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ABSTRACT Here, the crucial point is the notion siimilarity used to com-
One major goal of structural analysis of an audio recording@'e different audio segments, because such segments may be
is to automatically extract the repetitive structure or,reno regarded as musically similar in spite of considerablearari
generally, the musical form of the underlying piece of mu-tions in parameters such as dyngmlcs, t|mpre, exepunon of
sic. Recent approaches to this problem work well for musi@©t€ groups (e.g., grace notes, trills, arpeggios), madula
where the repetitions largely agree with respect to inserym  @'ticulation, or tempo progression. In this paper, we intro
tation and tempo, as is typically the case for popular musicduce a robust and efficient algorithm for the structural anal

For other classes of music such as Western classical musiSiS Of audio recordings, which can cope with significant

however, musically similar audio segments may exhibit Sig_vanauons in the parameters mentioned above includinglloc

nificant variations in parameters such as dynamics, timbrd€MpPO deformations. In particular, we introduce a new class
execution of note groups, modulation, articulation, amage of robust audio features as well as a new class of similarity

progression. In this paper, we propose a robust and efficief€asures that yield a high degree of invariance as needed to
algorithm for audio structure analysis, which allows toride COmpare musically similar segments. As opposed to previous

tify musically similar segments even in the presence ofdarg 2PProaches, which mainly deal with popular music and as-
variations in these parameters. To account for such varigti SUMe constant tempo throughout the piece, we have applied
our main idea is to incorporate invariance at various lesels OUr techniques to musically complex and versatile Western
multaneously: we design a new type of statistical featwes iClassical music. Before giving a more detailed overview of

absorb micro-variations, introduce an enhanced locaadist  OUr contributions and the structure of this paper (Sec, 1.3
measure to account for local variations, and describe a nef® Summarize a general strategy for audio structure asalysi

strategy for structure extraction that can cope with thé@glo 2nd introduce some notation thatis used throughout thieap
variations. Our experimental results with classical anpipo  (S€ct. 1.1). Related work will be discussed in Sect. 1.2.

lar music show that our algorithm performs successfullyneve

in the presence of significant musical variations. 1.1. General Strategy and Notation

Keywords and phrases: repetitive structure, audio summa- 1q exiract the repetitive structure from audio signals, tmos

rization, musical variations, similarity matrix enhana@m  f the existing approaches proceed in four steps. In the first
statistical chroma-based features, path extraction, eegm step, a suitable high-level representation of the audioesis

clustering, classical music computed. To this end, the audio signal is transformed into a
sequencd’ := (v1,42,...,9") of feature vectors™ ¢ F,
1. INTRODUCTION 1 < n < N. Here, F denotes a suitable feature space,

e.g., a space of spectral, MFCC, or chroma vectors. Based
Content-based document analysis and efficient audio browgn a suitable similarity measuié : F x F — R, one

ing in large music databases has become an important isstien computes aiV-squareself-similarity* matrix S defined
in music information retrieval. Here, the automatic annotapy S(n,m) := d(v",v™), effectively comparing all feature
tion of audio data by descriptive high-level features asl welvectorss™ and o™ for 1 < n,m < N in a pairwise fash-
as the automatic generation of cross-links between audio €jon. In the third step, the path structure is extracted frbe t
cerpts of similar musical content are of major concern. is th
context, the subproblem afudio structure analysisr, more 1in this paperd is a distance measure rather than a similarity measure
specifically, the automatic identification of musicallyeent ~ 2sSuming small values for similar and large values for dissirftature vec-

. . . . tors. Hence, the resulting matrix should strictly be calfiistance matrix
rgpeatlng patterns In some audio recording has been of CORzvyertheless, we use the tesimilarity matrix according to the standard
siderable research interest, see, e.qg., [2, 5, 6, 8, 12,513, 1 term used in previous work.
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Fig. 1. Self-similarity matrixS[41,10] of an Ormandy in-  Fig. 2. Self-similarity matrixS[41, 10] of an Chailly interpre-
terpretation of Brahms’ Hungarian Dance No. 5. Here, darkation of Shostakovich’s Waltz 2, Jazz Suite No. 2, havirgy th
colors correspond to low values (high similarity) and light musical formA; A, BC1C3 A3 A4 D. Due to significant vari-
colors correspond to high values (low similarity). The mu-ations in the audio recording, the path structure is frageten
sical form A; As By BoC A3 B3 B4 D is reflected by the path and of low quality. See also Fig. 6.

structure. For example, the curved path marked by the hori-

zontal and vertical lines indicates the similarity betwélea

segments corresponding & and .. measure) is shown in Fig. 1. Here, the repetitions implied by

the musical form are reflected by the path structure of the ma-

resulting self-similarity matrix. Here, the underlyingnmi- ~ trix. For example, the path starting @t, 22) and ending at
ple is that similar segments in the audio signal are revealetf2 42) (measured in seconds) indicates that the audio seg-
as paths along diagonals in the corresponding self-siityilar Ment represented by the the time interjdal 22] is similar to
matrix, where each such path corresponds to a pair of simfhe Segmen2 : 42]. Manual inspection reveals that the seg-
lar segments. Finally, in the fourth step, the global rejveti Ment[1 : 22] corresponds to part,, whereas22 : 42] corre-
structure is derived from the information about pairs ofisim SPONds tod,. Furthermore, the curved path starting at (42,69)
lar segments using suitable clustering techniques. and ending at (69,89) indicates that the segrfient 69] (cor-

To illustrate this approach, we consider two examples'€SPonding toB) is similar to [69 : 89] (corresponding to

which also serve as running examples throughout this paB2)' Note that in the Ormandy interpretation, tfg-part

per. The first example, for short referred to Bimhms ex- 'S Played much faster than tife,-part. This fact is also re-
ample consists of an Ormandy interpretation of Brahms Vealed by the gradient of the path, which encodes the relativ
Hungarian Dance No. 5. This piece has the the musicdPMpO difference between the two segments.
form A, A; By BoC A3 B3 B4 D consisting of three repeating As a second example, for short referred t&asstakovich
A-partsA;, A, and Ag, four repeatingB-partsB1, By, Bs  example we consider Shostakovich's Waltz 2 from his Jazz
and By, as well as &'- and aD-part. Generally, we will de- Suite No. 2 in a Chailly interpretation. This piece has the
note musical parts of a piece of music by capital letters suchmusical formA4, A, BC1Cy A3 A4 D, where the theme, repre-
as X, where all repetitions ok are enumerated as;, X2,  sented by thei-part, appears four times. However, there are
and so on. In the following, we will distinguish between asignificant variations in the fourd-parts concerning instru-
piece of musi¢in an abstract sense) and a particidadio  mentation, articulation, as well as dynamics. For exaniple,
recording (a concrete interpretation) of the piece. Here, thed; the theme is played by a clarinet, i by strings, in43 by
term part will be used in the context of the abstract musica trombone, and ial, by the full orchestra. As is illustrated
domain, whereas the teraegmentvill be used for the audio by Fig. 2, these variations result in a fragmented path &trac
domain. of low quality, making it hard to identify the musically sim-
The self-similarity matrix of the Brahms recording (with ilar segmentg4 : 40], [43 : 78], [145 : 179], and [182 : 217]
respect to suitable audio features and a particular siityilar corresponding tol;, A,, Az and A4, respectively.



