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Abstract. For a single musical work, there often exists a large number
of relevant digital documents including various audio recordings, MIDI
files, or digitized sheet music. The general goal of music synchronization
is to automatically align the multiple information sources related to a
given musical work. In computing such alignments, one typically has to
face a delicate tradeoff between robustness, accuracy, and efficiency. In
this paper, we introduce various refinement strategies for music synchro-
nization. First, we introduce novel audio features that combine the tem-
poral accuracy of onset features with the robustness of chroma features.
Then, we show how these features can be used within an efficient and ro-
bust multiscale synchronization framework. In addition we introduce an
interpolation method for further increasing the temporal resolution. Fi-
nally, we report on our experiments based on polyphonic Western music
demonstrating the respective improvements of the proposed refinement
strategies.

1 Introduction

Modern information society is experiencing an explosion of digital content, com-
prising text, audio, image, and video. For example, in the music domain, there
is an increasing number of relevant digital documents even for a single musi-
cal work. These documents may comprise various audio recordings, MIDI files,
digitized sheet music, or symbolic score representations. The field of music in-
formation retrieval (MIR) aims at developing techniques and tools for organiz-
ing, understanding, and searching multimodal information in a robust, efficient
and intelligent manner. In this context, various alignment and synchronization
procedures have been proposed with the common goal to automatically link sev-
eral types of music representations, thus coordinating the multiple information
sources related to a given musical work [1, 3–6, 9, 12, 13, 15–21].

In general terms, music synchronization denotes a procedure which, for a
given position in one representation of a piece of music, determines the corre-
sponding position within another representation. Depending upon the respective
data formats, one distinguishes between various synchronization tasks [1, 13]. For
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example, audio-audio synchronization [5, 17, 20] refers to the task of time align-
ing two different audio recordings of a piece of music. These alignments can be
used to jump freely between different interpretations, thus affording efficient and
convenient audio browsing. The goal of score-audio and MIDI-audio synchro-
nization [1, 3, 16, 18, 19] is to coordinate note and MIDI events with audio data.
The result can be regarded as an automated annotation of the audio recording
with available score and MIDI data. A recently studied problem is referred to as
scan-audio synchronization [12], where the objective is to link regions (given as
pixel coordinates) within the scanned images of given sheet music to semantically
corresponding physical time positions within an audio recording. Such linking
structures can be used to highlight the current position in the scanned score
during playback of the recording. Similarly, the goal of lyrics-audio synchroniza-
tion [6, 15, 21] is to align given lyrics to an audio recording of the underlying
song. For an overview of related alignment and synchronization problems, we
also refer to [4, 13].

Automated music synchronization constitutes a challenging research field
since one has to account for a multitude of aspects such as the data format,
the genre, the instrumentation, or differences in parameters such as tempo, ar-
ticulation and dynamics that result from expressiveness in performances. In the
design of synchronization algorithms, one has to deal with a delicate tradeoff
between robustness, temporal resolution, alignment quality, and computational
complexity. For example, music synchronization strategies based on chroma fea-
tures [3] have turned out to yield robust alignment results even in the presence
of significant artistic variations. Such chroma-based approaches typically yield
a reasonable synchronization quality, which suffices for music browsing and re-
trieval applications. However, the alignment accuracy may not suffice to capture
fine nuances in tempo and articulation as needed in applications such as perfor-
mance analysis [22] or audio editing [3]. Other synchronization strategies yield
a higher accuracy for certain classes of music by incorporating onset information
[16, 19], but suffer from a high computational complexity and a lack of robust-
ness. Dixon et al. [5] describe an online approach to audio synchronization. Even
though the proposed algorithm is very efficient, the risk of missing the optimal
alignment path is relatively high. Müller et al. [17] present a more robust, but
very efficient offline approach, which is based on a multiscale strategy.

In this paper, we introduce several strategies on various conceptual levels to
increase the time resolution and quality of the synchronization result without
sacrificing robustness and efficiency. First, we introduce a new class of audio
features that inherit the robustness from chroma-based features and the tem-
poral accuracy from onset-based features (Sect. 2). Then, in Sect. 3, we show
how these features can be used within an efficient and robust multiscale syn-
chronization framework. Finally, for further improving the alignment quality,
we introduce an interpolation technique that refines the given alignment path
in some time consistent way (Sect. 4). We have conducted various experiments
based on polyphonic Western music. In Sect. 5, we summarize and discuss the
results indicating the respective improvements of the proposed refinement strate-
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gies. We conclude in Sect. 6 with a discussion of open problems and prospects
on future work. Further references will be given in the respective sections.

2 Robust and Accurate Audio Features

In this section, we introduce a new class of so-called DLNCO (decaying lo-
cally adaptive normalized chroma-based onset) features that indicate note on-
sets along with their chroma affiliation. These features posses a high temporal
accuracy, yet being robust to variations in timbre and dynamics. In Sects. 2.1
and 2.2, we summarize the necessary background on chroma and onset features,
respectively. The novel DLNCO features are then described in Sect. 2.3.

