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ABSTRACT

One major goal of structural analysis of an audio recording
is to automatically extract the repetitive structure or, more
generally, the musical form of the underlying piece of mu-
sic. Recent approaches to this problem work well for music
where the repetitions largely agree with respect to instrumen-
tation and tempo, as is typically the case for popular music.
For other classes of music such as Western classical music,
however, musically similar audio segments may exhibit sig-
nificant variations in parameters such as dynamics, timbre,
execution of note groups, modulation, articulation, and tempo
progression. In this paper, we propose a robust and efficient
algorithm for audio structure analysis, which allows to iden-
tify musically similar segments even in the presence of large
variations in these parameters. To account for such variations,
our main idea is to incorporate invariance at various levelssi-
multaneously: we design a new type of statistical features to
absorb micro-variations, introduce an enhanced local distance
measure to account for local variations, and describe a new
strategy for structure extraction that can cope with the global
variations. Our experimental results with classical and popu-
lar music show that our algorithm performs successfully even
in the presence of significant musical variations.

Keywords and phrases: repetitive structure, audio summa-
rization, musical variations, similarity matrix enhancement,
statistical chroma-based features, path extraction, segment
clustering, classical music

1. INTRODUCTION

Content-based document analysis and efficient audio brows-
ing in large music databases has become an important issue
in music information retrieval. Here, the automatic annota-
tion of audio data by descriptive high-level features as well
as the automatic generation of cross-links between audio ex-
cerpts of similar musical content are of major concern. In this
context, the subproblem ofaudio structure analysisor, more
specifically, the automatic identification of musically relevant
repeating patterns in some audio recording has been of con-
siderable research interest, see, e. g., [2, 5, 6, 8, 12, 13, 15].

Here, the crucial point is the notion ofsimilarity used to com-
pare different audio segments, because such segments may be
regarded as musically similar in spite of considerable varia-
tions in parameters such as dynamics, timbre, execution of
note groups (e.g., grace notes, trills, arpeggios), modulation,
articulation, or tempo progression. In this paper, we intro-
duce a robust and efficient algorithm for the structural anal-
ysis of audio recordings, which can cope with significant
variations in the parameters mentioned above including local
tempo deformations. In particular, we introduce a new class
of robust audio features as well as a new class of similarity
measures that yield a high degree of invariance as needed to
compare musically similar segments. As opposed to previous
approaches, which mainly deal with popular music and as-
sume constant tempo throughout the piece, we have applied
our techniques to musically complex and versatile Western
classical music. Before giving a more detailed overview of
our contributions and the structure of this paper (Sect. 1.3),
we summarize a general strategy for audio structure analysis
and introduce some notation that is used throughout this paper
(Sect. 1.1). Related work will be discussed in Sect. 1.2.

1.1. General Strategy and Notation

To extract the repetitive structure from audio signals, most
of the existing approaches proceed in four steps. In the first
step, a suitable high-level representation of the audio signal is
computed. To this end, the audio signal is transformed into a
sequence~V := (~v1, ~v2, . . . , ~vN ) of feature vectors~vn ∈ F ,
1 ≤ n ≤ N . Here,F denotes a suitable feature space,
e.g., a space of spectral, MFCC, or chroma vectors. Based
on a suitable similarity measured : F × F → R≥0, one
then computes anN -squareself-similarity1 matrixS defined
by S(n,m) := d(~vn, ~vm), effectively comparing all feature
vectors~vn and~vm for 1 ≤ n,m ≤ N in a pairwise fash-
ion. In the third step, the path structure is extracted from the

1In this paper,d is a distance measure rather than a similarity measure
assuming small values for similar and large values for dissimilar feature vec-
tors. Hence, the resulting matrix should strictly be calleddistance matrix.
Nevertheless, we use the termsimilarity matrix according to the standard
term used in previous work.
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Fig. 1. Self-similarity matrixS[41, 10] of an Ormandy in-
terpretation of Brahms’ Hungarian Dance No. 5. Here, dark
colors correspond to low values (high similarity) and light
colors correspond to high values (low similarity). The mu-
sical formA1A2B1B2CA3B3B4D is reflected by the path
structure. For example, the curved path marked by the hori-
zontal and vertical lines indicates the similarity betweenthe
segments corresponding toB1 andB2.

resulting self-similarity matrix. Here, the underlying princi-
ple is that similar segments in the audio signal are revealed
as paths along diagonals in the corresponding self-similarity
matrix, where each such path corresponds to a pair of simi-
lar segments. Finally, in the fourth step, the global repetitive
structure is derived from the information about pairs of simi-
lar segments using suitable clustering techniques.

To illustrate this approach, we consider two examples,
which also serve as running examples throughout this pa-
per. The first example, for short referred to asBrahms ex-
ample, consists of an Ormandy interpretation of Brahms’
Hungarian Dance No. 5. This piece has the the musical
form A1A2B1B2CA3B3B4D consisting of three repeating
A-partsA1, A2 andA3, four repeatingB-partsB1, B2, B3

andB4, as well as aC- and aD-part. Generally, we will de-
note musical parts of a piece of music by capital letters such
asX, where all repetitions ofX are enumerated asX1, X2,
and so on. In the following, we will distinguish between a
piece of music(in an abstract sense) and a particularaudio
recording (a concrete interpretation) of the piece. Here, the
term part will be used in the context of the abstract music
domain, whereas the termsegmentwill be used for the audio
domain.

The self-similarity matrix of the Brahms recording (with
respect to suitable audio features and a particular similarity
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Fig. 2. Self-similarity matrixS[41, 10] of an Chailly interpre-
tation of Shostakovich’s Waltz 2, Jazz Suite No. 2, having the
musical formA1A2BC1C2A3A4D. Due to significant vari-
ations in the audio recording, the path structure is fragmented
and of low quality. See also Fig. 6.

measure) is shown in Fig. 1. Here, the repetitions implied by
the musical form are reflected by the path structure of the ma-
trix. For example, the path starting at(1, 22) and ending at
(22, 42) (measured in seconds) indicates that the audio seg-
ment represented by the the time interval[1 : 22] is similar to
the segment[22 : 42]. Manual inspection reveals that the seg-
ment[1 : 22] corresponds to partA1, whereas[22 : 42] corre-
sponds toA2. Furthermore, the curved path starting at (42,69)
and ending at (69,89) indicates that the segment[42 : 69] (cor-
responding toB1) is similar to [69 : 89] (corresponding to
B2). Note that in the Ormandy interpretation, theB2-part
is played much faster than theB1-part. This fact is also re-
vealed by the gradient of the path, which encodes the relative
tempo difference between the two segments.

As a second example, for short referred to asShostakovich
example, we consider Shostakovich’s Waltz 2 from his Jazz
Suite No. 2 in a Chailly interpretation. This piece has the
musical formA1A2BC1C2A3A4D, where the theme, repre-
sented by theA-part, appears four times. However, there are
significant variations in the fourA-parts concerning instru-
mentation, articulation, as well as dynamics. For example,in
A1 the theme is played by a clarinet, inA2 by strings, inA3 by
a trombone, and inA4 by the full orchestra. As is illustrated
by Fig. 2, these variations result in a fragmented path structure
of low quality, making it hard to identify the musically sim-
ilar segments[4 : 40], [43 : 78], [145 : 179], and [182 : 217]
corresponding toA1, A2, A3 andA4, respectively.



1.2. Related Work

Most of the recent approaches to structural audio analysis fo-
cus on the detection of repeating patterns in popular music
based on the strategy as described in Sect. 1.1. The concept
of similarity matrices has been introduced to the music con-
text by Foote in order to visualize the time structure of audio
and music [7]. Based on these matrices, Foote and Cooper [5]
report on first experiments on automatic audio summarization
using mel-frequency cepstral coefficients (MFCCs). To allow
for small variations in performance, orchestration and lyrics,
Bartsch and Wakefield [1, 2] introduced chroma-based audio
features to structural audio analysis. Chroma features, repre-
senting the spectral energy of each of the12 traditional pitch
classes of the equal-tempered scale, were also used in subse-
quent works such as [6, 8]. Goto [8] describes a method that
detects the chorus sections in audio recordings of popular mu-
sic. Important contributions of this work are, among others,
the automatic identification of both ends of a chorus section
(without prior knowledge of the chorus length) and the in-
troduction of some shifting technique which allows to deal
with modulations. Furthermore, Goto introduces a technique
to cope with missing or inaccurately extracted candidates of
repeating segments. In their work on repeating pattern dis-
covery, Lu et al. [12] suggest a local distance measures thatis
invariant with respect to harmonic intervals, introducingsome
robustness to variations in instrumentation. Furthermore, they
describe a postprocessing technique to optimize boundaries
of the candidate segments. At this point we note that the
above mentioned approaches, while exploiting that repeating
segments are of the same duration, are based on the constant
tempo assumption. Dannenberg and Hu [6] describe several
general strategies for path extraction, which indicate howto
achieve robustness to small local tempo variations. There are
also several approaches to structural analysis based on learn-
ing methods such as hidden Markov models (HMMs) used
to cluster similar segments into groups, see, e.g., [11, 15]and
the references therein. In the context ofmusic summarization,
where the aim is to generate a list of the most representative
musical segments without considering musical structure, Xu
et al. [18] use support vector machines (SVMs) for classifying
audio recordings into segments of pure and vocal music.