1.2. Related Work repetitions largely agree with respect to instrumentatarn
ticulation, and tempo progression—as is often the case for
Most of the recent approaches to structural audio analgsis f popular music. In particular, most of the proposed strate-
cus on the detection of repeating patterns in popular musigies assume constant tempo throughout the piece (i.e. the
based on the strategy as described in Sect. 1.1. The conceqgatth candidates have gradi€it 1) in the self-similarity ma-
of similarity matrices has been introduced to the music contrix), which is then exploited in the path extraction andselu
text by Foote in order to visualize the time structure of audi tering procedure. For example, this assumption is used by
and music [7]. Based on these matrices, Foote and Cooper [&oto [8] in his strategy for segment recovery, by Lu et al][12
report on first experiments on automatic audio summarigatioin their boundary refinement, and by Chai et al. [3, 4], in the
using mel-frequency cepstral coefficients (MFCCs). Tovallo step of segment merging. The reported experimental results
for small variations in performance, orchestration anityr  refer almost entirely to popular music. For this genre, the
Bartsch and Wakefield [1, 2] introduced chroma-based audiproposed structure analysis algorithms report on goodtsesu
features to structural audio analysis. Chroma featur@sere even in presence of variations with respect to instrumimtat
senting the spectral energy of each of tdraditional pitch  and lyrics.
classes of the equal-tempered scale, were also used in-subse For music, however, where musically similar segments
guent works such as [6, 8]. Goto [8] describes a method thaixhibit significant variations in instrumentation, exaecentof
detects the chorus sections in audio recordings of popular mnote groups, and local tempo, there are yet no effective and
sic. Important contributions of this work are, among othersefficient solutions to audio structure analysis. Here, tkaénm
the automatic identification of both ends of a chorus sectionlifficulties arise from the fact that due to spectral and tem-
(without prior knowledge of the chorus length) and the in-poral variations the quality of the resulting path struetof
troduction of some shifting technique which allows to dealthe self-similarity matrix significantly suffers from misg
with modulations. Furthermore, Goto introduces a techaiquand fragmented paths, see Fig. 2. Furthermore, the presence
to cope with missing or inaccurately extracted candidates mf significant local tempo variations—as they frequently oc-
repeating segments. In their work on repeating pattern diseur in Western classical music— can not be dealt with by the
covery, Lu et al. [12] suggest a local distance measuressthat suggested strategies. As another problem, the high time and
invariant with respect to harmonic intervals, introducsagne  space complexity o) (N?) to compute and store the simi-
robustness to variations in instrumentation. Furtherptbey  larity matrices makes the usage of self-similarity masiice
describe a postprocessing technique to optimize bourslarigeasible for largeN. It is the objective of this paper to in-
of the candidate segments. At this point we note that théroduce several fundamental techniques, which allow te effi
above mentioned approaches, while exploiting that repgati ciently perform structural audio analysis even in presesfce
segments are of the same duration, are based on the constsiginificant musical variations, see Sect. 1.3.
tempo assumption. Dannenberg and Hu [6] describe several Finally, we mention that first audio interfaces have been
general strategies for path extraction, which indicate lmw developed facilitating intuitive audio browsing based ba t
achieve robustness to small local tempo variations. There aextracted audio structure. The SmartMusicKIOSK system [9]
also several approaches to structural analysis based on leaintegrates functionalities for jumping to the chorus secti
ing methods such as hidden Markov models (HMMs) usednd other key parts of a popular song as well as for visual-
to cluster similar segments into groups, see, e.g., [11a848] izing song structure. The system constitutes the firstfater
the references therein. In the contexhaisic summarization  that allows the user to easily skip sections of low intereshe
where the aim is to generate a list of the most representativgithin a song. The SyncPlayer system [10] allows a mul-
musical segments without considering musical structute, Xtimodal presentation of audio and associated music-gklate
etal. [18] use support vector machines (SVMs) for classdyi data. Here, a recently developed audio structure plug-in no
audio recordings into segments of pure and vocal music.  only allows for an efficient audio browsing but also for a di-
Maddage et al. [13] exploit some heuristics on the typ+ect comparison of musically related segments, which ¢onst
ical structure of popular music for both determining candi-tutes a valuable tool in music research.
date segments and deriving the musical structure of a partic Further suitable references to related work will be given
ular recording based on those segments. Their approach iwthe respective sections.
structure analysis relies on the assumption that the a@elyz
recording follows a typicalerse-chorus pattern repetition
As opposed to the general strategy introduced in Sectign 1.
their approach only requires to implicitly calculate pats  |n this paper, we introduce several new techniques, todffor
self-similarity matrix by considering only the candida&gs  an automatic and efficient structural analysis even in tee-pr
ments. ence of large musical variations. For the first time, we re-
In summary, there have been several recent approachesgort on our experiments on Western classical music includ-
audio structure analysis that work well for music where theng complex orchestral pieces. Our proposed structure anal

%.3. Contributions



ysis algorithm follows the four-stage strategy as desdrine robustness to admissible variations on the one hand and accu
Sect. 1.1. Here, one essential idea is that we account for muacy with respect to the relevant characteristics on theroth
sical variations by incorporating invariance and robussret  hand. Furthermore, the features should support an efficient
all four stages simultaneously. The following overview sum algorithmic solution of the problem they are designed for. |
marizes the main contributions and describes the struofure our structure analysis scenario, we consider audio segment
this paper. as similar if they represent the same musical content regard
less of the specific articulation and instrumentation. hmeot

1. Audio Features. We introduce a new class of ro- .
bust and scalable audio features considering Shore/_vords, the structure extraction procedure has to be robust

time statistics over chroma-based energy distributioné0 variations in timbre, dynamics, articulation, local femn

(Sect. 2). Such features not only allow to absorb Vari_changes, and global tempo up to the point of variations in

ations in parameters such as dynamics, timbre, artic?0® groups su_ch as trll!s or grace notes. _
lation, execution of note groups, and temporal micro- In this section, we introduce a new class of audio fea-

deviations, but can also be efficiently processed in thdures, which possess a high degree of robustness to vasatio
subsequent steps due to their low resolution. The prOQf the above mentioned parameters and strongly correlate to

posed features strongly correlate to the short-time hathe harmonics information contained in the audio signas. |
monic content of the underlying audio signal. the feature extraction, we proceed in two stages as indicate

by Fig. 3. In the first stage, we use a small analysis win-
2. Similarity Measure: As a second contribution, we sig- dow to investigate how the signal’'s energy locally disttésu
nificantly enhance the path structure of a self-similarityamong the 12 chroma classes (Sect. 2.1). Using chroma distri
matrix by incorporating contextual information at var- putions not only takes into account the close octave relatio
ious tempo levels into the local similarity measureship in both melody and harmony as prominent in Western
(Sect. 3). This accounts for local temporal variationsmusic, see [2], but also introduces a high degree of robust-
and significantly smooths the path structures. ness to variations in dynamics, timbre, and articulatiom. |

3. Path Extraction: Based on the enhanced matrix. we the second stage, we use a much larger statistics window to
suggest a robust and efficient path extraction procedur%ompme thresholded short-time statistics over thesenthro
using a greedy strategy (Sect. 4). This step takes care §1€T9Y distributions in order to introduce robustness tallo

relative differences in the tempo progression betweefiMe deviations and additional notes (Sect. 2.2). (As aggne
musically similar segments. strategy, statistics such as pitch histograms for audiocasig

have been proven to be a useful tool in music genre classifica-
4. Global Structure: Each path encodes a pair of musi- tion, see, e.g., [17].) In the following, we identify the nizes
cally similar segments. To determine the global repetnotes A0 to C8 (the range of a standard piano) with the MIDI
itive structure, we describe a one-step transitivity cluspitchesp = 21 to p = 108. For example, we speak of the

tering procedure, which balances out the inconsistenote A4 (frequencyt40 Hz) and simply writep = 69.
cies introduced by inaccurate and incorrect path extrac-

tions (Sect. 5).
) ) .. 2.1. First stage: local chroma energy distribution
We evaluated our structure extraction algorithm on a wide

range of Western classical music including complex orchesFirst, we decompose the audio signal iRfafrequency bands
tral and vocal works (Sect. 6). The experimental resultsvith center frequencies corresponding to the MIDI pitches
show that our method successfully identifies the repetitivgy = 21 to p = 108. To properly separate adjacent pitches,
structure—often corresponding to the musical form of theye need filters with narrow passbands, high rejection in the
underlying piece—even in the presence of significant variastopbands, and sharp cutoffs. In order to design a set atfilte
tions as indicated by the Brahms and Shostakovich examplesatisfying these stringent requirements for all MIDI noites
Our MATLAB implementation performs the structure anal- question, we work with three different sampling rat22050

ysis task within a couple of minutes even for long and verHz for high frequenciesp( = 96,...,108), 4410 Hz for
satile audio recordings such as Ravel's Bolero, which has medium frequenciesp(= 60,...,95), and882 Hz for low
duration of more thari5 minutes and possesses a rich pathfrequenciesy = 21, . ..,59). To this end, the original audio

structure. Further results and an audio demonstration cagignal is downsampled to the required sampling rates after
be found atht t p: // www nmdb. i ai . uni - bonn. de/  applying suitable anti-aliasing filters. Working with difent

proj ect s/ audi ostructure. sampling rates also takes into account that the time resolu-
tion naturally decreases in the analysis of lower frequemnci
2. ROBUST AUDIO FEATURES Each of the88 filters is realized as an eighth-order elliptic

filter with 1 dB passband ripple angd dB rejection in the
In this section, we consider the design of audio featuresstopband. To separate the notes, we uégfactor (ratio of
where one has to deal with two mutually conflicting goals:center frequency to bandwidth) 6§ = 25 and a transition



Stage 1- Stage 2

108 108 CENS
Subband —— | Short-time | —— | Chroma B Quantization| B Convolution B Normalization B
H —_— —_— —_— : _—
a_udlo decqm- : mean-sq. . energy . Thresholds : Hann window Downsampling :
signal | postion : power : distribution . 0.05-0.1 . . ds = .
—_ c# : : c# |w=w C# _—q C#
88 bands 22 |wl=200ms| 22 [12bands |——|0.1-0.2 —= — |sr=10/q =
sr= 882, 21’ ov =100 ms| 21’ c |02-04 c c c
4410,22050| —==, | sr=10 il T =04 ” ” ”