2.1 Chroma Features

In order to synchronize different music representations, one needs to find suit-
able feature representations being robust towards those variations that are to
be left unconsidered in the comparison. In this context, chroma-based features
have turned out to be a powerful tool for synchronizing harmony-based music,
see [2, 9, 13]. Here, the chroma refer to the 12 traditional pitch classes of the
equal-tempered scale encoded by the attributes C, C♯, D, . . .,B. Note that in the
equal-tempered scale, different pitch spellings such C♯ and D♭ refer to the same
chroma. Representing the short-time energy of the signal in each of the 12 pitch
classes, chroma features do not only account for the close octave relationship
in both melody and harmony as it is prominent in Western music, but also in-
troduce a high degree of robustness to variations in timbre and articulation [2].
Furthermore, normalizing the features makes them invariant to dynamic vari-
ations. There are various ways to compute chroma features, e. g., by suitably
pooling spectral coefficients obtained from a short-time Fourier transform [2] or
by suitably summing up pitch subbands obtained as output after applying a
pitch-based filter bank [13, 14]. For details, we refer to the literature.

In the following, the first six measures of the Etude No. 2, Op. 100, by
Friedrich Burgmüller will serve us as our running example, see Fig. 1a. For short,
we will use the identifier Burg2 to denote this piece, see Table 1. Figs. 1b and 1c
show a chroma representation and a normalized chroma representation, respec-
tively, of an audio recording of Burg2. Because of their invariance, chroma-based
features are well-suited for music synchronization leading to robust alignments
even in the presence of significant variations between different versions of a mu-
sical work, see [9, 17].

2.2 Onset Features

We now describe a class of highly expressive audio features that indicate note
onsets along with their respective pitch affiliation. For details, we refer to [13, 16].
Note that for many instruments such as the piano or the guitar, there is sudden
energy increase when playing a note (attack phase). This energy increase may
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Fig. 1. (a) First six measures of Burgmüller, Op. 100, Etude No. 2 (Burg2, see Ta-
ble 1). (b) Chroma representation of a corresponding audio recording. Here, the feature
resolution is 50 Hz (20 ms per feature vector). (c) Normalized chroma representation.

not be significant relative to the entire signal’s energy, since the generated sound
may be masked by the remaining components of the signal. However, the energy
increase relative to the spectral bands corresponding to the fundamental pitch
and harmonics of the respective note may still be substantial. This observation
motivates the following feature extraction procedure.

First the audio signal is decomposed into 88 subbands corresponding to the
musical notes A0 to C8 (MIDI pitches p = 21 to p = 108) of the equal-tempered
scale. This can be done by a high-quality multirate filter bank that properly
separates adjacent notes, see [13, 16]. Then, 88 local energy curves are computed
by convolving each of the squared subbands with a suitably window function.
Finally, for each energy curve the first-order difference is calculated (discrete
derivative) and half-wave rectified (positive part of the function remains). The
significant peaks of the resulting curves indicate positions of significant energy
increase in the respective pitch subband. An onset feature is specified by the
pitch of its subband and by the time position and height of the corresponding
peak.

Fig. 2 shows the resulting onset representation obtained for our running
example Burg2. Note that the set of onset features is sparse while providing
information of very high temporal accuracy. (In our implementation, we have a
pitch dependent resolution of 2−10 ms.) On the downside, the extraction of onset
features is a delicate problem involving fragile operations such as differentiation
and peak picking. Furthermore, the feature extraction only makes sense for music
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Fig. 2. Onset representation of Burg2. Each rectangle represents an onset feature
specified by pitch (here, indicated by the MIDI note numbers given by the vertical
axis), by time position (given in seconds by the horizontal axis), and by a color-coded
value that correspond to the height of the peak. Here, for the sake of visibility, a suitable
logarithm of the value is shown.

with clear onsets (e. g., piano music) and may yield no or faulty results for other
music (e. g., soft violin music).

2.3 DLNCO Features

We now introduce a new class of features that combine the robustness of chroma
features and the accuracy of onset features. The basic idea is to add up those
onset features that belong to pitches of the same pitch class. To make this work,
we first evenly split up the time axis into segments or frames of fixed length (In
our experiments, we use a length of 20 ms). Then, for each pitch, we add up all
onset features that lie within a segment. Note that due to the sparseness of the
onset features, most segments do not contain an onset feature. Since the values
of the onset features across different pitches may differ significantly, we take a
suitable logarithm of the values, which accounts for the logarithmic sensation of
sound intensity. For example, in our experiments, we use log(5000 · v + 1) for
an onset value v. Finally, for each segment, we add up the logarithmic values
over all pitches that correspond to the same chroma. For example, adding up the
logarithmic onset values that belong to the pitches A0,A1,. . .,A7 yields a value
for the chroma A. The resulting 12-dimensional features will be referred to as
CO (chroma onset) features, see Fig. 3a.

The CO features are still very sensitive to local dynamic variations. As a
consequence, onsets in passages played in piano may be marginal in comparison
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Fig. 3. (a) Chroma onset (CO) features obtained from the onset representation of
Fig. 2. (b) Normalized CO features. (c) Sequence of norms of the CO features (blue)
and sequence of local maxima over a time window of ±1 second (red). (d) Locally
adaptive normalized CO (LNCO) features. (e) Decaying LNCO (DLNCO) features.