Maddage et al. [13] exploit some heuristics on the typ-
ical structure of popular music for both determining candi-
date segments and deriving the musical structure of a partic-
ular recording based on those segments. Their approach to
structure analysis relies on the assumption that the analyzed
recording follows a typicalverse-chorus pattern repetition.
As opposed to the general strategy introduced in Section 1.1,
their approach only requires to implicitly calculate partsof a
self-similarity matrix by considering only the candidate seg-
ments.

In summary, there have been several recent approaches to
audio structure analysis that work well for music where the

repetitions largely agree with respect to instrumentation, ar-
ticulation, and tempo progression—as is often the case for
popular music. In particular, most of the proposed strate-
gies assume constant tempo throughout the piece (i. e. the
path candidates have gradient(1, 1) in the self-similarity ma-
trix), which is then exploited in the path extraction and clus-
tering procedure. For example, this assumption is used by
Goto [8] in his strategy for segment recovery, by Lu et al. [12]
in their boundary refinement, and by Chai et al. [3, 4], in the
step of segment merging. The reported experimental results
refer almost entirely to popular music. For this genre, the
proposed structure analysis algorithms report on good results
even in presence of variations with respect to instrumentation
and lyrics.

For music, however, where musically similar segments
exhibit significant variations in instrumentation, execution of
note groups, and local tempo, there are yet no effective and
efficient solutions to audio structure analysis. Here, the main
difficulties arise from the fact that due to spectral and tem-
poral variations the quality of the resulting path structure of
the self-similarity matrix significantly suffers from missing
and fragmented paths, see Fig. 2. Furthermore, the presence
of significant local tempo variations—as they frequently oc-
cur in Western classical music— can not be dealt with by the
suggested strategies. As another problem, the high time and
space complexity ofO(N2) to compute and store the simi-
larity matrices makes the usage of self-similarity matrices in-
feasible for largeN . It is the objective of this paper to in-
troduce several fundamental techniques, which allow to effi-
ciently perform structural audio analysis even in presenceof
significant musical variations, see Sect. 1.3.

Finally, we mention that first audio interfaces have been
developed facilitating intuitive audio browsing based on the
extracted audio structure. The SmartMusicKIOSK system [9]
integrates functionalities for jumping to the chorus section
and other key parts of a popular song as well as for visual-
izing song structure. The system constitutes the first interface
that allows the user to easily skip sections of low interest even
within a song. The SyncPlayer system [10] allows a mul-
timodal presentation of audio and associated music-related
data. Here, a recently developed audio structure plug-in not
only allows for an efficient audio browsing but also for a di-
rect comparison of musically related segments, which consti-
tutes a valuable tool in music research.

Further suitable references to related work will be given
in the respective sections.

1.3. Contributions

In this paper, we introduce several new techniques, to afford
an automatic and efficient structural analysis even in the pres-
ence of large musical variations. For the first time, we re-
port on our experiments on Western classical music includ-
ing complex orchestral pieces. Our proposed structure anal-



ysis algorithm follows the four-stage strategy as described in
Sect. 1.1. Here, one essential idea is that we account for mu-
sical variations by incorporating invariance and robustness at
all four stages simultaneously. The following overview sum-
marizes the main contributions and describes the structureof
this paper.

1. Audio Features: We introduce a new class of ro-
bust and scalable audio features considering short-
time statistics over chroma-based energy distributions
(Sect. 2). Such features not only allow to absorb vari-
ations in parameters such as dynamics, timbre, articu-
lation, execution of note groups, and temporal micro-
deviations, but can also be efficiently processed in the
subsequent steps due to their low resolution. The pro-
posed features strongly correlate to the short-time har-
monic content of the underlying audio signal.

2. Similarity Measure: As a second contribution, we sig-
nificantly enhance the path structure of a self-similarity
matrix by incorporating contextual information at var-
ious tempo levels into the local similarity measure
(Sect. 3). This accounts for local temporal variations
and significantly smooths the path structures.

3. Path Extraction: Based on the enhanced matrix, we
suggest a robust and efficient path extraction procedure
using a greedy strategy (Sect. 4). This step takes care of
relative differences in the tempo progression between
musically similar segments.

4. Global Structure: Each path encodes a pair of musi-
cally similar segments. To determine the global repet-
itive structure, we describe a one-step transitivity clus-
tering procedure, which balances out the inconsisten-
cies introduced by inaccurate and incorrect path extrac-
tions (Sect. 5).

We evaluated our structure extraction algorithm on a wide
range of Western classical music including complex orches-
tral and vocal works (Sect. 6). The experimental results
show that our method successfully identifies the repetitive
structure—often corresponding to the musical form of the
underlying piece—even in the presence of significant varia-
tions as indicated by the Brahms and Shostakovich examples.
Our MATLAB implementation performs the structure anal-
ysis task within a couple of minutes even for long and ver-
satile audio recordings such as Ravel’s Bolero, which has a
duration of more than15 minutes and possesses a rich path
structure. Further results and an audio demonstration can
be found athttp://www-mmdb.iai.uni-bonn.de/
projects/audiostructure.

2. ROBUST AUDIO FEATURES

In this section, we consider the design of audio features,
where one has to deal with two mutually conflicting goals:

robustness to admissible variations on the one hand and accu-
racy with respect to the relevant characteristics on the other
hand. Furthermore, the features should support an efficient
algorithmic solution of the problem they are designed for. In
our structure analysis scenario, we consider audio segments
as similar if they represent the same musical content regard-
less of the specific articulation and instrumentation. In other
words, the structure extraction procedure has to be robust
to variations in timbre, dynamics, articulation, local tempo
changes, and global tempo up to the point of variations in
note groups such as trills or grace notes.

In this section, we introduce a new class of audio fea-
tures, which possess a high degree of robustness to variations
of the above mentioned parameters and strongly correlate to
the harmonics information contained in the audio signals. In
the feature extraction, we proceed in two stages as indicated
by Fig. 3. In the first stage, we use a small analysis win-
dow to investigate how the signal’s energy locally distributes
among the 12 chroma classes (Sect. 2.1). Using chroma distri-
butions not only takes into account the close octave relation-
ship in both melody and harmony as prominent in Western
music, see [2], but also introduces a high degree of robust-
ness to variations in dynamics, timbre, and articulation. In
the second stage, we use a much larger statistics window to
compute thresholded short-time statistics over these chroma
energy distributions in order to introduce robustness to local
time deviations and additional notes (Sect. 2.2). (As a general
strategy, statistics such as pitch histograms for audio signals
have been proven to be a useful tool in music genre classifica-
tion, see, e.g., [17].) In the following, we identify the musical
notes A0 to C8 (the range of a standard piano) with the MIDI
pitchesp = 21 to p = 108. For example, we speak of the
note A4 (frequency440 Hz) and simply writep = 69.

2.1. First stage: local chroma energy distribution

First, we decompose the audio signal into88 frequency bands
with center frequencies corresponding to the MIDI pitches
p = 21 to p = 108. To properly separate adjacent pitches,
we need filters with narrow passbands, high rejection in the
stopbands, and sharp cutoffs. In order to design a set of filters
satisfying these stringent requirements for all MIDI notesin
question, we work with three different sampling rates:22050
Hz for high frequencies (p = 96, . . . , 108), 4410 Hz for
medium frequencies (p = 60, . . . , 95), and882 Hz for low
frequencies (p = 21, . . . , 59). To this end, the original audio
signal is downsampled to the required sampling rates after
applying suitable anti-aliasing filters. Working with different
sampling rates also takes into account that the time resolu-
tion naturally decreases in the analysis of lower frequencies.
Each of the88 filters is realized as an eighth-order elliptic
filter with 1 dB passband ripple and50 dB rejection in the
stopband. To separate the notes, we use aQ factor (ratio of
center frequency to bandwidth) ofQ = 25 and a transition
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Fig. 4. Magnitude responses in dB for the elliptic filters cor-
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respect to the sampling rate of4410 Hz.

band having half the width of the passband. Figure 4 shows
the magnitude response of some of these filters.

Elliptic filters have excellent cutoff properties as well as
low filter orders. However, these properties are at the expense
of large phase distortions and group delays. Since in our off-
line scenario the entire audio signals are known prior to the
filtering step, one can apply the following trick: after filtering
in the forward direction, the filtered signal is reversed andrun
back through the filter. The resulting output signal has pre-
cisely zero phase distortion and a magnitude modified by the
square of the filter’s magnitude response. Further details may
be found in standard text books on digital signal processing
such as [16].

