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ABSTRACT of popular, folk, or art songs. Here, different recordinds o
Digital music collections often contain different verssoend ;Tznszzrge underlying song often exhibit a different number of

interpretations of a single musical work. In view of mu- Mast of previous approaches to music synchronization
sic retrieval and browsing applications, one importank.tas . ) . .
g app b proceed in two steps. First, the two audio recordings to

also referred to as audio synchronization, is to automijtica be alianed are transformed int N f ir
time-align two given audio recordings of the same underly- € aligned are transiorme 0 sequences of (e.g., spectra

ing piece. In this paper, we present a novel synchronizatio(ﬁhroma’ MFCC’) featurt_as. Then, the two feat_ure_ sequences
procedure, which can compute meaningful audio alignment re aligned using technlq_ues based on dynamic time warping
even in the presence of structural variations. Such variati TW), see [2]. In classical DTW’ all elements of one e
include the omission of repetitions, the insertion of aiddil quence are matched to elements n the other sequence (while
parts (soli, cadenzas), or differences in the number of—starfeSpeCtmg the temporal order). This is problema‘uc when el .
zas in popular, folk, or art songs. As one main contribution€MeNts in one sequence do not have suitable counterparts in

we introduce the concept of path-constrained similarityrina }Z(raeztzheesr sgg,lvfgﬁh;rl\,tvges%rejs:ggsozﬁifbal iit;ﬁdijeﬁ:ég'{o
ces. This enables us to employ a flexible and efficiently com- q ' typically

putable partial matching procedure in the optimizatiomp ste m'esr?tu;?;c:eal;ggrzjggsgiibF;ge' tae.nﬁlesg'rlpv?lrgrﬂe;lrltji: ?rlnlgtnc-h-
of our synchronization algorithm. Our overall strategy aim 9 q P

at aligning preferably long consecutive runs while avaidin ing strategies as used in biological sequence analysisq4] d

an over-fragmentation of the audio material. not properly account for such structural dlfferen_ces_.
In this paper, we propose a novel synchronization proce-

Index Terms— Music, Audio Recording, Alignment, dure, which basically consists of three steps. In the fiegt,st

Similarity Matrix, Partial Match we construct a path-constrained similarity matrix, which e
codes the common structure of the two audio recordings to be
1. INTRODUCTION aligned (Sect. 2). In the second step, we compute an optimal

path-constrained alignment using a standard partial nragch
Often, a large number of different versions and interpimtst ~ procedure based on dynamic programming. Finally, in the
exist for a single musical work. The task wiusic synchro- third step, we improve the result by boosting the alignmént o
nizationaims at identifying and linking semantically corre- preferably long runs and eliminating the alignment of short
sponding events which are present in different versions. laudio fragments (Sect. 3). The main idea of the overall proce
particular, the task ofudio synchronizatiorwhere the goal dure is, that constraining possible matches by a semaptical
is to time-align two given audio recordings of the same undermotivated path structure automatically leads to a stradfur
lying piece of music, has attracted a large amount of atiapti meaningful global alignment, see Fig. 1.
see, e.g., [1, 2, 3] and the references therein. Even thaighr In Sect. 4, we report on our experiments demonstrat-
cent synchronization algorithms can handle significanavar ing the practicability of our algorithm. Further results
tions in tempo, dynamics, and instrumentation, most of themand sonifications can be foundratt p: / / ww nmdb. i ai .
rely on the assumption that the two versions to be alignedni - bonn. de/ proj ects/ partial Sync/. Conclusions
correspond to each other with respect to their overall dlobsand prospects on future work are given in Sect. 5. Further
structure. In real-world scenarios, however, this assionpt references to related work are given in the respectivesexti
is often violated. For a popular song, there may be various
structurally different album, radio, or extended versi@ss 2. PATH-CONSTRAINED SIMILARITY MATRIX
well as cover versions. In classical music, audio recorsling
often show omissions of repetitions (e. g., in sonatas amd sy In this section, we introduce the concept of path-consticin
phonies) or significant differences in parts such as solerwad similarity matrices. We start by reviewing the basic no-
zas of concertos. A further prominent example are recoedingtions while fixing the notation. Given two audio record-
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Fig. 1. (a) Similarity matrix Sct*oma of two different (structurally modified) audio recordingsBrahms’ Hungarian Dance
No. 5. The first recording (vertical axis) has the musicafrfot; B} B1C* A1 B1 B} D', whereas the second (horizontal axis)
has the musical form? A2 B? B2 A2 B2 D?. (b) Smoothed similarity matrise"t. (c) Se** with score-maximizing match(d)
Path-constrained similarity matrigPc. (e) SP¢ with score-maximizing match(f) Match after cleaning step. The three path
components correctly match} B B3 with A2B?B3, A with A2, andB} D! with BZ D?, respectively.