to onsets in passages played in forte. To compensate for this, one could simply
normalize all non-zero CO feature vectors. However, this would also enhance
small noisy onset features that are caused by mechanical noise, resonance, or
beat effects thus leading to a useless representation, see Fig. 3b. To circumvent
this problem, we employ a locally adaptive normalization strategy. First, we
compute the norm for each 12-dimensional CO feature vector resulting in a
sequence of norms, see Fig. 3c (blue curve). Then, for each time frame, we
assign the local maxima of the sequence of norms over a time window that
ranges one second to the left and one second to the right, see Fig. 3c (red curve).
Furthermore, we assign a positive threshold value to all those frames where
the local maximum falls below that threshold. The resulting sequence of local
maxima is used to normalize the CO features in a locally adaptive fashion. To
this end, we simply divide the sequence of CO features by the sequence of local
maxima in a pointwise fashion, see Fig. 3d. The resulting features are referred to
as LNCO (locally adaptive normalized CO) features. Intuitively, LNCO features
account for the fact that onsets of low energy are less relevant in musical passages
of high energy than in passages of low energy.
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In summary, the octave identification makes LNCO features robust to vari-
ations in timbre. Furthermore, because of the locally adaptive normalization,
LNCO features are invariant to variations in dynamics and exhibit significant
onset values even in passages of low energy. Finally, the LNCO feature repre-
sentation is sparse in the sense that most feature vectors are zero, while the
non-zero vectors encode highly accurate temporal onset information.

In view of synchronization applications, we further process the LNCO feature
representation by introducing an additional temporal decay. To this end, each
LNCO feature vector is copied n times (in our experiments we chose n = 10) and
the copies are multiplied by decreasing positive weights starting with 1. Then,
the n copies are arranged to form short sequences of n consecutive feature vec-
tors of decreasing norm starting at the time position of the original vector. The
overlay of all these decaying sequences results in a feature representation, which
we refer to as DLNCO (decaying LNCO) feature representation, see Figs. 3e
and 6a. The benefit of these additional temporal decays will become clear in the
synchronization context, see Sect. 3.1. Note that in the DLNCO feature repre-
sentation, one does not loose the temporal accuracy of the LNCO features—the
onset positions still appear as sharp left edges in the decays. However, spurious
double peaks, which appear in a close temporal neighborhood within a chroma
band, are discarded. By introducing the decay, as we will see later, one looses
sparseness while gaining robustness.

As a final remark of this section, we emphasize that the opposite variant of
first computing chroma features and then computing onsets from the resulting
chromagrams is not as successful as our strategy. As a first reason, note that
the temporal resolution of the pitch energy curves is much higher (2− 10 ms de-
pending on the respective pitch) then for the chroma features (where information
across various pitches is combined at a common lower temporal resolution) thus
yielding a higher accuracy. As a second reason, note that by first changing to
a chroma representation one may already loose valuable onset information. For
example, suppose there is a clear onset in the C3 pitch band and some smearing
in the C4 pitch band. Then, the smearing may overlay the onset on the chroma
level, which may result in missing the onset information. However, by first com-
puting onsets for all pitches separately and then merging this information on the
chroma level, the onset of the C3 pitch band will become clearly visible on the
chroma level.

3 Synchronization Algorithm

In this section, we show how our novel DLNCO features can be used to signifi-
cantly improve the accuracy of previous chroma-based strategies without sacri-
ficing robustness and efficiency. First, in Sect. 3.1, we introduce a combination of
cost matrices that suitably captures harmonic as well as onset information. Then,
in Sect. 3.2, we discuss how the new cost matrix can be plugged in an efficient
multiscale music synchronization framework by using an additional alignment
layer.
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Fig. 4. (a) Sequences of normalized chroma features for an audio version (left) and
MIDI version (right) of Burg2. (b) Corresponding sequences of DLNCO features.

3.1 Local Cost Measures and Cost Matrices

As discussed in the introduction, the goal of music synchronization is to time
align two given versions of the same underlying piece of music. In the following,
we consider the case of MIDI-audio synchronization. Other cases such as audio-
audio synchronization may be handled in the same fashion. Most synchronization
algorithms [3, 5, 9, 16, 17, 19, 20] rely on some variant of dynamic time warping
(DTW) and can be summarized as follows. First, the two music data streams to
be aligned are converted into feature sequences, say V := (v1, v2, . . . , vN ) and
W := (w1, w2, . . . , wM ), respectively. Note that N and M do not have to be
equal, since the two versions typically have a different length. Then, an N × M
cost matrix C is built up by evaluating a local cost measure c for each pair
of features, i. e., C(n,m) = c(vn, wm) for 1 ≤ n ≤ N, 1 ≤ m ≤ M . Finally,
an optimum-cost alignment path is determined from this matrix via dynamic
programming, which encodes the synchronization result. Our synchronization
approach follows these lines using the standard DTW algorithm, see [13] for a
detailed account on DTW in the music context. For an illustration, we refer to
Fig. 5, which shows various cost matrices along with optimal alignment paths.

Note that the final synchronization result heavily depends on the type of
features used to transform the music data streams and the local cost measure
used to compare the features. We now introduce three different cost matrices,
where the third one is a simple combination of the first and second one.