Fig. 3. Two-stage CENS feature design (wlwindow length, ov= overlap, sr= sampling rate, ds- downsampling factor).

dB

20

‘ ‘ ‘ ‘ ‘ ‘ ‘ 1 the Brahms example given in the introduction, the resulting
60 70 80 88-92 ) I .

of 0 i /wm 1 sequence is shown in Fig. 5 (light curve). Furthermore, to
20 /\ ‘w ‘\ | /\ \ avoid random energy distributions occurring during passag

or | . Ll of very low energy, (e.g., passages of silence before the ac-
o PRI SIS STV g al start of the recording or during long pauses), we assign
Normalized Frequency{r rad/samples) an equally distributed chroma energy to such passages. We

Fig. 4. Magnitude responses in dB for the elliptic filters cor- /SO tested the short time Fourier transform (STFT) to com-

responding to the MIDI notes 60, 70, 80, as&ito 92 with pute the chroma features by pooling the spectral coeffigient
respect to the sampling rate 610 Hz. as suggested in [2]. Even though obtaining similar features

our filter bank approach, while having a comparable compu-
tational cost, allows a better control over the frequencydsa
band having half the width of the passband. Figure 4 show$his particularly holds for the low frequencies, which isedu
the magnitude response of some of these filters. to the more adequate resolution in time and frequency.
Elliptic filters have excellent cutoff properties as well as
low filter orders. 'Howgver, these properties are'at thg a@enﬁzlzl Second stage: normalized short-time statistics
of large phase distortions and group delays. Since in our 0
line scenario the entire audio signals are known prior to thén view of possible variations in local tempo, articulation
filtering step, one can apply the following trick: after fiitsg  and note execution, the local chroma energy distributian fe
in the forward direction, the filtered signal is reversed amd  tures are still too sensitive. Furthermore, as it will tuut o
back through the filter. The resulting output signal has prein Sect. 3, a flexible and computationally inexpensive proce
cisely zero phase distortion and a magnitude modified by thgure is needed to adjust the feature resolution. Therefare,
square of the filter's magnitude response. Further details m further process the chroma features by introducing a second
be found in standard text books on digital signal processinghuch larger statistics window and considéort-time statis-
such as [16]. tics concerning the chroma energy distribution over this win-
As a next step, we compute the short-time mean-squargow. More specifically, let) : [0,1] — {0,1,2,3,4} be a
power (STMSP) for each of the 88 subbands by convolvingjuantization function defined by
the squared subband signals by a 200 ms rectangular win-

dow with an overlap of half the window size. Note that the 0 for 0 < a < 0.05

actual window size depends on the respective sampling rate 1 for 005 < a < 0.1,

of 22050, 4410, and882 Hz, which is compensated in the Qa):==4 2 for 01 < a < 02 (1)
energy computation by introducing an additional factoi of 3 for 02 < a < 04,

5, and25, respectively. Then, we compute STMSPs of all 4 for 04 < a < 1.

chroma classe€!, C#, ..., B by adding up the correspond-
ing STMSPs of all pitches belonging to the respective class. Then, we quantize each chroma energy distribution vector
For example, to compute the STMSP of the chroma C, we™ = (v7,...,07%,) € [0,1]'2 by applying@ to each com-
add up the STMSPs of the pitches C1, C2,, C8 (MIDI  ponent oft™, yielding Q(v™) := (Q(v}),...,Q(v},)). In-
pitches24, 36, . .., 108). This yields for every 100 ms a real tuitively, this quantization assigns a value ofo a chroma
12-dimensional vecto¥ = (vy, vz ...,v12) € R'?, wherev;  componentv? if the corresponding chroma class contains
corresponds to chrom@, v, to chromaC#, and so on. Fi- more thard0 percent of the signal’s total energy and so on.
nally, we compute the energy distribution relative to the 12The thresholds are chosen in a logarithmic fashion. Further
chroma classes by replacimgy 6/(2321 v;). more, chroma components belowsaercent threshold are
In summary, in the first stage the audio signal is converteéxcluded from further considerations. For example, the vec
into a sequencedt, 72, ..., ) of 12-dimensional chroma tor v™ = (0.02,0.5,0.3,0.07,0.11,0,...,0) is transformed
distribution vectorsi™ € [0,1]'2 for 1 < n < N. For intothe vectoQ(v") := (0,4,3,1,2,0,...,0).
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Fig. 5. Local chroma energy distributions (light curves, 10 featectors per second) and CENS feature sequence (dark bars,
1 feature vector per second) of the segnijédt 69] (left, corresponding td;) and segment9 : 89] (right, corresponding to

B,) of the Brahms example shown in Fig. 1. Note that even thohghrelative tempo progression in the paBsand B; is
different, the harmonic progression at the low resoluterel of the CENS features is very similar.

In a subsequent step, we convolve the sequendeank with fixed frequency bands is based on the assumption
(Q(Th),...,Q(v")) component-wise with a Hann window of well-tuned instruments. Slight deviations of up to 30—40
of lengthw € N. This again results in a sequencel@  cents from the center frequencies can be compensated by the
dimensional vectors with non-negative entries, repraésgnt filters, which have relatively wide pass bands of constant am
a kind of weighted statistics of the energy distributionroae plitude response. Global deviations in tuning can be com-
window ofw consecutive vectors. In a last step, this sequencpensated by employing a suitably adjusted filter bank. How-
is downsampled by a factor g¢f The resulting vectors are ever, phenomena such as strong string vibratos or pitch os-
normalized with respect to the Euclidean norm. For exameillation as is typical for, e.g., kettledrums lead to sfgant
ple, if w = 41 andg = 10, one obtains one feature vector and problematic pitch smearing effects. Here, the detectio
per second, each corresponding to roughly 4100 ms of audiand smoothing of such fluctuations, which is certainly not an
For short, the resulting features are referred to as GeENg  easy task, may be necessary prior to the filtering step. How-
(ChromaEnergy distributionNormalizedStatistics). These ever, as we will see in Sect. 6, the CENS features generally
features are elements of the following set of vectors: still lead to good analysis results even in the presenceeof th

- 12 artifacts mentioned above.
F = {17:(1]17...,’[]12) c [0,1]12 | Zi:lvle}. (2)

Fig. 5 shows the resulting sequence of CENS feature vectors 3. SIMILARITY MEASURE
for our Brahms example. Similar features have been applied
in the audio matching scenario, see [14]. In this section, we introduce a strategy for enhancing thie pa

By modifying the parameters andq, we may adjust the structure of a self-similarity matrix by designing a suleab
feature granularity and sampling rate without repeatirey thlocal similarity measure. To this end, we proceed in three
cost-intensive computations in Sect. 2.1. Furthermorangh steps. As a starting point, let : 7 x F — [0, 1] be the
ing the thresholds and values of the quantization funaffon similarity measure on the spade c R'? of CENS feature
allows to enhance or mask out certain aspects of the audigectors (see (2)) defined by
signal, e.g., making the CENS features insensitive to noise
components that may arise during note attacks. Finallpgusi d(0,w) := 1 — (U, ) 3)
statistics over relatively large windows not only smooths o
micro-temporal deviations, as may occur for articulat@g-r for CENSw, g]-vectorsv, @ € F. Sincev and are normal-
sons, but also compensates for different realizations té noized, the inner produgt, &) coincides with the cosine of the
groups such as trills or arpeggios. angle betweel andw. For short, the resulting self-similarity

In conclusion, we mention some potential problems conmatrix will also be denoted b§[w, ¢] or simply byS if w and
cerning the proposed CENS features. The usage of a filterare clear from the context.
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Fig. 6. Enhancement of the similarity matrix of the

Shostakovich example, see Fig. 2. (a),(§{41,10] and
enlargement. (c),(d)Sio[41,10] and enlargement. (e),(f):
Smin[41,10] and enlargement.