As a next step, we compute the short-time mean-square
power (STMSP) for each of the 88 subbands by convolving
the squared subband signals by a 200 ms rectangular win-
dow with an overlap of half the window size. Note that the
actual window size depends on the respective sampling rate
of 22050, 4410, and882 Hz, which is compensated in the
energy computation by introducing an additional factor of1,
5, and25, respectively. Then, we compute STMSPs of all
chroma classesC,C#, . . . ,B by adding up the correspond-
ing STMSPs of all pitches belonging to the respective class.
For example, to compute the STMSP of the chroma C, we
add up the STMSPs of the pitches C1, C2,. . ., C8 (MIDI
pitches24, 36, . . . , 108). This yields for every 100 ms a real
12-dimensional vector~v = (v1, v2 . . . , v12) ∈ R

12, wherev1

corresponds to chromaC, v2 to chromaC#, and so on. Fi-
nally, we compute the energy distribution relative to the 12
chroma classes by replacing~v by ~v/(

∑12
i=1 vi).

In summary, in the first stage the audio signal is converted
into a sequence(~v1, ~v2, . . . , ~vN ) of 12-dimensional chroma
distribution vectors~vn ∈ [0, 1]12 for 1 ≤ n ≤ N . For

the Brahms example given in the introduction, the resulting
sequence is shown in Fig. 5 (light curve). Furthermore, to
avoid random energy distributions occurring during passages
of very low energy, (e.g., passages of silence before the ac-
tual start of the recording or during long pauses), we assign
an equally distributed chroma energy to such passages. We
also tested the short time Fourier transform (STFT) to com-
pute the chroma features by pooling the spectral coefficients
as suggested in [2]. Even though obtaining similar features,
our filter bank approach, while having a comparable compu-
tational cost, allows a better control over the frequency bands.
This particularly holds for the low frequencies, which is due
to the more adequate resolution in time and frequency.

2.2. Second stage: normalized short-time statistics

In view of possible variations in local tempo, articulation,
and note execution, the local chroma energy distribution fea-
tures are still too sensitive. Furthermore, as it will turn out
in Sect. 3, a flexible and computationally inexpensive proce-
dure is needed to adjust the feature resolution. Therefore,we
further process the chroma features by introducing a second,
much larger statistics window and considershort-time statis-
tics concerning the chroma energy distribution over this win-
dow. More specifically, letQ : [0, 1] → {0, 1, 2, 3, 4} be a
quantization function defined by

Q(a) :=























0 for 0 ≤ a < 0.05,
1 for 0.05 ≤ a < 0.1,
2 for 0.1 ≤ a < 0.2,
3 for 0.2 ≤ a < 0.4,
4 for 0.4 ≤ a ≤ 1.

(1)

Then, we quantize each chroma energy distribution vector
~vn = (vn

1 , . . . , vn
12) ∈ [0, 1]12 by applyingQ to each com-

ponent of~vn, yielding Q(~vn) := (Q(vn
1 ), . . . , Q(vn

12)). In-
tuitively, this quantization assigns a value of4 to a chroma
componentvn

i if the corresponding chroma class contains
more than40 percent of the signal’s total energy and so on.
The thresholds are chosen in a logarithmic fashion. Further-
more, chroma components below a5 percent threshold are
excluded from further considerations. For example, the vec-
tor ~vn = (0.02, 0.5, 0.3, 0.07, 0.11, 0, . . . , 0) is transformed
into the vectorQ(~vn) := (0, 4, 3, 1, 2, 0, . . . , 0).
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Fig. 5. Local chroma energy distributions (light curves, 10 feature vectors per second) and CENS feature sequence (dark bars,
1 feature vector per second) of the segment[42 : 69] (left, corresponding toB1) and segment[69 : 89] (right, corresponding to
B2) of the Brahms example shown in Fig. 1. Note that even though the relative tempo progression in the partsB1 andB2 is
different, the harmonic progression at the low resolution level of the CENS features is very similar.

In a subsequent step, we convolve the sequence
(Q(~v1), . . . , Q(~vN )) component-wise with a Hann window
of length w ∈ N. This again results in a sequence of12-
dimensional vectors with non-negative entries, representing
a kind of weighted statistics of the energy distribution over a
window ofw consecutive vectors. In a last step, this sequence
is downsampled by a factor ofq. The resulting vectors are
normalized with respect to the Euclidean norm. For exam-
ple, if w = 41 andq = 10, one obtains one feature vector
per second, each corresponding to roughly 4100 ms of audio.
For short, the resulting features are referred to as CENS[w, q]
(ChromaEnergy distributionNormalizedStatistics). These
features are elements of the following set of vectors:

F :=
{

~v = (v1, . . . , v12)
⊤ ∈ [0, 1]12 |

∑12
i=1v

2
i = 1

}

. (2)

Fig. 5 shows the resulting sequence of CENS feature vectors
for our Brahms example. Similar features have been applied
in the audio matching scenario, see [14].

By modifying the parametersw andq, we may adjust the
feature granularity and sampling rate without repeating the
cost-intensive computations in Sect. 2.1. Furthermore, chang-
ing the thresholds and values of the quantization functionQ
allows to enhance or mask out certain aspects of the audio
signal, e.g., making the CENS features insensitive to noise
components that may arise during note attacks. Finally, using
statistics over relatively large windows not only smooths out
micro-temporal deviations, as may occur for articulatory rea-
sons, but also compensates for different realizations of note
groups such as trills or arpeggios.

In conclusion, we mention some potential problems con-
cerning the proposed CENS features. The usage of a filter

bank with fixed frequency bands is based on the assumption
of well-tuned instruments. Slight deviations of up to 30–40
cents from the center frequencies can be compensated by the
filters, which have relatively wide pass bands of constant am-
plitude response. Global deviations in tuning can be com-
pensated by employing a suitably adjusted filter bank. How-
ever, phenomena such as strong string vibratos or pitch os-
cillation as is typical for, e.g., kettledrums lead to significant
and problematic pitch smearing effects. Here, the detection
and smoothing of such fluctuations, which is certainly not an
easy task, may be necessary prior to the filtering step. How-
ever, as we will see in Sect. 6, the CENS features generally
still lead to good analysis results even in the presence of the
artifacts mentioned above.

3. SIMILARITY MEASURE

In this section, we introduce a strategy for enhancing the path
structure of a self-similarity matrix by designing a suitable
local similarity measure. To this end, we proceed in three
steps. As a starting point, letd : F × F → [0, 1] be the
similarity measure on the spaceF ⊂ R

12 of CENS feature
vectors (see (2)) defined by

d(~v, ~w) := 1 − 〈~v, ~w〉 (3)

for CENS[w, q]-vectors~v, ~w ∈ F . Since~v and~w are normal-
ized, the inner product〈~v, ~w〉 coincides with the cosine of the
angle between~v and~w. For short, the resulting self-similarity
matrix will also be denoted byS[w, q] or simply byS if w and
q are clear from the context.



(a)

50 100 150 200

220

200

180

160

140

120

100

80 

60 

40 

20 

(b)

10 20 30 40

210

200

190

180

170

160

150

140

(c)

50 100 150 200

220

200

180

160

140

120

100

80 

60 

40 

20 

(d)

10 20 30 40

210

200

190

180

170

160

150

140

(e)

50 100 150 200

220

200

180

160

140

120

100

80 

60 

40 

20 

(f)

10 20 30 40

210

200

190

180

170

160

150

140

Fig. 6. Enhancement of the similarity matrix of the
Shostakovich example, see Fig. 2. (a),(b):S[41, 10] and
enlargement. (c),(d):S10[41, 10] and enlargement. (e),(f):
Smin

10 [41, 10] and enlargement.

To further enhance the path structure ofS[w, q], we incor-
porate contextual information into the local similarity mea-
sure. A similar approach has been suggested in [2] or [12],
where the self-similarity matrix is filtered along diagonals as-
suming constant tempo. We will show later in this section
how to remove this assumption by, intuitively speaking, fil-
tering along various directions simultaneously, where each of
the directions corresponds to a different local tempo. In [15],
matrix enhancement is achieved by using HMM-based “dy-
namic” features, which model the temporal evolution of the
spectral shape over a fixed time duration. For the moment,
we also assume constant tempo and then, in a second step,
describe how to get rid of this assumption. LetL ∈ N be a
length parameter. We define thecontextual similarity measure
dL by

dL(n,m) :=
1

L

L−1
∑

ℓ=0

d(~vn+ℓ, ~vm+ℓ), (4)

where1 ≤ n,m ≤ N − L + 1. By suitably extending
the CENS sequence(~v1, . . . , ~vN ), e.g., via zero-padding, one

w 29 33 37 41 45 49 53 57
q 7 8 9 10 11 12 13 14
tc 1.43 1.25 1.1 1.0 0.9 0.83 0.77 0.7

Table 1. Tempo changes (tc) simulated by changing the statis-
tics window sizew and the downsampling factorq.

