [q] + T ⊆ F [xi],
where S ·F [q]+T := {[St+T, Ss+T, f ] | [t, s, f ] ∈ F [q]}
defines the set of time-scaled query features. Details on this

approach and the resulting indexing techique for fast audio

identification are beyond the scope of this paper, see [9].

5.2. Audio Features

To apply the technique for audio identification with last sec-

tion’s features, we note that the beat period P (t) at posi-

tion t actually changes linearly when the underlying signal

is time-scaled and may be hence used as the local time-scale

feature component s. The rhythm and meter features R(t)
and M(t) are time-scale invariant by construction and are

thus used as the local feature class f . In summary, for each

signal xi of D, we construct the set of features

F [xi] := {( t, P (t), [R(t),M(t)] ) | t beat pos. of N [xi]}.

Using the same procedure for a query signal q, it is straight

forward to use the above audio identification technique.

5.3. Test Results

For our tests we used a database of 100 audio pieces of var-

ious genres with a total duration of 7 hours of music, result-



Table 2. ID rates for simultaneos time-scaling, lossy MPEG-

compression, and addition of noise.

Scaling [%] 84 89 94 100 106 112 119

Coding [kbps] 32 64 128 - 128 64 32

SNR [dB] 6 12 18 ∞ 18 12 6

ID rate [%] 81 92 97 100 95 91 82

Top-5 rate [%] 87 95 98 100 97 94 87

Table 3. Identification rates for different signal degradations.

Type of Degradation ID rate [%]

Background Noise (SNR=18dB) 98

Background Noise (SNR=6dB) 92

MPEG@128 kBit/s 100

MPEG@32 kBit/s 96

Microphone recording (at 30cm) 91

Microphone recording (30cm, query len. 60s) 97

ing in about 50.000 features. To test the identification capa-

bilities, we generated 300 queries from those audio pieces.

For this, we chose three random excerpt of 30 seconds of

duration from each audio, one from the beginning, one from

the middle, and one from the end of the audio. To test the

robustness of the audio identification, the queries were first

processed by various signal transformations and then used

as an input to the above audio identification method.

Table 1 shows the robustness w.r.t. time scaling where

the audio signals are scaled from 79% – 126% of their orig-

inal lengths. The ID rate indicates percentage of queries

which are correctly identified by the first (top-1-) match. In

this, retrieval results are ranked according to the percentage

of query features matching a particular feature document.

Below, the percentage of correct matches among the top-5

matches are given. Note that the ratio of correct identifica-

tions is very high even for high scaling factors.

To test the identification robustness for a combination of

time-scaling and signal degradations, we conducted exten-

sive experiments where we considered degradations result-

ing from lossy compression, noise addition, time-stretching,

A/D conversion, and processing with various studio effects.

Table 2 shows ID rates for varying scaling factors, varying

MPEG-compression ratios and varying amounts of added

noise. Note that while the center colum refers to ID rates for

the undistorted audio, the degrees of signal degradation for

all three types of distortion is choosen to increase simulta-

neously. For example, the leftmost colum refers to ID rates

for a time-scaling to 84%, lossy compression with a bitrate

of 32 kbit/sec, and additive noise at a SNR of 6 dB.

Table 3 illustrates the robustness of the proposed method

w.r.t. several signal distortions for the case of unscaled sig-

nals. Although ID ratios are rather high, existing meth-

ods for audio identification using local spectral features are

known to provide better results for some of those cases.

We conclude that while the proposed features work well for

identifying even severely time-scaled audio, a suitable com-

bination with existing spectral feature sets should be used to

account for both the scaled and unscaled cases.

6. Conclusions

In this paper we proposed a new set of tempo-related au-

dio features that capture short-time tempo-, rhythm- und

meter-characteristics of a piece of music audio. Robustness

of the tempo features is obtained by reducing tempo esti-

mates to certain modular tempo classes which are invariant

w.r.t. tempo doubling, resulting in the concept of a cyclic

beat spectrum (CBS). We demonstrated how the proposed

features may be successfully applied to robust time-scale

invariant audio identification. In this, we obtain a substan-

tially improved identification performance for highly time-

scaled and distorted audio material. Future work will consist

of investigating how the proposed class of features may be

combined with chroma-based harmonic features [2] in or-

der to extend existing audio matching techniques to broader

classes of music. Furthermore, we will investigate how the

proposed feature types are related to their musical relatives.
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