To further enhance the path structureSéfv, ¢|, we incor-
porate contextual information into the local similarity ane
sure. A similar approach has been suggested in [2] or [12
where the self-similarity matrix is filtered along diagohabk-

suming constant tempo. We will show later in this section

how to remove this assumption by, intuitively speaking, fil-
tering along various directions simultaneously, wheréezic
the directions corresponds to a different local tempo. §j,[1
matrix enhancement is achieved by using HMM-based “dy

namic” features, which model the temporal evolution of the
spectral shape over a fixed time duration. For the momenfl,
we also assume constant tempo and then, in a second step,

describe how to get rid of this assumption. letc N be a
length parameter. We define tbentextual similarity measure
dr, by

~

1
d(,l—)’fl+f7 ,Um-ﬁ-f

); (4)

S

dr,(n,m) =

~
I
o

wherel < n,m < N — L + 1. By suitably extending
the CENS sequende’, . .., V), e.g., via zero-padding, one

w 29 33 37 41 45 49 53 57
q 7 8 9 10 11 12 13 14
tc 143 125 11 10 09 083 0.77 07

Table 1. Tempo changes (tc) simulated by changing the statis-
tics window sizew and the downsampling facter

may extend the definition t@ < n,m < N. Then, the
contextual similarity matrixSy, is defined bySy(n,m) :
dr(n,m). In this matrix, a valuel, (n,m) € [0, 1] close to
zero implies that the entire-sequencés™, ..., 7" +L~1) is
similar to theL-sequencés™, . .., ™ +L~1), resulting in an
enhancement of the diagonal path structure in the sinyilarit
matrix. This is also illustrated by our Shostakovich exasnpl
showingS|[41, 10] in Fig. 6 (a) andSo[41, 10] in Fig. 6 (c).
Here, the diagonal path structure®i,[41, 10]—as opposed

to the one of5[41, 10]—is much clearer, which not only facil-
itates the extraction of structural information but alsiowas

to further decrease the feature sampling rate. Note that the
contextual similarity matrixS; can be efficiently computed
from S by applying an averaging filter along the diagonals.
More preciselySy, (n,m) = L 77" S(n + £,m + ¢) (with

a suitable zero-padding &).

So far, we have enhanced similarity matrices by regarding
the context of. consecutive features vectors. This proce-
dure is problematic when similar segments do not have the
same tempo. Such a situation frequently occurs in classical
music—even within the same interpretation—as is shown by
our Brahms example, see Fig. 1. To account for such varia-
tions we, intuitively speaking, create several versioneraf
of the audio data streams, each corresponding to a different
global tempo, which are then incorporated into one single
similarity measure. More precisely, 1&t[w, q] denote the
CENSw, q] sequence of lengtl [w, ¢] obtained from the au-
dio data stream in question. For the sake of concreteness, we
choosew = 41 andq = 10 as reference parameters, resulting
in a feature sampling rate afHz. We now simulate a tempo
*hange of the data stream by modifying the values ahdq.

For example, using a window size af = 53 (instead of41)

and a downsampling factor gf = 13 (instead of10) simu-
lates a tempo change of the original data stream by a factor of
10/13 &~ 0.77. In our experiments, we use&different tempi

as indicated by Table 1, covering tempo variations of royghl
—30 to +40 percent. We then define a new similarity measure

12'/1111 by

min : 1 “ — n+el - m+L
AP (n,m) : [rlrjlg 7 ; d(v[41, 10", vw, q] >7
(®)
where the minimum is taken over the palts, ¢| listed in
Table 1 andn = [m - 10/q]. In other words, at position
(n,m), the L-subsequence df [41,10] starting at absolute
time n (note that the feature sampling rateli$iz) is com-

pared with the.-subsequence d_fl;[w, q] (simulating a tempo
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Fig. 7. Enhancement of the similarity matrix of the Brahms
example, see Fig. 1. (a),(b)S[41,10] and enlargement.
(c),(d): S10[41, 10] and enlargement. (e),(fB3»[41, 10] and
enlargement.

change of10/q) starting at absolute time: (corresponding
to feature positionn = [m - 10/¢q]). From this we ob-
tain the modified contextual similarity matrig** defined
by S®in(n,m) := dP"(n,m). Fig. 7 shows that incorpo-
rating local tempo variations into contextual similarityatri-
ces significantly improves the quality of the path structure
in particular for the case that similar audio segments éthib
different local relative tempi.

4. PATH EXTRACTION

N]2,1 < k < K, satisfying the path constraints

DPr+1 = pi + 6 forsomed € A, (6)
whereA := {(1,1),(1,2),(2,1)} andl < k < K — 1. The
pairsp, will also be called thdinks of P. Then thecostof

link pr = (ng, my) is defined asS(nk, my). Now, it is the
objective to extract long paths consisting of links haviog |
costs. Our path extraction algorithm consists of threesstep
In Step (1), we start with a link of minimal cost, referred o a
initial link, and construct a path in a greedy fashion by itera-
tively adding links of low cost, referred to asimissible links

In Step (2), all links in a neighborhood of the constructetthpa
are excluded from further considerations by suitably medif
ing S. Then, Step (1) and Step (2) are repeated until there
are no links of low cost left. Finally, the extracted paths ar
postprocessed in Step (3). The details are as follows:

(0) Initialization: SetS = S™in[w, g] and letCiy,, Cag €
R~ be two suitable thresholds for the maximal cost of
the initial links and the admissible links, respectively.
(In our experiments, we typically chose)8 < ¢}, <
0.15 and0.12 < Cyq < 0.2.) We modify S by setting
S(n,m) = Chq for n < m, i.e., the links below the
diagonal will be excluded in the following steps. Simi-
larly, we exclude the neighborhood of the diagonal path
P=((1,1),(2,2),...,(N,N)) by modifyingS using
the path removal strategy as described in Step (2).

(1) Path construction: Letpy = (ng,mo) € [1 : N]? be

the indices minimizingS(n, m). If S(ng,mo) > Ciy,

the algorithm terminates. Otherwise, we construct a
new pathP by extendingp iteratively, where all possi-

ble extensions are described by Fig. 8 (a). Suppose we
have already constructdd = (p,, ..., po, ..., ps) for

a < 0andb > 0. Then, ifmingca (S(py + 6)) < Caq,

we extendP by setting

Po+1 = Pp + &fgminéeA(S(Pb +9)), (7)
and, ifmingea (S(pa —9)) < Cag, €xtendP by setting
Pa—1 = Da — argminge 5 (S(pq — 9)). (8)

Fig. 8 (b) illustrates such a path. If there are no fur-
ther extensions with admissible links, we proceed with
Step (2). Shifting the indices hy+ 1, we may assume
that the resulting path is of the ford = (p1,...,pk)

In the last two sections, we have introduced a combination of
techniques—robust CENS features and usage of contextual
information—resulting in smooth and structurally enhanced
self-similarity matrices. We now describe a flexible and ef-
ficient strategy to extract the paths of a given self-sintijar
matrix S = SPin[w, g].

Mathematically, we define a path to be a sequeRce
(p1,pe,-..,pK) Of pairs of indicesp, = (ng,my) € [1 :

(2)

with K =a+b+ 1.

Path removal: For a fixed linkpy, = (ng, my) of P
we consider the maximal numbes, < m* < N
with the property thasS(ny, my) < S(ng, mi + 1) <

< S(ng,m*). In other words, the sequence
(nk, mg), (ng,mi + 1),..., (ng, m*) defines aray
starting at positior{ny, m;) and running horizontally
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Fig. 9. lllustration of the path extraction algorithm for the
Brahms example of Fig. 1. (a) Self-similarity matix =
Smin[41,10]. Here, all values exceeding the thresh6lg, =
0.16 are plotted in white. (b) MatrixS after Step (0) (initial-
ization). (c) MatrixS after performing Step (1) and Step (2)

Note that\/(P) defines a neighborhood of the path
To exclude the links of\V'(P) from further considera-
tion, we setS(n, m) = C,q for all (n,m) € N(P) and
continue by repeating Step (1).

In our actual implementation, we made Step (2) moreonce using the thresholds, = 0.08 andC,q = 0.16. Note

robust by softening the monotonicity condition on the raysthat a long path in the left upper corner was constructed, the
After the above algorithm terminates, we obtain a set oheighborhood of which has then been removed. (d) Result-
..., P;} after the postprocessing of

paths denoted b§, which is postprocessed in a third steping path setP = {P;,

by means of some heuristics. For the following, let=
(p1,p2, - - -, pr) denote a path ifP.