may extend the definition to1 ≤ n,m ≤ N . Then, the
contextual similarity matrixSL is defined bySL(n,m) :=
dL(n,m). In this matrix, a valuedL(n,m) ∈ [0, 1] close to
zero implies that the entireL-sequence(~vn, . . . , ~vn+L−1) is
similar to theL-sequence(~vm, . . . , ~vm+L−1), resulting in an
enhancement of the diagonal path structure in the similarity
matrix. This is also illustrated by our Shostakovich example,
showingS[41, 10] in Fig. 6 (a) andS10[41, 10] in Fig. 6 (c).
Here, the diagonal path structure ofS10[41, 10]—as opposed
to the one ofS[41, 10]—is much clearer, which not only facil-
itates the extraction of structural information but also allows
to further decrease the feature sampling rate. Note that the
contextual similarity matrixSL can be efficiently computed
from S by applying an averaging filter along the diagonals.
More precisely,SL(n,m) = 1

L

∑L−1
ℓ=0 S(n + ℓ,m + ℓ) (with

a suitable zero-padding ofS).
So far, we have enhanced similarity matrices by regarding

the context ofL consecutive features vectors. This proce-
dure is problematic when similar segments do not have the
same tempo. Such a situation frequently occurs in classical
music—even within the same interpretation—as is shown by
our Brahms example, see Fig. 1. To account for such varia-
tions we, intuitively speaking, create several versions ofone
of the audio data streams, each corresponding to a different
global tempo, which are then incorporated into one single
similarity measure. More precisely, let~V [w, q] denote the
CENS[w, q] sequence of lengthN [w, q] obtained from the au-
dio data stream in question. For the sake of concreteness, we
choosew = 41 andq = 10 as reference parameters, resulting
in a feature sampling rate of1 Hz. We now simulate a tempo
change of the data stream by modifying the values ofw andq.
For example, using a window size ofw = 53 (instead of41)
and a downsampling factor ofq = 13 (instead of10) simu-
lates a tempo change of the original data stream by a factor of
10/13 ≈ 0.77. In our experiments, we used8 different tempi
as indicated by Table 1, covering tempo variations of roughly
−30 to +40 percent. We then define a new similarity measure
dmin

L by

dmin
L (n,m) := min

[w,q]

1

L

L−1
∑

ℓ=0

d
(

~v[41, 10]n+ℓ, ~v[w, q]m̃+ℓ
)

,

(5)
where the minimum is taken over the pairs[w, q] listed in
Table 1 andm̃ = ⌈m · 10/q⌉. In other words, at position
(n,m), the L-subsequence of~V [41, 10] starting at absolute
time n (note that the feature sampling rate is1 Hz) is com-
pared with theL-subsequence of~V [w, q] (simulating a tempo
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Fig. 7. Enhancement of the similarity matrix of the Brahms
example, see Fig. 1. (a),(b):S[41, 10] and enlargement.
(c),(d):S10[41, 10] and enlargement. (e),(f):Smin

10 [41, 10] and
enlargement.

change of10/q) starting at absolute timem (corresponding
to feature positionm̃ = ⌈m · 10/q⌉). From this we ob-
tain the modified contextual similarity matrixSmin

L defined
by Smin

L (n,m) := dmin
L (n,m). Fig. 7 shows that incorpo-

rating local tempo variations into contextual similarity matri-
ces significantly improves the quality of the path structure,
in particular for the case that similar audio segments exhibit
different local relative tempi.

4. PATH EXTRACTION

In the last two sections, we have introduced a combination of
techniques—robust CENS features and usage of contextual
information—resulting in smooth and structurally enhanced
self-similarity matrices. We now describe a flexible and ef-
ficient strategy to extract the paths of a given self-similarity
matrixS = Smin

L [w, q].
Mathematically, we define a path to be a sequenceP =

(p1, p2, . . . , pK) of pairs of indicespk = (nk,mk) ∈ [1 :

N ]2, 1 ≤ k ≤ K, satisfying the path constraints

pk+1 = pk + δ for someδ ∈ ∆, (6)

where∆ := {(1, 1), (1, 2), (2, 1)} and1 ≤ k ≤ K − 1. The
pairspk will also be called thelinks of P . Then thecostof
link pk = (nk,mk) is defined asS(nk,mk). Now, it is the
objective to extract long paths consisting of links having low
costs. Our path extraction algorithm consists of three steps.
In Step (1), we start with a link of minimal cost, referred to as
initial link , and construct a path in a greedy fashion by itera-
tively adding links of low cost, referred to asadmissible links.
In Step (2), all links in a neighborhood of the constructed path
are excluded from further considerations by suitably modify-
ing S. Then, Step (1) and Step (2) are repeated until there
are no links of low cost left. Finally, the extracted paths are
postprocessed in Step (3). The details are as follows:

(0) Initialization: SetS = Smin
L [w, q] and letCin, Cad ∈

R>0 be two suitable thresholds for the maximal cost of
the initial links and the admissible links, respectively.
(In our experiments, we typically chose0.08 ≤ Cin ≤
0.15 and0.12 ≤ Cad ≤ 0.2.) We modifyS by setting
S(n,m) = Cad for n ≤ m, i.e., the links below the
diagonal will be excluded in the following steps. Simi-
larly, we exclude the neighborhood of the diagonal path
P = ((1, 1), (2, 2), . . . , (N,N)) by modifyingS using
the path removal strategy as described in Step (2).

(1) Path construction: Let p0 = (n0,m0) ∈ [1 : N ]2 be
the indices minimizingS(n,m). If S(n0,m0) ≥ Cin,
the algorithm terminates. Otherwise, we construct a
new pathP by extendingp0 iteratively, where all possi-
ble extensions are described by Fig. 8 (a). Suppose we
have already constructedP = (pa, . . . , p0, . . . , pb) for
a ≤ 0 andb ≥ 0. Then, ifminδ∈∆(S(pb + δ)) < Cad,
we extendP by setting

pb+1 := pb + argminδ∈∆(S(pb + δ)), (7)

and, ifminδ∈∆(S(pa−δ)) < Cad, extendP by setting

pa−1 := pa − argminδ∈∆(S(pa − δ)). (8)

Fig. 8 (b) illustrates such a path. If there are no fur-
ther extensions with admissible links, we proceed with
Step (2). Shifting the indices bya + 1, we may assume
that the resulting path is of the formP = (p1, . . . , pK)
with K = a + b + 1.

(2) Path removal: For a fixed linkpk = (nk,mk) of P
we consider the maximal numbermk ≤ m∗ ≤ N
with the property thatS(nk,mk) ≤ S(nk,mk + 1) ≤
. . . ≤ S(nk,m∗). In other words, the sequence
(nk,mk), (nk,mk + 1), . . . , (nk,m∗) defines aray
starting at position(nk,mk) and running horizontally
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Fig. 8. (a) Initial link and possible path extensions. (b) Path
resulting from Step (1). (c) Rays used for path removal in
Step (2).

to the right such thatS is monotonically increasing.
Analogously, we consider three other types of rays
starting at position(nk,mk) running horizontally to the
left, vertically upwards, and vertically downwards, see
Fig. 8 (c) for an illustration. We then consider all such
rays for all linkspk of P . Let N (P ) ⊂ [1 : N ]2 be
the set of all pairs(n,m) lying on one of these rays.
Note thatN (P ) defines a neighborhood of the pathP .
To exclude the links ofN (P ) from further considera-
tion, we setS(n,m) = Cad for all (n,m) ∈ N (P ) and
continue by repeating Step (1).

In our actual implementation, we made Step (2) more
robust by softening the monotonicity condition on the rays.
After the above algorithm terminates, we obtain a set of
paths denoted byP, which is postprocessed in a third step
by means of some heuristics. For the following, letP =
(p1, p2, . . . , pK) denote a path inP.

(3a) Removing short paths: All paths that have a length
K shorter than a thresholdK0 ∈ N are removed. (In
our experiments, we chose5 ≤ K0 ≤ 10.) Such paths
frequently occur as a result of residual links that have
not been correctly removed by Step (2).

(3b) Pruning paths: We prune each pathP ∈ P at the be-
ginning by removing the linksp1, p2, . . . , pk0

up to the
index 0 ≤ k0 ≤ K, wherek0 denotes the maximal
index such that the cost of each linkp1, p2, . . . , pk0

ex-
ceeds some suitably chosen thresholdCpr lying in be-
tweenCin andCad. Analogously, we prune the end of
each path. This step is performed due to the following
observation: introducing contextual information into
the local similarity measure results in a smoothing ef-
fect of the paths along the diagonal direction. This, in
turn, results in a blurring effect at the beginning and end
of such paths—as illustrated by Fig. 6 (f)—unnaturally
extending such paths at both ends in the construction of
Step (1).