The first matrix is a conventional cost matrix based on normalized chroma
features. Note that these features can be extracted from audio representations,
as described in Sect. 2.1, as well as from MIDI representations, as suggested
in [9]. Fig. 4a shows normalized chroma representations for an audio recording
and a MIDI version of Burg2, respectively. To compare two normalized chroma
vectors v and w, we use the cost measure cchroma(v, w) := 2 − 〈x, y〉. Note
that 〈v, w〉 is the cosine of the angle between v and w since the features are
normalized. The offset 2 is introduced to favor diagonal directions in the DTW
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Fig. 5. (a) Cost matrix Cchroma using normalized chroma features and the local cost
measure cchroma. The two underlying feature sequences are shown Fig. 4a. A cost-
minimizing alignment path is indicated by the white line. (b) Cost matrix CDLNCO

with cost-minimizing alignment path using DLNCO features and cDLNCO. The two
underlying feature sequences are shown Fig. 4b. (c) Cost matrix C = Cchroma +
CDLNCO and resulting cost-minimizing alignment path.
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Fig. 6. Illustration of the effect of the decay operation on the cost matrix level. A
match of two onsets leads to a small corridor within the cost matrix that exhibits low
costs and is tapered to the left (where the exact onsets occur). (a) Beginning of the
DLNCO representation of Fig. 4b (left). (b) Beginning of the DLNCO representation
of Fig. 4b (right). (c) Resulting section of CDLNCO, see Fig. 5b.

algorithm in regions of uniformly low cost, see [17] for a detailed explanation.
The resulting cost matrix is denoted by Cchroma, see Fig. 5a.

The second cost matrix is based on DLNCO features as introduced in Sect. 2.3.
Again, one can directly convert the MIDI version into a DLNCO representation
by converting the MIDI note onsets into pitch onsets. Fig. 4b shows DLNCO
representations for an audio recording and a MIDI version of Burg2, respec-
tively. To compare two DLNCO feature vectors, v and w we now use the Eu-
clidean distance cDLNCO(v, w) := ||v − w||. The resulting cost matrix is denoted
by CDLNCO, see Fig. 5b. At this point, we need to make some explanations.
First, recall that each onset has been transformed into a short vector sequence
of decaying norm. Using the Euclidean distance to compare two such decay-
ing sequences leads to a diagonal corridor of low cost in CDLNCO in the case
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that the directions (i. e., the relative chroma distributions) of the onset vectors
are similar. This corridor is tapered to the lower left and starts at the precise
time positions of the two onsets to be compared, see Fig. 6c. Second, note that
CDLNCO reveals a grid like structure of an overall high cost, where each begin-
ning of a corridor forms a small needle’s eye of low cost. Third, sections in the
feature sequences with no onsets lead to regions in CDLNCO having zero cost.
In other words, only significant events in the DLNCO feature sequences take
effect on the cost matrix level. In summary, the structure of CDLNCO regulates
the course of a cost-minimizing alignment path in event-based regions to run
through the needle’s eyes of low cost. This leads to very accurate alignments at
time positions with matching chroma onsets.

The two cost matrices Cchroma and CDLNCO encode complementary infor-
mation of the two music representations to be synchronized. The matrix Cchroma

accounts for the rough harmonic flow of the two representations, whereas CDLNCO

exhibits matching chroma onsets. Forming the sum C = Cchroma + CDLNCO

yields a cost matrix that accounts for both types of information. Note that in
regions with no onsets, CDLNCO is zero and the combined matrix C is domi-
nated by Cchroma. Contrary, in regions with significant onsets, C is dominated
by CDLNCO, thus enforcing the cost-minimizing alignment path to run trough
the needle’s eyes of low cost. Note that in a neighborhood of these eyes, the cost
matrix Cchroma also reveals low costs due to the similar chroma distribution
of the onsets. In summary, the component Cchroma regulates the overall course
of the cost-minimizing alignment path and accounts for a robust synchroniza-
tion, whereas the component CDLNCO locally adjusts the alignment path and
accounts for highly temporal accuracy.

3.2 Multiscale Implementation

Note that the time and memory complexity of DTW-based music synchroniza-
tion linearly depends on the product N ·M of the lengths N and M of the feature
sequences to be aligned. For example, having a feature resolution of 20 ms and
music data streams of 10 minutes of duration, results in N = M = 30000 making
computations infeasible. To overcome this problem, we adapt an efficient multi-
scale DTW (MsDTW) approach as described in [17]. The idea is to calculate an
alignment path in an iterative fashion by using multiple resolution levels going
from coarse to fine. Here, the results of the coarser level are used to constrain
the calculation on the finer levels, see Fig. 7.

In a first step, we use the chroma-based MsDTW as described in [17]. In
particular, we employ an efficient MsDTW implementation in C/C++ (used as
a MATLAB DLL), which is based on three levels corresponding to a feature
resolution of 1/3 Hz, 1 Hz, and 10 Hz, respectively. For example, our implemen-
tation needs less than a second (not including the feature extraction, which is
linear in the length of the pieces) on a standard PC for synchronizing two music
data streams each having a duration of 15 minutes of duration. The MsDTW
synchronization is robust leading to reliable, but coarse alignments, which often
reveal deviations of several hundreds of milliseconds.
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Fig. 7. Illustration of multiscale DTW. (a) Optimal alignment path (black dots) com-
puted on a coarse resolution level. (b) Projection of the alignment path onto a finer
resolution level with constraint region (dark gray) and extended constraint region (light
gray). (c) Constraint region for Burg2, cf. Fig. 5c. The entries of the cost matrix are
only computed within the constraint region. The resulting MsDTW alignment path
indicated by the white line coincides with the DTW alignment path shown in Fig. 5c.