(3a) Removing short paths: All paths that have a length
K shorter than a threshol; € N are removed. (In
our experiments, we chose< K, < 10.) Such paths
frequently occur as a result of residual links that have

Step (3) usingsy = 5 andCp, = 0.10. The indexm of P,
is indicated along each respective path.

contextual information into the local similarity mea-

sure, a low costS(px) d®in(n,my) of the

not been correctly removed by Step (2). link px = (nx,mr) implies that the whole se-
=n “n+L—1 i imi

(3b) Pruning paths: We prune each patk € P at the be- ?ouﬁiii(fj “ []41’ 10]%'}(' jrf_ll([ ])[4f1c;r1(t)k}1élfnisl;rirr]rl1liii
ginning by removing the linkg, , p, . . ., px, up to the I S LA w4
index0 < ky < K, wherek, denotes the maximal ng [w.’ ¢] of Table 1, see Sect. 3. Here the length and
index such that the cost of each lik. po Dh. €X- direction of the extensiopg 1, ...,px+1, depends

ye e s Dho o
ceeds some suitably chosen thresh@lg lying in be- (S)QttLhe_vaLluaejéu, q}._(ln t:i?;?%ﬁl B {41’ 10]L, V\;e
tweenC}, andCl,q. Analogously, we prune the end of 0= Pk = PK ’ AR
each path. This step is performed due to the following
observation: introducing contextual information into _ ) _ .
the local similarity measure results in a smoothing ef- Fig. 9 illustrates the steps of our path extraction algmuth
fect of the paths along the diagonal direction. This, info" the Brahms example. Part (d) shows the resulting path
turn, results in a blurring effect at the beginning and endetP. Note that each path corresponds to a pair of simi-
of such paths—as illustrated by Fig. 6 (f)—unnaturallylar segments and encodes thg relative tempo progression be-
extending such paths at both ends in the construction J¥Ve€n these two segments. Fig. 10 (b) shows th@det the
Step (1). Shostakovich example. In spite of the matrix enhancement,
the similarity between the segments correspondingtand
c) Extending paths: e then extend each path Az has not been correctly identified, resulting in the aborte
(3c) Extendi h We th d h h Ash b ly identified Iting in the aborted

P € P at its end by adding suitable links pathP;, (which should correctly start at linkt, 145)). Even
DK+1,---,DK+Lo- This step is performed due to though, as we will show in the next section, the extracted in-
the following reason: since we have incorporatedformation is sufficient to correctly derive the global sture.
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Fig. 10. Shostakovich example of Fig. 2. (&8)4"[41,10].

as similar toy resulting in the clustefc, 3, v}. The situation
becomes more complicated wheroverlaps with some seg-
ment 3 which, in turn, is similar to segment. This would
imply that a subsegment of is similar to some subsegment

of v. In practice, the construction of similarity clusters brit
atively continuing in the above fashion is problematic. ¢jer
inconsistencies in the path relations due to semantic &zagu
concept of musical similarity) or to algorithmic (inacctety
extracted or missing paths) reasons may lead to meaningless
clusters, e.g., containing a series of segments where each
segment is a slightly shifted version of its predecessor. Fo

(b)P = {P,..., Ps} based on the same parameters as in th€xample, leta = [1 :10], 5 = [11:20], v = [22: 31], and

Brahms example of Fig. 9. The index of P,, is indicated
along each respective path.

5. GLOBAL STRUCTURE ANALYSIS

0 = [3 : 11]. Then similarity relations betweenand/, § and

-, v andd would imply thata = [1 : 10] has to be regarded

as similar tod = [3: 11], and so on. To balance out such
inconsistencies, previous strategies such as [8] rely tipen
constant tempo assumption. To achieve a robust and meaning-
ful clustering even in the presence of significant local temp

In this section, we propose an algorithm to determine thgariations, we suggest a new clustering algorithm, which pr
global repetitive structure of the underlying piece of nusi ceeds in three steps. To this end,et= {Py, P,, ..., Py}
from the relations defined by the extracted paths. We firshe the set of extracted pattf,, 1 < m < M. In Step (1)

introduce some notation. Aegmentx = [s : ¢] is given
by its starting points and end point, wheres andt¢ are

(transitivity step) and Step (2) (merging step), we compaite
eachP,, a similarity clusterA4,, consisting of all segments

given in terms of the corresponding indices in the feature sghat are either similar tar, (P,,) or to 73(P,,). In Step (3),

quencel = (7,2, ...,7V), see Sect. 1. Aimilarity clus-
ter A :={ay,...,ap} of sizeM € Nis defined to be a set

we then discard the redundant clusters. We exemplarily ex-
plain the procedure of Step (1) and Step (2) by considering

of segmentsy,,, 1 < m < M, which are considered to be the pathp;.

mutually similar. Then, thglobal structureis described by a
complete list of relevant similarity clusters of maximatesi
In other words, the list should represent all repetitionsaf
sically relevant segments. Furthermore, if a cluster dosta

segmenty, then the cluster should also contain all other seg-
ments similar tax. For example, in our Shostakovich exam-
ple of Fig. 2 the global structure is described by the clsster

Ay = {a1,a9,a3,a4} and Ay = {vy1,72}, where the seg-
mentsay, correspond to the partd, for 1 < k& < 4 and the
segmentsy;, to the parta’y, for 1 < k£ < 2. Given a cluster
A=Aay,...;apy}with @, = [s5, 2 tn], 1 <m < M, the

supportof A is defined to be the subset

supp(A) == UM_ [sm : tm] C [1: N]. 9)

Recall that each patl? indicates a pair of similar seg-
ments. More precisely, the path= (p, . .., px) With p, =
(nk,my) indicates that the segment (P) := [n1 : nk]
is similar to the segmenty(P) := [m; : mg|. Such a
pair of segments will also be referred to apath relation

As an example, Fig. 11 (a) shows the path relations of our
Shostakovich example. In this section, we describe an algo-

rithm that derives large and consistent similarity clustesm
the path relations induced by the getof extracted paths.

(1) Transitivity Step: Let Tis be a suitable tolerance pa-
rameter measured in percent (in our experiments we
usedTi, = 90). First, we construct a clusted} for
the pathP; and the segment := m1(P;). To this
end, we check for all pathB,,, whether the intersection
ag = aNm(Py,) contains more thaffis percent of
a, i.e., whethellag|/|a| > Tis/100. In the affirma-
tive case, letd, be the subsegment af,(P,,) that cor-
responds undeP,, to the subsegment, of w1 (Fy,).
We addag and 3, to Al. Similarly, we check for all
pathsP,, whether the intersectiong := a N w3 (Py,)
contains more thafii; percent ofo and add in the af-
firmative caseny and g, to Al, where this timeg, is
the subsegment of; (P,,) that corresponds undét,,
to ag. Note thats, generally does not have the same
length asay. (Recall that the relative tempo variation
is encoded by the gradient @,,.) Analogously, we
construct a clusted? for the pathP; and the segment
a := my(Py). The clustersd} and.A? can be regarded
as the result of the first iterative step towards forming
the transitive closure.

(2) Merging Step: The clusterA; is constructed by ba-

From a theoretical point of view, one has to construct some
kind of transitive closure of the path relations, see aldo [6
For example, if segment is similar to segmeng, and seg-
ment/ is similar to segment, thena should also be regarded

sically merging the clustergll and.A2. To this end,
we compare each segmentc Al with each segment
B3 € A2. In the case that the intersection.= o N 8
contains more thaffi; percent ofa and of 5 (i. e., «
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Fig. 11. |lllustration of the clustering algorithm for the
Shostakovich example. The path get= {P,..., P} is
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Fig. 12. Steps of the clustering algorithm for the Brahms ex-
ample, see Fig. 9. For details we refer to Fig. 11. The final

shown in Fig. 10 (b). Segments are indicated by gray bars an@sult correctly represents the global structure: Thetetus

overlaps are indicated by black regions. (a) lllustratibthe
two segmentsr (P,,,) andmy(P,,) for each pathP,, € P,

1 < m < 6. Rowm corresponds td>,,. (b) ClustersAl,
and. A2, (rows2m — 1 and2m) computed in Step (1) with
Tis = 90. (c) ClustersA,, (row m) computed in Step (2).
(d) Final result of the clustering algorithm after perfongi
Step (3) withTy. = 90. The derived global structure is given

by two similarity clusters. The first cluster corresponds to

the musical part§A;, Ao, Az, A4} (first row) and the second
cluster to{C, Cs} (second row), cf. Fig. 2.

essentially coincides witl$), we add the segment
to A;. In the case that for a fixed € A} the inter-
sectiona N supp(A%) contains less thafl00 — Tis)
percent ofa (i.e., « is essentially disjoint with all
B € A?), we adda to A;. Symmetrically, if for a
fixed 3 € .A? the intersection3 N supp(A}) contains
less than(100 — Tis) percent of3, we addg to A;.

of the second row corresponds{®;, By, Bs, B4}, and the
one of the third row to{ A;, A5, As}. Finally, the cluster of

the first row expresses the similarity betweénB; B; and

A3 B3 By, cf. Flg 1.