(3c) Extending paths: We then extend each path
P ∈ P at its end by adding suitable links
pK+1, . . . , pK+L0

. This step is performed due to
the following reason: since we have incorporated
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Fig. 9. Illustration of the path extraction algorithm for the
Brahms example of Fig. 1. (a) Self-similarity matrixS =
Smin

16 [41, 10]. Here, all values exceeding the thresholdCad =
0.16 are plotted in white. (b) MatrixS after Step (0) (initial-
ization). (c) MatrixS after performing Step (1) and Step (2)
once using the thresholdsCin = 0.08 andCad = 0.16. Note
that a long path in the left upper corner was constructed, the
neighborhood of which has then been removed. (d) Result-
ing path setP = {P1, . . . , P7} after the postprocessing of
Step (3) usingK0 = 5 andCpr = 0.10. The indexm of Pm

is indicated along each respective path.

contextual information into the local similarity mea-
sure, a low costS(pK) = dmin

L (nK ,mK) of the
link pK = (nK ,mK) implies that the whole se-
quence(~vnK [41, 10], . . . , ~vnK+L−1[41, 10]) is similar
to (~vmK [w, q], . . . , ~vmK+L−1[w, q]) for the minimiz-
ing [w, q] of Table 1, see Sect. 3. Here the length and
direction of the extensionpK+1, . . . , pK+L0

depends
on the values[w, q]. (In the case[w, q] = [41, 10], we
setL0 = L andpk = pK + (k, k) for k = 1, . . . , L0.)

Fig. 9 illustrates the steps of our path extraction algorithm
for the Brahms example. Part (d) shows the resulting path
setP. Note that each path corresponds to a pair of simi-
lar segments and encodes the relative tempo progression be-
tween these two segments. Fig. 10 (b) shows the setP for the
Shostakovich example. In spite of the matrix enhancement,
the similarity between the segments corresponding toA1 and
A3 has not been correctly identified, resulting in the aborted
pathP1 (which should correctly start at link(4, 145)). Even
though, as we will show in the next section, the extracted in-
formation is sufficient to correctly derive the global structure.
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Fig. 10. Shostakovich example of Fig. 2. (a)Smin
16 [41, 10].

(b)P = {P1, . . . , P6} based on the same parameters as in the
Brahms example of Fig. 9. The indexm of Pm is indicated
along each respective path.

5. GLOBAL STRUCTURE ANALYSIS

In this section, we propose an algorithm to determine the
global repetitive structure of the underlying piece of music
from the relations defined by the extracted paths. We first
introduce some notation. Asegmentα = [s : t] is given
by its starting points and end pointt, wheres and t are
given in terms of the corresponding indices in the feature se-
quence~V = (~v1, ~v2, . . . , ~vN ), see Sect. 1. Asimilarity clus-
ter A := {α1, . . . , αM} of sizeM ∈ N is defined to be a set
of segmentsαm, 1 ≤ m ≤ M , which are considered to be
mutually similar. Then, theglobal structureis described by a
complete list of relevant similarity clusters of maximal size.
In other words, the list should represent all repetitions ofmu-
sically relevant segments. Furthermore, if a cluster contains a
segmentα, then the cluster should also contain all other seg-
ments similar toα. For example, in our Shostakovich exam-
ple of Fig. 2 the global structure is described by the clusters
A1 = {α1, α2, α3, α4} andA2 = {γ1, γ2}, where the seg-
mentsαk correspond to the partsAk for 1 ≤ k ≤ 4 and the
segmentsγk to the partsCk for 1 ≤ k ≤ 2. Given a cluster
A = {α1, . . . , αM} with αm = [sm : tm], 1 ≤ m ≤ M , the
supportof A is defined to be the subset

supp(A) :=
⋃M

m=1[sm : tm] ⊂ [1 : N ]. (9)

Recall that each pathP indicates a pair of similar seg-
ments. More precisely, the pathP = (p1, . . . , pK) with pk =
(nk,mk) indicates that the segmentπ1(P ) := [n1 : nK ]
is similar to the segmentπ2(P ) := [m1 : mK ]. Such a
pair of segments will also be referred to as apath relation.
As an example, Fig. 11 (a) shows the path relations of our
Shostakovich example. In this section, we describe an algo-
rithm that derives large and consistent similarity clusters from
the path relations induced by the setP of extracted paths.
From a theoretical point of view, one has to construct some
kind of transitive closure of the path relations, see also [6].
For example, if segmentα is similar to segmentβ, and seg-
mentβ is similar to segmentγ, thenα should also be regarded

as similar toγ resulting in the cluster{α, β, γ}. The situation
becomes more complicated whenα overlaps with some seg-
mentβ which, in turn, is similar to segmentγ. This would
imply that a subsegment ofα is similar to some subsegment
of γ. In practice, the construction of similarity clusters by iter-
atively continuing in the above fashion is problematic. Here,
inconsistencies in the path relations due to semantic (vague
concept of musical similarity) or to algorithmic (inaccurately
extracted or missing paths) reasons may lead to meaningless
clusters, e. g., containing a series of segments where each
segment is a slightly shifted version of its predecessor. For
example, letα = [1 : 10], β = [11 : 20], γ = [22 : 31], and
δ = [3 : 11]. Then similarity relations betweenα andβ, β and
γ, γ andδ would imply thatα = [1 : 10] has to be regarded
as similar toδ = [3 : 11], and so on. To balance out such
inconsistencies, previous strategies such as [8] rely uponthe
constant tempo assumption. To achieve a robust and meaning-
ful clustering even in the presence of significant local tempo
variations, we suggest a new clustering algorithm, which pro-
ceeds in three steps. To this end, letP = {P1, P2, . . . , PM}
be the set of extracted pathsPm, 1 ≤ m ≤ M . In Step (1)
(transitivity step) and Step (2) (merging step), we computefor
eachPm a similarity clusterAm consisting of all segments
that are either similar toπ1(Pm) or to π2(Pm). In Step (3),
we then discard the redundant clusters. We exemplarily ex-
plain the procedure of Step (1) and Step (2) by considering
the pathP1.

(1) Transitivity Step: Let Tts be a suitable tolerance pa-
rameter measured in percent (in our experiments we
usedTts = 90). First, we construct a clusterA1

1 for
the pathP1 and the segmentα := π1(P1). To this
end, we check for all pathsPm whether the intersection
α0 := α ∩ π1(Pm) contains more thanTts percent of
α, i. e., whether|α0|/|α| ≥ Tts/100. In the affirma-
tive case, letβ0 be the subsegment ofπ2(Pm) that cor-
responds underPm to the subsegmentα0 of π1(Pm).
We addα0 andβ0 to A1

1. Similarly, we check for all
pathsPm whether the intersectionα0 := α ∩ π2(Pm)
contains more thanTts percent ofα and add in the af-
firmative caseα0 andβ0 to A1

1, where this timeβ0 is
the subsegment ofπ1(Pm) that corresponds underPm

to α0. Note thatβ0 generally does not have the same
length asα0. (Recall that the relative tempo variation
is encoded by the gradient ofPm.) Analogously, we
construct a clusterA2

1 for the pathP1 and the segment
α := π2(P1). The clustersA1

1 andA2
1 can be regarded

as the result of the first iterative step towards forming
the transitive closure.

(2) Merging Step: The clusterA1 is constructed by ba-
sically merging the clustersA1

1 andA2
1. To this end,

we compare each segmentα ∈ A1
1 with each segment

β ∈ A2
1. In the case that the intersectionγ := α ∩ β

contains more thanTts percent ofα and ofβ (i. e., α
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Fig. 11. Illustration of the clustering algorithm for the
Shostakovich example. The path setP = {P1, . . . , P6} is
shown in Fig. 10 (b). Segments are indicated by gray bars and
overlaps are indicated by black regions. (a) Illustration of the
two segmentsπ1(Pm) andπ2(Pm) for each pathPm ∈ P,
1 ≤ m ≤ 6. Row m corresponds toPm. (b) ClustersA1

m

andA2
m (rows 2m − 1 and2m) computed in Step (1) with

Tts = 90. (c) ClustersAm (row m) computed in Step (2).
(d) Final result of the clustering algorithm after performing
Step (3) withTdc = 90. The derived global structure is given
by two similarity clusters. The first cluster corresponds to
the musical parts{A1, A2, A3, A4} (first row) and the second
cluster to{C1, C2} (second row), cf. Fig. 2.

essentially coincides withβ), we add the segmentγ
to A1. In the case that for a fixedα ∈ A1

1 the inter-
sectionα ∩ supp(A2

1) contains less than(100 − Tts)
percent ofα (i. e., α is essentially disjoint with all
β ∈ A2

1), we addα to A1. Symmetrically, if for a
fixed β ∈ A2

1 the intersectionβ ∩ supp(A1
1) contains

less than(100 − Tts) percent ofβ, we addβ to A1.
Note that by this procedure, the first case balances out
small inconsistencies, whereas the second case and the
third case compensate for missing path relations. Fur-
thermore, segmentsα ∈ A1

1 andβ ∈ A2
1 that do not fall

into one of the above categories indicate significant in-
consistencies and are left unconsidered in the construc-
tion ofA1.

After Step (1) and Step (2), we obtain a clusterA1 for the
pathP1. In an analogous fashion, we compute clustersAm

for all pathsPm, 1 ≤ m ≤ M .
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Fig. 12. Steps of the clustering algorithm for the Brahms ex-
ample, see Fig. 9. For details we refer to Fig. 11. The final
result correctly represents the global structure: The cluster
of the second row corresponds to{B1, B2, B3, B4}, and the
one of the third row to{A1, A2, A3}. Finally, the cluster of
the first row expresses the similarity betweenA2B1B2 and
A3B3B4, cf. Fig 1.