To refine the synchronization result, we employ an additional alignment level
corresponding to a feature resolution of 50 Hz (i. e., each feature corresponds
to 20 ms). On this level, we use the cost matrix C = Cchroma + CDLNCO as
described in Sect. 3.1. First, the resulting alignment path of the previous Ms-
DTW method (corresponding to a 10 Hz feature resolution) is projected onto the
50 Hz resolution level. The projected path is used to define a tube-like constraint
region, see Fig. 7b. As before, the cost matrix C is only evaluated within this
region, which leads to large savings if the region is small. However, note that the
final alignment path is also restricted to this region, which may lead to incor-
rect alignment paths if the region is too small [17]. As our experiments showed,
an extension of two seconds in all four directions (left, right, up, down) of the
projected alignment path yields a good compromise between efficiency and ro-
bustness. Fig. 7c shows the resulting extended constraint region for our running
example Burg2. The relative savings with respect to memory requirements and
running time of our overall multiscale procedure increases significantly with the
length of the feature sequences to be aligned. For example, our procedure needs
only around 3 · 106 of the total number of 150002 = 2.25 · 108 matrix entries
for synchronizing two versions of a five minute piece, thus decreasing the mem-
ory requirements by a factor of 75. For a ten minute piece, this factor already
amounts to 150. The relative savings for the running times are similar.

4 Resolution Refinement through Interpolation

A synchronization result is encoded by an alignment path, which assigns the
elements of one feature sequence to the elements of the other feature sequence.
Note that each feature refers to an entire analysis window, which corresponds to
a certain time range rather than a single point in time. Therefore, an alignment
path should be regarded as an assignment of certain time ranges. Furthermore,
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Fig. 8. (a) Alignment path assigning elements of one feature sequence to elements of
the other feature sequence. The elements are indexed by natural numbers. (b) As-
signment of time ranges corresponding to the alignment path, where each feature cor-
responds to a time range of 100 ms. (c) Staircase interpolation path (red line). (d)
Density function encoding the local distortions. (e) Smoothed and strictly monotonic
interpolation path obtained by integration of the density function.

an alignment path may not be strictly monotonic in its components, i. e., a
single element of one feature sequence may be assigned to several consecutive
elements of the other feature sequence. This further increases the time ranges in
the assignment. As illustration, consider Fig. 8, where each feature corresponds
to a time range of 100 ms. For example, the fifth element of the first sequence
(vertical axis) is assigned to the second, third, and forth element of the second
sequence (horizontal axis), see Fig. 8a. This corresponds to an assignment of
the range between 400 and 500 ms with the range between 100 and 400 ms,
see Fig. 8b. One major problem of such an assignment is that the temporal
resolution may not suffice for certain applications. For example, one may want
to use the alignment result in order to temporally warp CD audio recordings,
which are typically sampled at a rate of 44,1 kHz.

To increase the temporal resolution, one usually reverts to interpolation tech-
niques. Many of the previous approaches are based on simple staircase paths as
indicated by the red line of Fig. 8c. However, such paths are not strictly mono-
tonic and reveal abrupt directional changes leading to strong local temporal
distortions. To avoid such distortions, one has to smooth the alignment path
in such a way that both of its components are strictly monotonic increasing.
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To this end, Kovar et al. [10] fit a spline into the alignment path and enforce
the strictness condition by suitably adjusting the control points of the splines. In
the following, we introduce a novel strictly monotonic interpolation function that
closely reflects the course of the original alignment path. Recall that the original
alignment path encodes an assignment of time ranges. The basic idea is that
each assignment defines a local distortion factor, which is the proportion of the
ranges’ sizes. For example, the assignment of the range between 400 and 500 ms
with the range between 100 and 400 ms, as discussed above, defines a local dis-
tortion factor of 1/3. Elaborating on this idea, one obtains a density function
that encodes the local distortion factors. As an illustration, we refer to Fig. 8d,
which shows the resulting density function for the alignment path of Fig. 8a.
Then, the final interpolation path is obtained by integrating over the density
function, see Fig. 8e. Note that the resulting interpolation path is a smoothed
and strictly monotonic version of the original alignment path. The continuous
interpolation path can be used for arbitrary sampling rates. Furthermore, as we
will see in Sect. 5, it also improves the final synchronization quality.

5 Experiments

In this section, we report on some of our synchronization experiments, which
have been conducted on a corpus of harmony-based Western music. To allow for
a reproduction of our experiments, we used pieces from the RWC music database
[7, 8]. In the following, we consider 16 representative pieces, which are listed in
Table 1. These pieces are divided into three groups, where the first group consists
of six classical piano pieces, the second group of five classical pieces of various
instrumentations (full orchestra, strings, flute, voice), and the third group of five
jazz pieces and pop songs. Note that for pure piano music, one typically has
concise note attacks resulting in characteristic onset features. Contrary, such
information is often missing in string or general orchestral music. To account for
such differences, we report on the synchronization accuracy for each of the three
groups separately.