(3) Discarding clusters. Let Ty. be a suitable tolerance
parameter measured in percent (in our experiments we
choseTy. between80 and 90 percent). We say that
clusterA is aTy.-coverof clusterB if the intersection
supp(A) N supp(B) contains more thafly. percent
of supp(B). By pairwise comparison of all clusters
A, we successively discard all clusters that Ake-
covered by some other cluster consisting of a larger
number of segments. (Here the idea is that a clus-
ter with a larger number of smaller segments contains
more information than a cluster having the same sup-
port while consisting of a smaller number of larger seg-
ments.) In the case that two clusters are muijat

Note that by this procedure, the first case balances out
small inconsistencies, whereas the second case and the

covers and consist of the same number of segments, we
discard the cluster with the smaller support.

third case compensate for missing path relations. Fur-
thermore, segmentsc Al andg € A? that do not fall The steps of the clustering algorithm are also illustrated
into one of the above categories indicate significant inby Fig. 11 and Fig. 12. Recall from Sect. 4 that in the

consistencies and are left unconsidered in the constru&hostakovich example, the significant variations in th&ins
tion of A;. mentation led to a defective path extraction. In partiGutas

similarity of the segments corresponding to pattsand A3
could not be correctly identified as reflected by the trurttate
path Py, see Fig. 10 (b) and Fig. 11 (a). Nevertheless, the cor-
rect global structure was derived by the clustering alpanit

After Step (1) and Step (2), we obtain a clusterfor the
path P;. In an analogous fashion, we compute clustdrs
for all pathsP,,, 1 <m < M.
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Fig. 13. (a) Chopin, “Tristesse”, Etude op. 10/3, played by Vardi) Beethoven, “Pathetique”, second movement, op. 13,
played by Barenboim. (c) Gloria Gaynor, “I will survive”. Y&art A; A, B of the Shostakovich example of Fig. 2 repeated
three times in modified tempi (normal temydd percent of normal tempo, accelerating tempo frit to 140 percent).

cf. Fig. 11 (d). Here, the missing relation was recovered byf our implementation. It turns out that the algorithm is ap-
Step (1) (transitivity step) from the correctly identificichs plicable to pieces even longer thah minutes, which covers
larity relation between segments correspondingf@andA,  essentially any piece of Western classical music. To adcoun
(path ;) and between segments correspondingi@and A,  for transposed (pitch-shifted) repeating segments, wptado
(path P3). The effect of Step (3) is illustrated by comparing the shifting technique suggested by Goto [8]. Some results
(c) and (d) of Fig. 11. Since the clustel; is a90-percent will be discussed in Sect. 6.3. Further results and an audio
cover of the clustersl,, A,, Az, andAg, and has the largest demonstration can be foundlatt p: / / ww rdb. i ai .
support, the latter clusters are discarded. uni - bonn. de/ pr oj ect s/ audi ostruct ure.

6. EXPERIMENTS 6.1. General Reaults

In order to demonstrate the capability of our structure -anal

We implemented our algorithm for audio structure analysis i ysis algorithm, we discuss some representative results-n d
MATLAB and tested it on about00 audio recordings reflect- tail. This will also illustrate the kind of difficulties gerally
ing a wide range of mainly Western classical music, inclgdin found in music structure analysis. Our algorithm is fully au
pieces by Bach, Beethoven, Brahms, Chopin, Mozart, Ravetpmatic, in other words, no prior knowledge about the respec
Schubert, Schumann, Shostakovich, and Vivaldi. In particutive piece is exploited in the analysis. In all examples, &e u
lar, we used musically complex orchestral pieces exhipitin the following fixed set of parameters. For the self-simijari
a large degree of variations in their repetitions with respe matrix, we useS¥%i"[41, 10] with a corresponding feature res-
to instrumentation, articulation, and local tempo vaom$.  olution of 1 Hz, see Sect. 3. In the path extraction algorithm
From a musical point of view, the global repetitive struetur of Sect. 4, we sef;,, = 0.08, Coq = 0.16, Cp,, = 0.10, and
is often ambiguous since it depends on the particular notiol, = 5. Finally, in the clustering algorithm of Sect. 5 we set
of similarity, on the degree of admissible variations, adl we T}, = 90 andTy. = 90. The choice of the above parameters
as on the musical significance and duration of the respectivand thresholds constitutes a trade-off between beingaimier
repetitions. Furthermore, the structural analysis candse p enough to allow relevant variations and being robust enough
formed at various levels: at a global level (e.g., segmerdin to deal with artifacts and inconsistencies.
sonata into exposition, repetition of the exposition, dewe As a first example, we consider a Varsi recording of
ment, and recapitulation), an intermediary level (e.gther  Chopin’s Etude op. 10/3 (“Tristesse”). The underlying giec
splitting up the exposition into first and second theme), ohas the musical formt; A, B,C AsBsD. This structure has
on a fine level (e.g., segmenting into repeating motifs).sThi successfully been extracted by our algorithm, see Fig. 13 (a
makes the automatic structure extraction as well as an-obje¢iere, the first clusterl; corresponds to the parts, B; and
tive evaluation of the results a difficult and problematiskia A5 B,, whereas the second clustgl, corresponds to the

In our experiments, we looked for repetitions at a globalparts A;, Az, and As. For simplicity, we use the notation
to intermediary level corresponding to segments of at leastl; ~ {AsBy, AsB>} and A; ~ {A;, Ay, A3}. The simi-
15-20 seconds of duration, which is reflected in our choicéarity relation betweer3, and B, is induced from cluster,
of parameters, see Sect. 6.1. In that section, we will alsby “subtracting” the respectivd-part which is known from
present some general results and discuss in detail two coroluster.4,. The small gaps between the segments in cluster
plex examples: Mendelssohn’s Wedding March and Ravel'sA; are due to the fact that the tail ¢f, (passage tols) is
Bolero. In Sect. 6.2, we discuss the running time behaviodifferent from the tail ofA, (passage td).
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Fig. 14. (a) Mendelssohn, “Wedding March”, op. 21-7, conducted &teT(b) Ravel, “Bolero”, conducted by Ozawa.

The next example is a Barenboim interpretation of the sedying similar segments that exhibit global tempo variatiar
ond movement of Beethoven’s Pathetique, which has the muwp to 50 percent as well as local tempo variations such as ri-
sical formA; A, BA3C A4 A5 D. The interesting point of this tardandi and accelerandi. As an example, we consider the au-
piece is that thed-parts are variations of each other. For ex-dio file corresponding to the pa#t; A; B of the Shostakovich
ample, the melody i, and A, is played one octave higher example of Fig. 2. From this, we generated two additional
than the melody iM; and A;. Furthermore A3 and A, are  time-stretched variations: a faster versionl&d percent of
rhythmic variations ofd; and A;. Nevertheless, the correct the normal tempo and an accelerating version speeding up
global structure has been extracted, see Fig. 13 (b). Tke thrfrom 100 to 140 percent. The musical form of the concate-
clusters are in correspondence with ~ {A;A,, A4A5}, nation of these three versions i A, By A3 Ay4By A5 AgBs.
Az ~ {A1, Az, A5}, andAs ~ {A], A}, AL, Al ALY, where  This structure has been correctly extracted by our algorith
A, denotes a truncated version 8f,. Hence, the segments see Fig. 13 (d). The correspondences of the two result-
Ay, Az, and Ay are identified as a whole, whereas the otheling clusters ared; ~ {A;A43B;, A3A,Bs, A5 A¢Bs} and
A-parts are identified only up to their tail. This is due to the Ay ~ {41, Ao, A3, Ay, A5, Ag}.

fact that the tails of thel-parts exhibit some deviations lead- Next, we discuss an example with a musically more com-

ing to higher costs in the self-similarity matrix, as illteted  plicated structure. This will also illustrate some probéeyp-

by Fig. 13 (b). ically appearing in automatic structure analysis. The “Wed
The popular song “I will survive” by Gloria Gaynor con- ding March” by Mendelssohn has the musical form

sists of an introductiod foIIoweq by_ eleven repetitiondy, Ay By AyByCyB3CoBy Dy DyE1D3EiDy . ..