ings, we transform them into suitable feature sequehces FromSenh, we extract paths with a high score using an it-
(h o2, oY)y andW o= (whw?, ..., wM), respectively.  erative greedy strategy, see [2] for a similar strategy. ifilba
In the subsequent discussion, we employ smoothed normak to start a new path with a cell of maximal score, which
ized chroma features with a temporal resolutionldfiz as is then successively extended to the upper right and lower
described in [2]. In this case, eadB-dimensional feature left by cells that possess a score above a certain threshold,
vectorv™, n € [1 : NJ, andw™, m € [l : M], ex- whilerespecting the step size condition. After removingsu
presses the audio’s local energy distribution intRehroma  an extracted path along with a suitable neighborhood (ggtti
classes. Fixing a suitable local similarity measure— h&ee, the score to zero for all these cells), the process is itdrate
use the inner vector product—tO& x M)-similarity matrix  until all cells have a score below the threshold. Finallg th
Schroma js defined byShoma(n, m) := (v, w™). Each tu- extracted path structure is converted into a similarityrirat
ple (n,m) is called acell of the matrix. Apathis a sequence SP**"', where all cells that belong to extracted paths obtain a
p = (p1,...,pr) With pp = (ne,me) € [1: N] x [1 : M]  score of one and all other cells a score of zero, see Fig. 2c.
for ¢ € [1: L] satisfyingl < n; <ny <...<np <N To further improve and reinforce the extracted path stmagtu
andl < m; <my < ... <mp < M (monotonicity condi- we additionally perform a joint structural analysis of that
tion) as well a1 — pr € X, whereX denotes a set of ad- audio recordings, see [2] for details. The resulting siritita
missible step sizes. For example, in classical DTW one useadusters are translated back into a matrix representaten d
¥ = {(1,0),(0,1),(1,1)}. Thescoreof a pathp is defined noted bySs** <, The idea is that the structural analysis com-
astzl schroma(ne’ me). prises a transitivity step recovering missing path refegias
well as complementing fragmented paths, cf. Fig. 2c and 2d.
Recall that a path with a high score reveals the similarity  \y\,e now combine the different similarity matrixes to form

of two audio segments, which correspond to projections 0§ singlepath-constrained similarity matrigenoted bySre:
the path onto the vertical (segment in the first audio record-

ing) and the horizontal axis (segment in the second audio e 1 cpamn ctruct chroma onh

recording). For example, the path in Fig. 1f starting at cell S" = g(s +ST) x (S +8M 1),