(3) Discarding clusters: Let Tdc be a suitable tolerance
parameter measured in percent (in our experiments we
choseTdc between80 and 90 percent). We say that
clusterA is aTdc-coverof clusterB if the intersection
supp(A) ∩ supp(B) contains more thanTdc percent
of supp(B). By pairwise comparison of all clusters
Am we successively discard all clusters that areTdc-
covered by some other cluster consisting of a larger
number of segments. (Here the idea is that a clus-
ter with a larger number of smaller segments contains
more information than a cluster having the same sup-
port while consisting of a smaller number of larger seg-
ments.) In the case that two clusters are mutualTdc-
covers and consist of the same number of segments, we
discard the cluster with the smaller support.

The steps of the clustering algorithm are also illustrated
by Fig. 11 and Fig. 12. Recall from Sect. 4 that in the
Shostakovich example, the significant variations in the instru-
mentation led to a defective path extraction. In particular, the
similarity of the segments corresponding to partsA1 andA3

could not be correctly identified as reflected by the truncated
pathP1, see Fig. 10 (b) and Fig. 11 (a). Nevertheless, the cor-
rect global structure was derived by the clustering algorithm,
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Fig. 13. (a) Chopin, “Tristesse”, Etude op. 10/3, played by Varsi. (b) Beethoven, “Pathetique”, second movement, op. 13,
played by Barenboim. (c) Gloria Gaynor, “I will survive”. (d) PartA1A2B of the Shostakovich example of Fig. 2 repeated
three times in modified tempi (normal tempo,140 percent of normal tempo, accelerating tempo from100 to 140 percent).

cf. Fig. 11 (d). Here, the missing relation was recovered by
Step (1) (transitivity step) from the correctly identified simi-
larity relation between segments corresponding toA3 andA4

(pathP2) and between segments corresponding toA1 andA4

(pathP3). The effect of Step (3) is illustrated by comparing
(c) and (d) of Fig. 11. Since the clusterA5 is a 90-percent
cover of the clustersA1, A2, A3, andA6, and has the largest
support, the latter clusters are discarded.

6. EXPERIMENTS

We implemented our algorithm for audio structure analysis in
MATLAB and tested it on about100 audio recordings reflect-
ing a wide range of mainly Western classical music, including
pieces by Bach, Beethoven, Brahms, Chopin, Mozart, Ravel,
Schubert, Schumann, Shostakovich, and Vivaldi. In particu-
lar, we used musically complex orchestral pieces exhibiting
a large degree of variations in their repetitions with respect
to instrumentation, articulation, and local tempo variations.
From a musical point of view, the global repetitive structure
is often ambiguous since it depends on the particular notion
of similarity, on the degree of admissible variations, as well
as on the musical significance and duration of the respective
repetitions. Furthermore, the structural analysis can be per-
formed at various levels: at a global level (e.g., segmenting a
sonata into exposition, repetition of the exposition, develop-
ment, and recapitulation), an intermediary level (e.g., further
splitting up the exposition into first and second theme), or
on a fine level (e.g., segmenting into repeating motifs). This
makes the automatic structure extraction as well as an objec-
tive evaluation of the results a difficult and problematic task.

In our experiments, we looked for repetitions at a global
to intermediary level corresponding to segments of at least
15–20 seconds of duration, which is reflected in our choice
of parameters, see Sect. 6.1. In that section, we will also
present some general results and discuss in detail two com-
plex examples: Mendelssohn’s Wedding March and Ravel’s
Bolero. In Sect. 6.2, we discuss the running time behavior

of our implementation. It turns out that the algorithm is ap-
plicable to pieces even longer than45 minutes, which covers
essentially any piece of Western classical music. To account
for transposed (pitch-shifted) repeating segments, we adopted
the shifting technique suggested by Goto [8]. Some results
will be discussed in Sect. 6.3. Further results and an audio
demonstration can be found athttp://www-mmdb.iai.
uni-bonn.de/projects/audiostructure.

6.1. General Results

In order to demonstrate the capability of our structure anal-
ysis algorithm, we discuss some representative results in de-
tail. This will also illustrate the kind of difficulties generally
found in music structure analysis. Our algorithm is fully au-
tomatic, in other words, no prior knowledge about the respec-
tive piece is exploited in the analysis. In all examples, we use
the following fixed set of parameters. For the self-similarity
matrix, we useSmin

16 [41, 10] with a corresponding feature res-
olution of 1 Hz, see Sect. 3. In the path extraction algorithm
of Sect. 4, we setCin = 0.08, Cad = 0.16, Cpr = 0.10, and
K0 = 5. Finally, in the clustering algorithm of Sect. 5 we set
Tts = 90 andTdc = 90. The choice of the above parameters
and thresholds constitutes a trade-off between being tolerant
enough to allow relevant variations and being robust enough
to deal with artifacts and inconsistencies.

As a first example, we consider a Varsi recording of
Chopin’s Etude op. 10/3 (“Tristesse”). The underlying piece
has the musical formA1A2B1CA3B2D. This structure has
successfully been extracted by our algorithm, see Fig. 13 (a).
Here, the first clusterA1 corresponds to the partsA2B1 and
A3B2, whereas the second clusterA2 corresponds to the
partsA1, A2, andA3. For simplicity, we use the notation
A1 ∼ {A2B1, A3B2} andA2 ∼ {A1, A2, A3}. The simi-
larity relation betweenB1 andB2 is induced from clusterA1

by “subtracting” the respectiveA-part which is known from
clusterA2. The small gaps between the segments in cluster
A2 are due to the fact that the tail ofA1 (passage toA2) is
different from the tail ofA2 (passage toB1).
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Fig. 14. (a) Mendelssohn, “Wedding March”, op. 21-7, conducted by Tate. (b) Ravel, “Bolero”, conducted by Ozawa.

The next example is a Barenboim interpretation of the sec-
ond movement of Beethoven’s Pathetique, which has the mu-
sical formA1A2BA3CA4A5D. The interesting point of this
piece is that theA-parts are variations of each other. For ex-
ample, the melody inA2 andA4 is played one octave higher
than the melody inA1 andA3. Furthermore,A3 andA4 are
rhythmic variations ofA1 andA2. Nevertheless, the correct
global structure has been extracted, see Fig. 13 (b). The three
clusters are in correspondence withA1 ∼ {A1A2, A4A5},
A3 ∼ {A1, A3, A5}, andA2 ∼ {A′

1, A
′
2, A

′
3, A

′
4, A

′
5}, where

A′
k denotes a truncated version ofAk. Hence, the segments

A1, A3, andA5 are identified as a whole, whereas the other
A-parts are identified only up to their tail. This is due to the
fact that the tails of theA-parts exhibit some deviations lead-
ing to higher costs in the self-similarity matrix, as illustrated
by Fig. 13 (b).

The popular song “I will survive” by Gloria Gaynor con-
sists of an introductionI followed by eleven repetitionsAk,
1 ≤ k ≤ 11, of the chorus. This highly repetitive structure
is reflected by the secondary diagonals in the self-similarity
matrix, see Fig. 13 (c). The segments exhibit variations not
only with respect to the lyrics but also with respect to instru-
mentation and tempo. For example, some segments include a
secondary voice in the violin, others harp arpeggios or trum-
pet syncopes. The first chorusA1 is played without percus-
sion, whereasA5 is a purely instrumental version. Also note
that there is a significant ritardando inA9 between seconds
150 and160. In spite of these variations, the structure analy-
sis algorithm works almost correctly. However, there are two
artifacts that have not been ruled out by our strategy. Each
chorusAk can be split up into two subpartsAk = A′

kA′′
k . The

computed clusterA1 corresponds to the ten partsA′′
k−1A

′
kA′′

k ,
2 ≤ k ≤ 11, revealing an overlap in theA′′-parts. In particu-
lar, the extracted segments are “out of phase” since they start
with subsegments corresponding to theA′′-parts. This may
be due to extreme variations inA′

1 making this part dissimi-
lar to the otherA′-parts. SinceA′

1 constitutes the beginning
of the extracted paths, it has been (mistakenly) truncated in
Step (3b) (pruning paths) of Sect. 4.

To check the robustness of our algorithm with respect to
global and local tempo variations, we conducted a series of
experiments with synthetically time-stretched audio signals
(i. e., we changed the tempo progression without changing
the pitch). As it turns out, there are no problems in identi-

fying similar segments that exhibit global tempo variations of
up to 50 percent as well as local tempo variations such as ri-
tardandi and accelerandi. As an example, we consider the au-
dio file corresponding to the partA1A2B of the Shostakovich
example of Fig. 2. From this, we generated two additional
time-stretched variations: a faster version at140 percent of
the normal tempo and an accelerating version speeding up
from 100 to 140 percent. The musical form of the concate-
nation of these three versions isA1A2B1A3A4B2A5A6B3.
This structure has been correctly extracted by our algorithm,
see Fig. 13 (d). The correspondences of the two result-
ing clusters areA1 ∼ {A1A2B1, A3A4B2, A5A6B3} and
A2 ∼ {A1, A2, A3, A4, A5, A6}.