1 < k < 11, of the chorus. This highly repetitive structure ...Bs F\G1GoH, A3BsCsBrAy IL1oJ,

is reflected by the secondary diagonals in the self-sinylari

matrix, see Fig. 13 (c). The segments exhibit variations nofurthermore, eac/h segmert, for1 < k < 7 has a sub-
only with respect to the lyrics but also with respect to iastr StructureBy, = BkBk”CO”S'St'”g of tWC/’/ musically similar
mentation and tempo. For example, some segments includeS§Psegments; and B/. However, theB"-parts reveal sig-
secondary voice in the violin, others harp arpeggios or frumnificant variations even at thg note level. Our algorlthm has
pet syncopes. The first choruf is played without percus- computed seven clusters, wh|ph are arranged accordmg tq th
sion, whereas; is a purely instrumental version. Also note 'engths of their support, see Fig. 14 (). Even though net vis
that there is a significant ritardando ity between seconds ble at first glance, these clusters represent most of thecalusi
150 and160. In spite of these variations, the structure analy-Structure accurately. Manual inspection reveals that lie c
sis algorithm works almost correctly. However, there are tw ter segments correspond, up to some tolerance, to the rhusica
artifacts that have not been ruled out by our strategy. Eacharts as follows:

chorusAy, can be split up into two subparts, = A} A}. The

! ! /
computed clusted, corresponds to the ten pad§_, A} A}/, Av o~ {B2C1Bs, BsCaBy, BsCsBr}

2 < k < 11, revealing an overlap in thd”-parts. In particu- Az~ {B201Bs+, BeCsBr+}

lar, the extracted segments are “out of phase” since thely sta As ~ {Bi, B2, Bs, Bs, Br}

with subsegments corresponding to thé-parts. This may Ay~ {Bi, By, B3, B}, By, Bg, Br}
be due to extreme variations i, making this part dissimi- As  ~ {A1B1Az, A2Ba+}

lar to the otherd’-parts. Sinced} constitutes the beginning As ~ {D2E1Ds, D3E2Da}

of the extracted paths, it has been (mistakenly) truncated i A7~ {G1, G2}

Step (3b) (pruning paths) of Sect. 4. As  ~ {hL, I}

To check the robustness of our algorithm with respect to
global and local tempo variations, we conducted a series of In particular, all sevenB’-parts (truncated3-parts) are
experiments with synthetically time-stretched audio algn represented by clusted,, whereasA; contains five of the
(i.e., we changed the tempo progression without changingevenB-parts. The missing and truncat&dparts can be ex-
the pitch). As it turns out, there are no problems in identi-plained as in the Beethoven example of Fig. 13 (b). Cluster



A; reveals the similarity of the thre@-parts, which are en- to algorithmic reasons such as the inconsistencies stegnmin
closed between thB- and B’-parts known from4s and.A,. from inaccurate path relations but also due to musical reaso
The A-parts, an opening motif, have a duration of less tharsuch as extreme variations in tails of musical parts. Sdgpnd
8 seconds—too short to be recognized by our algorithm as the set of extracted clusters is sometimes redundant ag in th
separate cluster. Due to the close harmonic relationshieof case of the Bolero—some clusters almost coincide while dif-
A-parts with the tails of thé3-parts and the heads of tii&  fering only by a missing part and by a slight shift and length
parts it is hard to exactly determine the boundaries of thesdifference of their respective segments. Here, a higharedeg
parts. This leads to clusters such.4s and.4;, whose seg- of transitivity and a more involved merging step in Sect. 5
ments enclose several parts or only fragments of some partsuld help to improve the overall result. (Due to the incon-
(indicated by thet sign). Furthermore, the segments of clus-sistencies, however, a higher degree of transitivity magp al
ter Ag enclose several musical parts. Due to the overlap imlegrade the result in other cases.) Thirdly, the globakstru
D3, one can derive the similarity dD,, D3, andD, as well  ture is sometimes not given explicitly but is somehow hidden
as the similarity ofE;, and F5. The D- and E-parts are too in the clusters. For example, the similarity of tBeparts in
short (less than 10 seconds) to be detected as separate cltie Chopin example results from “subtracting” the segments
ters. This also explains the undetected gayt Finally, the  corresponding to thé-parts given by4, from the segments
clustersA; and.Ag correctly represent the repetitions of the of 4;. Or, in the Mendelssohn example, the similarity of the
G- and-parts, respectively. D- and E-parts can be derived from clustdg by exploiting
Another complex example, in particular with respectthe overlap of the segments in a subsegment corresponding to
to the occurring variations, is Ravel's Bolero, which PartDs. It seems promising to exploit such overlap relations
has the musical formD,DyD3D,A9BoC with D), = in combination with a subtraction strategy to further imgro
Asj_1AgiBoj_1Bay, for 1 < k < 4. The piece repeats two the cluster structure. Furthermore, we expect an additiona
tunes (corresponding to thé- and B-parts) over and over improvement in expressing the global structure by means of
again, each time played in a different instrumentationtidel  Some hierarchical approach as discussed in Sect. 7.
ing flute, clarinet, bassoon, saxophone, trumpet, striagd,
culminating in the full or_chegtra_. I_:urthermore, the volume 2. Running Time Behavior
gradually grows from quiet pianissimo to a vehement fortis-
simo. Note that playing an instrument in piano or in fortis-In this section, we discuss the running time behavior of
simo not only makes a difference in volume but also in thethe MATLAB implementation of our structure analysis algo-
relative energy distribution within the chroma bands, whic rithm. Tests were run on an Intel Pentium IV, 3.6 GHz, with
is due to effects such as noise, vibration, and reverberatio2 GByte RAM under Windows 2000. Table 2 shows the run-
Nevertheless, the CENS features absorb most of the resuliing times for several pieces sorted by duration.
ing variations. The extracted clusters represent the globa The first step of our algorithm consists of the extraction of
structure up to a few missing segments, see Fig. 14 (b). Ifpbust audio features, see Sect. 2. The running time to com-
particular, the clusted; ~ {Ax— |1 < k < 9} correctly  pute the CENS feature sequence is linear in the duration of
identifies all nineA-parts in a slightly truncated form (indi- the audio file under consideration—in our tests roughly one
cated by the- sign). Note that the truncation may result from third of the duration of the piece, see the third column of Ta-
Step (2) (merging step) of Sect. 5, where path inconsiséenci ple 2. Here, the decomposition of the audio signal into the
are ironed out by segment intersections. The cludtecor- g8 frequency bands as described in Sect. 2.1 constitutes the
rectly identifies the full-sized-parts with only part4, miss-  bottleneck of the feature extraction, consuming far moaeth
ing. Here, an additional transitivity step might have helpe 99% of the entire running time. The subsequent computations
to perfectly identify all nineA-parts in full length. The sim-  to derive the CENS features from the filter subbands only take
ilarity of the B-parts is reflected byls;, where only partBy  a fraction of a second even for long pieces such as Ravel's
is missing. All other clusters reflect superordinate simila Bolero. In view of our experiments, we computed the chroma
ity relations (e.9.,A1 ~ {A3A44B3, A5 A¢Bs, A7AsB7} or  features of Sect. 2.1 at a resolution 16f Hz for each piece
Az = {D3+, Dy+}), or similarity relations of smaller frag- in our music database and stored them on hard disk, making
ments. them available for the subsequent steps irrespective gfahe
For other pieces of music—we manually analyzed the rerameter choice made in Sects. 4 and 5.
sults for aboutl 00 pieces—our structure analysis algorithm  The time and space complexity to compute a self-
typically performs as indicated by the above examples amd thsimilarity matrixS is quadratic in the lengtiv of the feature
global repetitive structure can be recovered to a high @egresequence. This makes the usage of such matrices infeasible
We summarize some typical problems associated with the efer large N. Here, our strategy is to use coarse CENS fea-
tracted similarity clusters. Firstly, some clusters cehsif  tures, which not only introduces a high degree of robustness
segments that only correspond to fragments or truncated vetowards admissible variations but also keeps the featsce re
sions of musical parts. Note that this problem is not only dudution low. In the above experiments, we used CENSI10]-



Piece Length | CENS | S7§7[41,10] | Path Extr. | #(paths) | Clustering

Chopin, “Tristesse”, Fig. 13 (a) 173.1 54.6 0.20 0.06 3 0.17
Gaynor, “I will survive”, Fig. 13 (c) 200.0 63.0 0.25 0.16 24 0.33
Brahms, “Hungarian Dance”, Fig. 1 204.1 64.3 0.31 0.09 7 0.19
Shostakovich, “Waltz”, Fig. 2 223.6 70.5 0.34 0.09 6 0.20
Beethoven, “Pathetiquz"®”, Fig. 13 (b) 320.0| 100.8 0.66 0.15 9 0.21
Mendelssohn, “Wedding March”, Fig. 14 (&) 336.6 | 105.7 0.70 0.27 17 0.27
Schubert, “Unfinished®"” Fig. 15 (a) 900.0| 282.1 4.40 0.85 10 0.21
Ravel, “Bolero”, Fig. 14 (b) 901.0| 282.7 4.36 5.53 71 1.05

2x “Bolero” 1802.0 17.06 84.05 279 9.81

3% “Bolero” 2703.0 37.91 422.69 643 97.94

Table 2. Running time behavior of the overall structure analysipathm. All time durations are measured in seconds. The
columns indicate the respective piece of music, the duratfothe piece, the running time to compute the CENS features
(Sect. 2), the running time to compute the self-similarigtrix (Sect. 3), the running time for the path extractionctSé), the
number of extracted paths, and the running time for the etirgg algorithm (Sect. 5).