To demonstrate the respective effect of the different refinement strategies
on the final synchronization quality, we evaluated eight different synchroniza-
tion procedures. The first procedure (MsDTW) is the MsDTW approach as
described in [17], which works with a feature resolution of 10 Hz. The next
three procedures are all refinements of the first procedure working with an ad-
ditional alignment layer using a feature resolution of 50 Hz. In particular, we
use in the second procedure (Chroma 20ms) normalized chroma features, in the
third procedure (DLNCO) only the DLNCO features, and in the forth procedure
(Chroma+DLNCO) a combination of these features, see Sect. 3.1. Besides the
simple staircase interpolation, we also refined each of these four procedure via
smooth interpolation as discussed in Sect. 4. Table 2, which will be discussed
later in detail, indicates the accuracy of the alignment results for each of the
eight synchronization procedures.
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ID Comp./Interp. Piece RWC ID Instrument
Burg2 Burgmüller Etude No. 2, Op. 100 – piano
BachFuge Bach Fuge, C-Major, BWV 846 C025 piano
BeetApp Beethoven Op. 57, 1st Mov. (Appasionata) C028 piano
ChopTris Chopin Etude Op. 10, No. 3 (Tristesse) C031 piano
ChopBees Chopin Etude Op. 25, No. 2 (The Bees) C032 piano
SchuRev Schumann Reverie (Träumerei) C029 piano
BeetFifth Beethoven Op. 67, 1st Mov. (Fifth) C003 orchestra
BorString Borodin String Quartett No. 2, 3rd Mov. C015 strings
BrahDance Brahms Hungarian Dance No. 5 C022 orchestra
RimskiBee Rimski-Korsakov Flight of the Bumblebee C044 flute/piano
SchubLind Schubert Op. 89, No. 5 (Der Lindenbaum) C044 voice/piano
Jive Nakamura Jive J001 piano
Entertain HH Band The Entertainer J038 big band
Friction Umitsuki Quartet Friction J041 sax,bass,perc.
Moving Nagayama Moving Round and Round P031 electronic
Dreams Burke Sweet Dreams P093 voice/guitar

Table 1. Pieces of music with identifier (ID) contained in our test database. For better
reproduction of our experiments, we used pieces from the RWC music database [7, 8].

To automatically determine the accuracy of our synchronization procedures,
we used pairs of MIDI and audio versions for each of the 16 pieces listed in
Table 1. Here, the audio versions were generated from the MIDI files using a
high-quality synthesizer. Thus, for each synchronization pair, the note onset
times in the MIDI file are perfectly aligned with the physical onset times in the
respective audio recording. (Only for our running example Burg2, we manually
aligned some real audio recording with a corresponding MIDI version.) In the
first step of our evaluation process, we randomly distorted the MIDI files. To
this end, we split up the MIDI files into N segments of equal length (in our
experiment we used N = 20) and then stretched or compressed each segment by
a random factor within an allowed distortion range (in our experiments we used
a range of ±30%). We refer to the resulting MIDI file as the distorted MIDI file
in contrast to the original annotation MIDI file. In the second evaluation step,
we synchronized the distorted MIDI file and the associated audio recording. The
resulting alignment path was used to adjust the note onset times in the distorted
MIDI file to obtain a third MIDI file referred to as realigned MIDI file. The
accuracy of the synchronization result can now be determined by comparing the
note onset times of the realigned MIDI file with the corresponding note onsets
of the annotation MIDI file. Note that in the case of a perfect synchronization,
the realigned MIDI file exactly coincides with the annotation MIDI file.

For each of the 16 pieces (Table 1) and for each of the eight different syn-
chronization procedures, we computed the corresponding realigned MIDI file. We
then calculated the mean value, the standard deviation, as well as the maximal
value over all note onset differences comparing the respective realigned MIDI file
with the corresponding annotation MIDI file. Thus, for each piece, we obtained
24 statistical values, which are shown in Table 2. (Actually, we also repeated all
experiments with five different randomly distorted MIDI files and averaged all
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staircase smooth
ID Procedure mean std max mean std max

Burg2 MsDTW 73 57 271 71 65 307
Chroma 20ms 49 43 222 50 48 228
DLNCO 31 20 94 21 17 73
Chroma+DLNCO 28 16 77 18 14 61

BachFuge MsDTW 97 55 319 55 41 223
Chroma 20ms 34 34 564 27 33 554
DLNCO 20 30 318 18 27 296
Chroma+DLNCO 18 15 96 14 12 81

BeetApp MsDTW 116 102 1197 77 94 1104
Chroma 20ms 62 58 744 54 58 757
DLNCO 136 318 2323 131 318 2335
Chroma+DLNCO 37 41 466 29 40 478

ChopTris MsDTW 115 76 1041 72 62 768
Chroma 20ms 66 69 955 57 64 754
DLNCO 30 68 1318 22 68 1305
Chroma+DLNCO 31 34 539 22 33 524

ChopBees MsDTW 108 79 865 59 71 817
Chroma 20ms 41 49 664 30 47 625
DLNCO 20 14 104 12 9 95
Chroma+DLNCO 22 24 366 13 21 355

SchuRev MsDTW 93 95 887 66 77 655
Chroma 20ms 51 80 778 46 72 567
DLNCO 98 261 1789 94 264 1841
Chroma+DLNCO 22 38 330 15 36 315

Average over piano examples MsDTW 100 77 763 67 68 646
Chroma 20ms 51 56 655 44 54 581
DLNCO 56 119 991 50 117 991
Chroma+DLNCO 26 28 312 19 26 302

BeetFifth MsDTW 194 124 1048 142 116 952
Chroma 20ms 128 98 973 116 96 959
DLNCO 254 338 2581 241 338 2568
Chroma+DLNCO 128 99 1144 116 98 1130

BorString MsDTW 157 110 738 118 106 734
Chroma 20ms 88 68 584 79 68 576
DLNCO 275 355 2252 268 356 2233
Chroma+DLNCO 91 57 682 82 56 675

BrahDance MsDTW 104 62 385 64 54 470
Chroma 20ms 58 54 419 50 54 427
DLNCO 31 52 567 26 52 556
Chroma+DLNCO 24 22 185 17 20 169