Next, we discuss an example with a musically more com-
plicated structure. This will also illustrate some problems typ-
ically appearing in automatic structure analysis. The “Wed-
ding March” by Mendelssohn has the musical form

A1B1A2B2C1B3C2B4 D1D2E1D3E1D4 . . .
. . . B5 F1G1G2H1 A3B6C3B7A4 I1I2J1

Furthermore, each segmentBk for 1 ≤ k ≤ 7 has a sub-
structureBk = B′

kB′′
k consisting of two musically similar

subsegmentsB′
k andB′′

k . However, theB′′-parts reveal sig-
nificant variations even at the note level. Our algorithm has
computed seven clusters, which are arranged according to the
lengths of their support, see Fig. 14 (a). Even though not visi-
ble at first glance, these clusters represent most of the musical
structure accurately. Manual inspection reveals that the clus-
ter segments correspond, up to some tolerance, to the musical
parts as follows:

A1 ∼ {B2C1B′

3, B3C2B′

4, B6C3B′

7}

A2 ∼ {B2C1B3+, B6C3B7+}

A3 ∼ {B1, B2, B3, B6, B7}

A4 ∼ {B′

1, B′

2, B′

3, B′

4, B′

5, B′

6, B′

7}

A5 ∼ {A1B1A2, A2B2+}

A6 ∼ {D2E1D3, D3E2D4}

A7 ∼ {G1, G2}

A8 ∼ {I1, I2}

In particular, all sevenB′-parts (truncatedB-parts) are
represented by clusterA4, whereasA3 contains five of the
sevenB-parts. The missing and truncatedB-parts can be ex-
plained as in the Beethoven example of Fig. 13 (b). Cluster



A1 reveals the similarity of the threeC-parts, which are en-
closed between theB- andB′-parts known fromA3 andA4.
The A-parts, an opening motif, have a duration of less than
8 seconds—too short to be recognized by our algorithm as a
separate cluster. Due to the close harmonic relationship ofthe
A-parts with the tails of theB-parts and the heads of theC-
parts it is hard to exactly determine the boundaries of these
parts. This leads to clusters such asA2 andA5, whose seg-
ments enclose several parts or only fragments of some parts
(indicated by the+ sign). Furthermore, the segments of clus-
ter A6 enclose several musical parts. Due to the overlap in
D3, one can derive the similarity ofD2, D3, andD4 as well
as the similarity ofE1 andE2. TheD- andE-parts are too
short (less than 10 seconds) to be detected as separate clus-
ters. This also explains the undetected partD1. Finally, the
clustersA7 andA8 correctly represent the repetitions of the
G- andI-parts, respectively.

Another complex example, in particular with respect
to the occurring variations, is Ravel’s Bolero, which
has the musical formD1D2D3D4A9B9C with Dk =
A2k−1A2kB2k−1B2k for 1 ≤ k ≤ 4. The piece repeats two
tunes (corresponding to theA- and B-parts) over and over
again, each time played in a different instrumentation includ-
ing flute, clarinet, bassoon, saxophone, trumpet, strings,and
culminating in the full orchestra. Furthermore, the volume
gradually grows from quiet pianissimo to a vehement fortis-
simo. Note that playing an instrument in piano or in fortis-
simo not only makes a difference in volume but also in the
relative energy distribution within the chroma bands, which
is due to effects such as noise, vibration, and reverberation.
Nevertheless, the CENS features absorb most of the result-
ing variations. The extracted clusters represent the global
structure up to a few missing segments, see Fig. 14 (b). In
particular, the clusterA3 ∼ {Ak− | 1 ≤ k ≤ 9} correctly
identifies all nineA-parts in a slightly truncated form (indi-
cated by the− sign). Note that the truncation may result from
Step (2) (merging step) of Sect. 5, where path inconsistencies
are ironed out by segment intersections. The clusterA4 cor-
rectly identifies the full-sizeA-parts with only partA4 miss-
ing. Here, an additional transitivity step might have helped
to perfectly identify all nineA-parts in full length. The sim-
ilarity of the B-parts is reflected byA5, where only partB9

is missing. All other clusters reflect superordinate similar-
ity relations (e. g.,A1 ∼ {A3A4B3, A5A6B5, A7A8B7} or
A2 = {D3+,D4+}), or similarity relations of smaller frag-
ments.

For other pieces of music—we manually analyzed the re-
sults for about100 pieces—our structure analysis algorithm
typically performs as indicated by the above examples and the
global repetitive structure can be recovered to a high degree.
We summarize some typical problems associated with the ex-
tracted similarity clusters. Firstly, some clusters consist of
segments that only correspond to fragments or truncated ver-
sions of musical parts. Note that this problem is not only due

to algorithmic reasons such as the inconsistencies stemming
from inaccurate path relations but also due to musical reasons
such as extreme variations in tails of musical parts. Secondly,
the set of extracted clusters is sometimes redundant as in the
case of the Bolero—some clusters almost coincide while dif-
fering only by a missing part and by a slight shift and length
difference of their respective segments. Here, a higher degree
of transitivity and a more involved merging step in Sect. 5
could help to improve the overall result. (Due to the incon-
sistencies, however, a higher degree of transitivity may also
degrade the result in other cases.) Thirdly, the global struc-
ture is sometimes not given explicitly but is somehow hidden
in the clusters. For example, the similarity of theB-parts in
the Chopin example results from “subtracting” the segments
corresponding to theA-parts given byA2 from the segments
of A1. Or, in the Mendelssohn example, the similarity of the
D- andE-parts can be derived from clusterA6 by exploiting
the overlap of the segments in a subsegment corresponding to
partD3. It seems promising to exploit such overlap relations
in combination with a subtraction strategy to further improve
the cluster structure. Furthermore, we expect an additional
improvement in expressing the global structure by means of
some hierarchical approach as discussed in Sect. 7.

6.2. Running Time Behavior

In this section, we discuss the running time behavior of
the MATLAB implementation of our structure analysis algo-
rithm. Tests were run on an Intel Pentium IV, 3.6 GHz, with
2 GByte RAM under Windows 2000. Table 2 shows the run-
ning times for several pieces sorted by duration.

The first step of our algorithm consists of the extraction of
robust audio features, see Sect. 2. The running time to com-
pute the CENS feature sequence is linear in the duration of
the audio file under consideration—in our tests roughly one
third of the duration of the piece, see the third column of Ta-
ble 2. Here, the decomposition of the audio signal into the
88 frequency bands as described in Sect. 2.1 constitutes the
bottleneck of the feature extraction, consuming far more than
99% of the entire running time. The subsequent computations
to derive the CENS features from the filter subbands only take
a fraction of a second even for long pieces such as Ravel’s
Bolero. In view of our experiments, we computed the chroma
features of Sect. 2.1 at a resolution of10 Hz for each piece
in our music database and stored them on hard disk, making
them available for the subsequent steps irrespective of thepa-
rameter choice made in Sects. 4 and 5.

The time and space complexity to compute a self-
similarity matrixS is quadratic in the lengthN of the feature
sequence. This makes the usage of such matrices infeasible
for largeN . Here, our strategy is to use coarse CENS fea-
tures, which not only introduces a high degree of robustness
towards admissible variations but also keeps the feature reso-
lution low. In the above experiments, we used CENS[41, 10]-



Piece Length CENS S
min
16 [41, 10] Path Extr. #(paths) Clustering

Chopin, “Tristesse”, Fig. 13 (a) 173.1 54.6 0.20 0.06 3 0.17
Gaynor, “I will survive”, Fig. 13 (c) 200.0 63.0 0.25 0.16 24 0.33
Brahms, “Hungarian Dance”, Fig. 1 204.1 64.3 0.31 0.09 7 0.19
Shostakovich, “Waltz”, Fig. 2 223.6 70.5 0.34 0.09 6 0.20
Beethoven, “Pathetique2nd”, Fig. 13 (b) 320.0 100.8 0.66 0.15 9 0.21
Mendelssohn, “Wedding March”, Fig. 14 (a) 336.6 105.7 0.70 0.27 17 0.27
Schubert, “Unfinished1st” Fig. 15 (a) 900.0 282.1 4.40 0.85 10 0.21
Ravel, “Bolero”, Fig. 14 (b) 901.0 282.7 4.36 5.53 71 1.05

2× “Bolero” 1802.0 17.06 84.05 279 9.81
3× “Bolero” 2703.0 37.91 422.69 643 97.94

Table 2. Running time behavior of the overall structure analysis algorithm. All time durations are measured in seconds. The
columns indicate the respective piece of music, the duration of the piece, the running time to compute the CENS features
(Sect. 2), the running time to compute the self-similarity matrix (Sect. 3), the running time for the path extraction (Sect. 4), the
number of extracted paths, and the running time for the clustering algorithm (Sect. 5).

features with a sampling rate of1 Hz. Furthermore, incor-
porating the desired invariances into the features itself allows
us to use a local distance measure based on the inner product
that can be evaluated by a computationally inexpensive algo-
rithm. This affords an efficient computation ofS even for
long pieces of up to45 minutes of duration, see the fourth
column of Table 2. For example, in case of the Bolero it
took4.36 seconds to computeSmin

16 [41, 10] from a feature se-
quence of lengthN = 901, corresponding to15 minutes of
audio. Tripling the lengthN by using a threefold concatena-
tion of the Bolero results in a running time of37.9 seconds,
showing an increase by a factor of nine.