features with a sampling rate afHz. Furthermore, incor- is based on the observation that the twelve cyclic shifts of
porating the desired invariances into the features itélelva  a 12-dimensional chroma vector naturally correspond to the
us to use a local distance measure based on the inner prodiselve possible modulations. In [8], similarity clustecalled
that can be evaluated by a computationally inexpensive algdine segment groups) are computed for all twelve modulation
rithm. This affords an efficient computation 6f even for  separately, which are then suitably merged in a postprecess
long pieces of up tal5 minutes of duration, see the fourth ing step. In contrast to this, we incorporate all modulagion
column of Table 2. For example, in case of the Bolero itinto a single self-similarity matrix, which then allows terp
took 4.36 seconds to computgf3in[41, 10] from a feature se- form a singly joint path extraction and clustering step only
quence of lengthv. = 901, corresponding td5 minutes of The details of the modulation procedure are as follows. Let
audio. Tripling the lengthV by using a threefold concatena- ¢ : R'2 — R!? denote theyclic shiftdefined by

tion of the Bolero results in a running time 87.9 seconds,

showing an increase by a factor of nine. o((v1,v,...,v12) ") = (va,...,v12,01) T (10)
The running time for the path extraction algorithm as de- . .

scribed in Sect. 4 mainly depends on the structure of the seffor 7 := (v1, -- .,v12)" € R'%. Then, for a given audio data

similarity matrix below the threshol@,q (rather than on the Stream with CENS feature sequerice= (v1,42,...,4"V),

size of the matrix), see the fifth column of Table 2. Here thei-modulated self-similarity matrix*(S) is defined by
crucial parameters are the number as well as the lengths of
the path candidates to be extracted, which influences the run
ning time in a linear fashion. Even for long pieces with a very
rich path structure—as is the case for the Bolero—the runnin
time of the path extraction is only a couple of seconds.

Finally, the running time of the clustering algorithm of
Sect. 5 is negligible, see the last column of Table 2. Only for,
a very large (and practically irrelevant) number of paths, t
running time seems to increase significantly.

Basically, the overall performance of the structure anal- min . i
ysis algorithm depends on the feature extraction step,lwhic (8)(n,m) := mine(o.1y) (a (8)(n, m)>'
depends linearly on the input size.

o (S)(n,m) = d(v", o' (T™)), (11)

< n,m < N. o%(S) describes the similarity relations
Between the original audio data stream and the audio data
stream modulated bysemitones; € Z. Obviously, one has

12(8) = S. Taking the minimum over all twelve modula-
t|ons we obtain thenodulated self-similarity matrix™" (S)
defined by

(12)

Furthermore, we store the minimizing shift indices in an ad-

) ditional N-square matrix:
6.3. Modulation

It is often the case, in particular for classical music, tet Z(n,m) := argmin, (.11 (Uz (S8)(n, m))- (13)

tain musical parts are repeated in another key. For exam-

ple, the second theme in the exposition of a sonata is ofAnalogously, one defines™" (S™i"[w, q]). Now, replacing

ten repeated in the recapitulation transposed by a fifth, (i. ethe self-similarity matrix by its modulated version one can
shifted by seven semitones upwards). To account for sugproceed with the structure analysis as described in Sect. 4
modulations, we have adopted the idea of Goto [8], whictand Sect. 5. The only difference is that in Step (1) of the
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Fig. 15. (a) Zager & Evans, “In the year 2525”. Leff with the resulting similarity clusters. Right™*(S) with the resulting
similarity clusters. The parameters are fixed as describe®ert. 6.1. (b) Schubert, “Unfinished”, first movement, D,759
conduced by Abbado. Left and right part are analogous to (a).

path extension (Sect. 4) one has to ensure that each path 7. CONCLUSIONSAND FUTURE WORK
P = (p1,pe,...,pK) consists of links exhibiting the same
modulation indexZ(p;) = Z(p2) = ... = Z(pk). In this paper, we have described a robust and efficient algo-
We illustrate this procedure by means of two examplesrithm that extracts the repetitive structure of an audi@ree
The song “In the year 2525” by Zager & Evans is of theing. As opposed to previous methods, our approach is robust
musical form ABY BY B B{C B Bt DB2EB:F, where the  to significant variations in the repetitions concerningrins
chorus, theB-part, is repeated times. Here,B: and B  mentation, execution of note groups, dynamics, articoati
are modulations by one semitone aBd and B2 are mod- modulation, and tempo. For the first time, detailed experi-
ulations of the parts3) to B} by two semitones upwards. ments have been conducted for a wide range of Western clas-
Fig. 15 (a) shows the similarity clusters derived from thesical music. The results show that the extracted audio-struc
structure analysis based ¢h = SP"[41,10]. Note that tures often closely correspond to the musical form of the un-
the modulated parts are separated into different clusterec  derlying piece, even though no a priori knowledge of the mu-
sponding tad; ~ {BY, BY, BY, B}, Ay ~ {B, B}, and sic structure has been used. In our approach, we converted
As ~ {B2, BZ}. In contrast, the analysis based ®%"(S)  the audio signal into a sequence of coarse, harmony-related
leads to a clusted; corresponding to all eighB-parts. CENS features. Such features are well suited to charaeteriz
As a second example, we consider an Abbado recordingieces of Western classical music, which often exhibit prom
of the first movement of Schubert’s “Unfinished”. This piece,nent harmonic progressions. Furthermore, instead ofnglyi
which is composed in the sonata form, has the rough muen complicated and delicate path extraction algorithms, we
sical form AYBYCY AYBICYD A3 BC4E, where AYBYCY  suggested a different approach by taking care of local varia
corresponds to the expositiod3 BICY to the repetition of tions at the feature and similarity measure levels. This way
the exposition,D to the deveIopmenb§3B§C§ to the reca- we improved the path structure of the self-similarity matri
pitulation, andFE to the coda. Note that thB?-part of the  which then allowed for an efficient robust path extraction.
exposition is repeated up a fifth d@ (shifted by7 semi- To obtain a more comprehensive representation of audio
tones upwards) and th@-part is repeated up a third &  structure, obvious extensions of this work consist of cambi
(shifted by4 semitones upwards). Furthermore, thg-part  ing harmony-based features with other types of features de-
is repeated asls, however in form of a multilevel transition scribing the rhythm, dynamics, or timbre of music. Another
from the tonic to the dominant. Again the structure is resdal extension regards the hierarchical nature of music. Seviar,
by the analysis based on™i"(S), where one has, among looked in our analysis for repetitions at a global to intedine
others, the correspondencels ~ {A9BYC?, AYBICY},  ary level corresponding to segments of at least 15—20 sscond
Ay ~ {BY,BY,BI} and A3 ~ {C?,C9,C4}. The other of duration. As has also been noted by other researches, mu-
clusters correspond to further structures on a finer level.  sic structure can often be expressed in a hierarchical manne
Finally, since the modulated similarity matix**(S) is  starting with the coarse musical form and ascending to finer
derived from the twelvé-modulated matrices’(S),i € [0 :  substructures such as repeating themes and motifs. Hexe, on
11], the resulting running time to comput&'i (S) is roughly  typically allows larger variations in the analysis of caars
twelve times longer than the time to comp@teFor example,  structures than in the analysis of finer structures. For fu-
it took 51.4 seconds to compute™*(S) for the Schubert's ture work, we suggest a hierarchical approach to structure
“Unfinished” as opposed td.4 seconds needed to compute analysis by simultaneously computing and combining struc-
o(S), cf. Table 2. tural information at various temporal resolutions. To sl
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Fig. 16. Similarity clusters for the Shostakovich exam-

(5]

[6]

[7]

(8]

9]

ple of Fig. 2 resulting from a structure analysis using (a)

Smin[41,10], (b) S&ir[21, 5], and (€)Si6[9, 2]-

(10]

we conducted first experiments based on the self-similarity

matricesSin[41, 10], Sin[21, 5], andSi4[9, 2] with corre-
sponding feature resolutions bHz, 2 Hz, and5 Hz, respec-
tively. The resulting similarity clusters are shown in Fig

(11]

for the Shostakovich example. Note that the musical form
A, A, BC,C5 A5 A4 D has been correctly identified at the low [12]

resolution level, see (a). Increasing the feature reswidias

two effects: On the one hand, finer repetitive substructures

are revealed, as illustrated by (c). On the other hand, tiee al
rithm becomes more sensitive towards local variationsiltes
ing in fragmentation and incompleteness of the coarsec-stru

(13]

tures. One very difficult problem to be solved is to integrate

the extracted similarity relations at all resolutions iatsingle

hierarchical model that best describes the musical streictu
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