RimskiBee MsDTW 99 48 389 50 32 196
Chroma 20ms 51 17 167 41 17 155
DLNCO 31 23 183 22 19 160
Chroma+DLNCO 37 17 108 27 15 91

SchubLind MsDTW 124 73 743 78 59 549
Chroma 20ms 66 57 718 55 50 509
DLNCO 79 175 1227 70 173 1206
Chroma+DLNCO 41 36 406 31 34 387

Average over various intstrumentation examples MsDTW 136 83 661 90 73 580
Chroma 20ms 78 59 572 68 57 525
DLNCO 134 189 1362 125 188 1345
Chroma+DLNCO 64 46 505 55 45 490

Jive MsDTW 97 105 949 58 93 850
Chroma 20ms 44 61 686 34 59 668
DLNCO 23 38 638 17 37 632
Chroma+DLNCO 22 18 154 14 15 158

Entertain MsDTW 100 67 579 66 58 492
Chroma 20ms 52 44 407 45 46 414
DLNCO 93 204 1899 85 204 1887
Chroma+DLNCO 40 65 899 31 64 889

Friction MsDTW 94 81 789 58 75 822
Chroma 20ms 47 67 810 39 67 815
DLNCO 44 120 2105 37 117 2106
Chroma+DLNCO 30 55 810 23 55 819

Moving MsDTW 114 76 497 76 64 473
Chroma 20ms 77 51 336 68 50 343
DLNCO 127 216 1443 124 217 1432
Chroma+DLNCO 53 45 284 46 43 275

Dreams MsDTW 136 105 659 115 106 674
Chroma 20ms 97 94 702 91 95 673
DLNCO 73 103 692 71 103 702
Chroma+DLNCO 43 57 429 40 58 434

Average over jazz/pop examples MsDTW 108 87 695 75 79 662
Chroma 20ms 63 63 588 55 63 583
DLNCO 72 136 1355 67 136 1352
Chroma+DLNCO 38 48 515 31 47 515

Average over all examples MsDTW 114 82 710 77 73 630
Chroma 20ms 63 59 608 55 58 564
DLNCO 85 146 1221 79 145 1214
Chroma+DLNCO 42 40 436 34 38 428

Table 2. Alignment accuracy for eight different synchronization procedures (MsDTW,
Chroma 20 ms, DLNCO, Chroma+DLNCO with staircase and smooth interpolation,
respectively). The table shows for each of the eight procedures and for each of 16 pieces
(Table 1) the mean value, the standard deviation, and the maximal value over all note
onset difference of the respective realigned MIDI file and the corresponding annotation
MIDI file. All values are given in milliseconds.
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statistical values over these five repetitions). For example the value 73 in the first
row of Table 2 means that for the piece Burg2 the difference between the note
onsets of the realigned MIDI file and the annotation MIDI file was in average
73 ms when using the MsDTW synchronisation approach in combination with a
staircase interpolation. In other words, the average synchronization error of this
approach is 73 ms for Burg2.

We start the discussion of Table 2 by looking at the values for the first group
consisting of six piano pieces. Looking at the averages of the statistical val-
ues over the six piece, one can observe that the MsDTW procedures is clearly
inferior to the other procedures. This is by no surprise, since the feature reso-
lution of MsDTW is 100 ms compared to the resolution of 20 ms used in the
other approaches. Nevertheless the standard deviation and maximal deviation
of MsDTW is small relative to the mean value indicating the robustness of this
approach. Using 20 ms chroma features, the average mean values decreases from
100 ms (MsDTW) to 51 ms (Chroma 20 ms). Using the combined features,
this value further decreases to 26 ms (Chroma+DLNCO). Furthermore, using
the smooth interpolation instead of the simple staircase interpolation further
improves the accuracy, for example, from 100 ms to 67 ms (MsDTW) or from
26 ms to 19 ms (Chroma+DLNCO). Another interesting observation is that the
pure DLNCO approach is sometimes much better (e. g. for ChopBees) but also
sometimes much worse (e. g. for BeetApp) than the Chroma 20ms approach.
This shows that the DLNCO features have the potential for delivering very ac-
curate results but also suffer from a lack of robustness. It is the combination of
the DLNCO features and chroma features which ensures robustness as well as
accuracy of the overall synchronization procedure.

Next, we look at the group of the five classical pieces of various instrumen-
tations. Note that for the pieces of this group, opposed to the piano pieces, one
often has no clear note attacks leading to a much poorer quality of the onset
features. As a consequence, the synchronization errors are in average higher than
for the piano pieces. For example, the average mean error over the second group
is 136 ms (MsDTW) and 134 ms (DLNCO) opposed to 100 ms (MsDTW) and
56 ms (DLNCO) for the first group. However, even in the case of missing onset
information, the synchronization task is still accomplished in a robust way by
means of the harmony-based chroma features. The idea of using the combined
approach (Chroma+DLNCO) is that the resulting synchronization procedure
is at least as robust and exact as the pure chroma-based approach (Chroma
20 ms). Table 2 demonstrates that this idea is realized by the implementation
of our combined synchronization procedure. Similar results are obtained for the
third group of jazz/pop examples, where the best results were also delivered by
the combined approach (Chroma+DLNCO).