The running time for the path extraction algorithm as de-
scribed in Sect. 4 mainly depends on the structure of the self-
similarity matrix below the thresholdCad (rather than on the
size of the matrix), see the fifth column of Table 2. Here,
crucial parameters are the number as well as the lengths of
the path candidates to be extracted, which influences the run-
ning time in a linear fashion. Even for long pieces with a very
rich path structure—as is the case for the Bolero—the running
time of the path extraction is only a couple of seconds.

Finally, the running time of the clustering algorithm of
Sect. 5 is negligible, see the last column of Table 2. Only for
a very large (and practically irrelevant) number of paths, the
running time seems to increase significantly.

Basically, the overall performance of the structure anal-
ysis algorithm depends on the feature extraction step, which
depends linearly on the input size.

6.3. Modulation

It is often the case, in particular for classical music, thatcer-
tain musical parts are repeated in another key. For exam-
ple, the second theme in the exposition of a sonata is of-
ten repeated in the recapitulation transposed by a fifth (i. e.,
shifted by seven semitones upwards). To account for such
modulations, we have adopted the idea of Goto [8], which

is based on the observation that the twelve cyclic shifts of
a 12-dimensional chroma vector naturally correspond to the
twelve possible modulations. In [8], similarity clusters (called
line segment groups) are computed for all twelve modulations
separately, which are then suitably merged in a postprocess-
ing step. In contrast to this, we incorporate all modulations
into a single self-similarity matrix, which then allows to per-
form a singly joint path extraction and clustering step only.
The details of the modulation procedure are as follows. Let
σ : R

12 → R
12 denote thecyclic shiftdefined by

σ((v1, v2, . . . , v12)
⊤) := (v2, . . . , v12, v1)

⊤ (10)

for ~v := (v1, . . . , v12)
⊤ ∈ R

12. Then, for a given audio data
stream with CENS feature sequence~V := (~v1, ~v2, . . . , ~vN ),
thei-modulated self-similarity matrixσi(S) is defined by

σi(S)(n,m) := d(~vn, σi(~vm)), (11)

1 ≤ n,m ≤ N . σi(S) describes the similarity relations
between the original audio data stream and the audio data
stream modulated byi semitones,i ∈ Z. Obviously, one has
σ12(S) = S. Taking the minimum over all twelve modula-
tions, we obtain themodulated self-similarity matrixσmin(S)
defined by

σmin(S)(n,m) := mini∈[0:11]

(

σi(S)(n,m)
)

. (12)

Furthermore, we store the minimizing shift indices in an ad-
ditionalN -square matrixI:

I(n,m) := argmini∈[0:11]

(

σi(S)(n,m)
)

. (13)

Analogously, one definesσmin(Smin
L [w, q]). Now, replacing

the self-similarity matrix by its modulated version one can
proceed with the structure analysis as described in Sect. 4
and Sect. 5. The only difference is that in Step (1) of the
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Fig. 15. (a) Zager & Evans, “In the year 2525”. Left:S with the resulting similarity clusters. Right:σmin(S) with the resulting
similarity clusters. The parameters are fixed as described in Sect. 6.1. (b) Schubert, “Unfinished”, first movement, D 759,
conduced by Abbado. Left and right part are analogous to (a).

path extension (Sect. 4) one has to ensure that each path
P = (p1, p2, . . . , pK) consists of links exhibiting the same
modulation index:I(p1) = I(p2) = . . . = I(pK).

We illustrate this procedure by means of two examples.
The song “In the year 2525” by Zager & Evans is of the
musical formAB0

1B0
2B0

3B0
4CB1

5B1
6DB2

7EB2
8F , where the

chorus, theB-part, is repeated8 times. Here,B1
5 and B1

6

are modulations by one semitone andB2
7 andB2

8 are mod-
ulations of the partsB0

1 to B0
4 by two semitones upwards.

Fig. 15 (a) shows the similarity clusters derived from the
structure analysis based onS = Smin

16 [41, 10]. Note that
the modulated parts are separated into different clusters corre-
sponding toA1 ∼ {B0

1 , B0
2 , B0

3 , B0
4}, A2 ∼ {B1

5 , B1
6}, and

A3 ∼ {B2
7 , B2

8}. In contrast, the analysis based onσmin(S)
leads to a clusterA1 corresponding to all eightB-parts.

As a second example, we consider an Abbado recording
of the first movement of Schubert’s “Unfinished”. This piece,
which is composed in the sonata form, has the rough mu-
sical form A0

1B
0
1C0

1A0
2B

0
2C0

2DÃ3B
7
3C4

3E, whereA0
1B

0
1C0

1

corresponds to the exposition,A0
2B

0
2C0

2 to the repetition of
the exposition,D to the development,̃A3B

7
3C4

3 to the reca-
pitulation, andE to the coda. Note that theB0

1 -part of the
exposition is repeated up a fifth asB7

3 (shifted by7 semi-
tones upwards) and theC0

1 -part is repeated up a third asC4
3

(shifted by4 semitones upwards). Furthermore, theA0
1-part

is repeated as̃A3, however in form of a multilevel transition
from the tonic to the dominant. Again the structure is revealed
by the analysis based onσmin(S), where one has, among
others, the correspondencesA1 ∼ {A0

1B
0
1C0

1 , A0
2B

0
2C0

2},
A2 ∼ {B0

1 , B0
2 , B7

3} andA3 ∼ {C0
1 , C0

2 , C4
3}. The other

clusters correspond to further structures on a finer level.
Finally, since the modulated similarity matrixσmin(S) is

derived from the twelvei-modulated matricesσi(S), i ∈ [0 :
11], the resulting running time to computeσmin(S) is roughly
twelve times longer than the time to computeS. For example,
it took 51.4 seconds to computeσmin(S) for the Schubert’s
“Unfinished” as opposed to4.4 seconds needed to compute
σ(S), cf. Table 2.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have described a robust and efficient algo-
rithm that extracts the repetitive structure of an audio record-
ing. As opposed to previous methods, our approach is robust
to significant variations in the repetitions concerning instru-
mentation, execution of note groups, dynamics, articulation,
modulation, and tempo. For the first time, detailed experi-
ments have been conducted for a wide range of Western clas-
sical music. The results show that the extracted audio struc-
tures often closely correspond to the musical form of the un-
derlying piece, even though no a priori knowledge of the mu-
sic structure has been used. In our approach, we converted
the audio signal into a sequence of coarse, harmony-related
CENS features. Such features are well suited to characterize
pieces of Western classical music, which often exhibit promi-
nent harmonic progressions. Furthermore, instead of relying
on complicated and delicate path extraction algorithms, we
suggested a different approach by taking care of local varia-
tions at the feature and similarity measure levels. This way
we improved the path structure of the self-similarity matrix,
which then allowed for an efficient robust path extraction.

To obtain a more comprehensive representation of audio
structure, obvious extensions of this work consist of combin-
ing harmony-based features with other types of features de-
scribing the rhythm, dynamics, or timbre of music. Another
extension regards the hierarchical nature of music. So far,we
looked in our analysis for repetitions at a global to intermedi-
ary level corresponding to segments of at least 15–20 seconds
of duration. As has also been noted by other researches, mu-
sic structure can often be expressed in a hierarchical manner,
starting with the coarse musical form and ascending to finer
substructures such as repeating themes and motifs. Here, one
typically allows larger variations in the analysis of coarser
structures than in the analysis of finer structures. For fu-
ture work, we suggest a hierarchical approach to structure
analysis by simultaneously computing and combining struc-
tural information at various temporal resolutions. To thisend,
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Fig. 16. Similarity clusters for the Shostakovich exam-
ple of Fig. 2 resulting from a structure analysis using (a)
Smin

16 [41, 10], (b)Smin
16 [21, 5], and (c)S16[9, 2].

we conducted first experiments based on the self-similarity
matricesSmin

16 [41, 10], Smin
16 [21, 5], andS16[9, 2] with corre-

sponding feature resolutions of1 Hz, 2 Hz, and5 Hz, respec-
tively. The resulting similarity clusters are shown in Fig.16
for the Shostakovich example. Note that the musical form
A1A2BC1C2A3A4D has been correctly identified at the low
resolution level, see (a). Increasing the feature resolution has
two effects: On the one hand, finer repetitive substructures
are revealed, as illustrated by (c). On the other hand, the algo-
rithm becomes more sensitive towards local variations, result-
ing in fragmentation and incompleteness of the coarser struc-
tures. One very difficult problem to be solved is to integrate
the extracted similarity relations at all resolutions intoa single
hierarchical model that best describes the musical structure.
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