At this point, one may object that one typically obtains better absolute
synchronization results for synthetic audio material (which was used to com-
pletely automate our evaluation) than for non-synthetic, real audio recordings.
We therefore included also the real audio recording Burg2, which actually
led to similar results as the synthesized examples. Furthermore, our experi-
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Distortion range
ID Procedure ±10% ±20% ±30% ±40% ±50%

Burg2 MsDTW 48 53 65 85 94
Chroma+DLNCO 15 16 19 17 22

BachFuge MsDTW 44 49 52 62 67
Chroma+DLNCO 11 12 13 15 15

BeetApp MsDTW 53 68 75 96 170
Chroma+DLNCO 22 25 29 36 98

ChopTris MsDTW 57 64 72 75 82
Chroma+DLNCO 18 19 21 22 29

ChopBees MsDTW 51 54 57 60 67
Chroma+DLNCO 11 12 13 14 18

SchuRev MsDTW 50 58 64 77 85
Chroma+DLNCO 11 14 12 13 22

Average over piano examples MsDTW 51 58 64 76 94
Chroma+DLNCO 15 16 18 20 34

BeetFifth MsDTW 119 126 141 143 184
Chroma+DLNCO 101 106 113 113 145

BorString MsDTW 86 97 109 118 153
Chroma+DLNCO 75 78 82 84 101

BrahDance MsDTW 52 58 66 70 81
Chroma+DLNCO 13 15 18 19 25

RimskiBee MsDTW 49 47 52 53 56
Chroma+DLNCO 25 26 26 28 28

SchubLind MsDTW 69 73 78 99 91
Chroma+DLNCO 28 28 31 35 35

Average over various intstrumentation examples MsDTW 75 80 89 97 113
Chroma+DLNCO 48 51 54 56 67

Jive MsDTW 44 62 50 63 77
Chroma+DLNCO 12 13 14 14 15

Entertain MsDTW 47 53 62 78 94
Chroma+DLNCO 21 25 30 36 44

Friction MsDTW 44 48 54 70 82
Chroma+DLNCO 14 17 22 28 37

Moving MsDTW 61 63 75 127 871
Chroma+DLNCO 33 39 47 59 732

Dreams MsDTW 71 84 114 142 178
Chroma+DLNCO 24 28 39 52 85

Average over jazz/pop examples MsDTW 53 62 71 96 260
Chroma+DLNCO 21 24 30 38 183

Average over all examples MsDTW 59 66 74 89 152
Chroma+DLNCO 27 30 33 37 91

Table 3. Dependency of the final synchronization accuracy on the size of the allowed
distortion range. For each of the 16 pieces and each range, the mean values of the
synchronization errors are given for the MsDTW and Chroma+DLNCO procedure
both post-processed with smooth interpolation. All values are given in milliseconds.

ments on the synthetic data are still meaningful in the relative sense by re-
vealing relative performance differences between the various synchronization
procedures. Finally, we also generated MIDI-audio alignments using real per-
formances of the corresponding pieces (which are also contained in the RWC
music database). These alignments were used to modify the original MIDI files
to run synchronously to the audio recordings. Generating a stereo file with a
synthesized version of the modified MIDI file in one channel and the audio
recording in the other channel, we have acoustically examined the alignment
results. The acoustic impression supports the evaluation results obtained from
the synthetic data. The stereo files have been made available on the website
http://www-mmdb.iai.uni-bonn.de/projects/syncDLNCO/.

For the experiments of Table 2, we used a distortion range of ±30%, which
is motivated by the observation that the relative tempo difference between two
real performances of the same piece mostly lies within this range. In a second
experiment, we investigated the dependency of the final synchronization accu-
racy on the size of the allowed distortion range. To this end, we calculated the
mean values of the synchronization error for each of the 16 pieces using different
distortion ranges from ±10% to ±50%. Table 3 shows the resulting vales for
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two of the eight synchronization procedures described above, namely MsDTW
and Chroma+DLNCO both post-processed with smooth interpolation. As one
may expect, the mean error values increase with the allowed distortion range.
For example, the average mean error over all 16 pieces increases from 59 ms to
152 ms for the MsDTW and from 27 ms to 91 ms for the combined procedure
(Chroma+DLNCO). However, the general behavior of the various synchroniza-
tion procedures does not change significantly with the ranges and the overall
synchronization accuracy is still high even in the presence of large distortions.
As an interesting observation, for one of the pieces (Moving) the mean error
exploded from 59 ms to 732 ms (Chroma+DLNCO) when increasing the range
from ±40% to ±50%. Here, a manual inspection showed that, for the latter
range, a systematic synchronization error happened. Here, for an entire musical
segment of the piece, the audio version was aligned to a similar subsequent rep-
etition of the segment in the distorted MIDI version. However, note that such
strong distortion (±50% corresponds to the range of having half tempo to double
tempo) rarely occurs in practice and only causes problems for repetitive music.

6 Conclusions

In this paper, we have discussed various refinement strategies for music synchro-
nization. Based on a novel class of onset-based audio features in combination
with previous chroma features, we presented a new synchronization procedure
that can significantly improve the synchronization accuracy while preserving the
robustness and efficiency of previously described procedures. For the future, we
plan to further extend our synchronization framework by including various fea-
tures types that also capture local rhythmic information [11] and that detect
even smooth note transitions as often present in orchestral or string music [23].
As a further extension of our work, we will consider the problem of partial mu-
sic synchronization, where the two versions to be aligned may reveal significant
structural differences.
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