(1,18) and ending at cell67, 69) reveals the similarity of the

two audio segments that correspond to musical paiti B~ wherex denotes pointwise multiplication of matrix entries.
in the first and musical pai3 B B2 in the second record- Note that the entries of all involved matrices possess avalu
ing. The extraction of the path structure from a similaritg-m  between0 and 1. Because of the factgiSP*th + Sstruct),

trix is a difficult problem due to musical variations in audio only cells that belong to the extracted or reinforced path
recordings. To ease the extraction step, we further enhanstructure can have a non-zero scoreSh°. The factor
the path structure a§<"*o™2 py using a contextual similarity ~(Schroma 4 Senh 4 1) ensures that all these cells actually have
measure as described in [5]. The enhancement procedure canon-zero score and are additionally weighted throughminde
be thought of a multiple filtering a$°"*°™ along various di-  lying score values given h§"™m andS°"". The important
rections given by gradients in a neighborhood of the gradierpoint is that the resulting path-constrained similaritytiixa
(1,1). We denote the enhanced similarity matrix®y", see  explicitly incorporates structural information, thus strain-
Fig. 1b for an illustration. ing possible matches in a semantically meaningful way.
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Fig. 2. Similarity matrices of two different audio record- Fig. 3. Similarity matrices of two audio recordings with mu-
ings of a Waltz by Shostakovich having the musical formsjcal formsA} A3 B'C' AL and A2 B2C7C3 A3, respectively.
A1 Ay BA3Ay. (a) Shroma, (b) S, (c) SPath, (d) SPe. (@) S°mb. (b) SP¢ with score-maximizing match. (c) Match
u' after substitution procedure(d) Final matchy”. This
match correctly aligns parti B! with A2 B? (first path com-

3. PARTIAL MATCHING PROCEDURE ponent) and”! A} with C3 A3 (second path component).

Our goal is to align similar and possibly long consecutivg se
ments in the two audio recordings. In case, a part in one auneaningful matches, where all cells of the match necegsaril
dio recording does not have a suitable counterpartin therothlie on the extracted path structure, cf. Fig. 1c and Fig. 1e.
recording, we prefer to have no alignments rather than hav- UsingS = SP¢, the resulting match still may exhibit un-
ing bad alignments. In view of such requirements, we needecessary “gaps”, which induce an over-fragmentationén th
a more flexible notion of alignment that allows for arbitrary alignment of the audio material. In particular in parts with
step sizes. Amatchis a sequencg = (u1,...,4r) With  consecutive repetitive segments (manifested as “striped r
pe = (ng,me) € [1 2 Nl x[1: M]foré € [1: L]sat- gions”inthe similarity matrices) the partial match mayeal
isfyingl < n; <ny < ... <ny < Nandl <m; < more or less random gaps within such segments. To make
mz < ... <mg < M. Note that a match induces a partial this point clearer, we consider the example shown in Fig. 3.
alignment, where an element in one sequence is assigned fgre, the first recording has the musical farhAl B1C AL
at most one element in the other sequence. Sdweof a  and the second oné? B2C7C3 A3. The match indicated by
matchy with respect to a similarity matri$ is then defined  Fig. 3b aligns the beginning of? with the beginning ofA}
asy ., S(ng,my). and the end ofi? with the end of4}. From a semantic point
Similarly to DTW, one can use dynamic programming toof view, however,A? should be entirely aligned either with
compute a score-maximizing match with respectdo this A} or with AL. In order to eliminate such gaps as well as to
end, one recursively defines the accumulated similarityimat produce preferably long consecutive runs in the final align-
D by D(n,m) := max{D(n,m — 1), D(n — 1,m),D(n —  ment, we postprocess the match in a cleaning step. To this
1,m —1) + S(n,m)} and D(n,0) := D(0,m) := 0 for end, we first decompose matghinto pairwise disjoint path
n € [0 : N]andm € [0 : M]. The optimal score is then components of maximal length. Here, two consecutive cells
given by D(N, M) and the score-maximizing match can beof . are considered to belong to the same path component if
constructed by a simple backtrack algorithm, see [4]. Notéheir corresponding indices differ by at most a given thodgh
that the flexibility of a match comes at the expense of loosing. (In our implementation, we use = 3.) For example, in
stability in the global alignment. For example, a match withFig. 3b, the match consists of three path components. Next,
respect to the unconstrained similarity matrides: S*oma  we successively extend the longest path componenpt tof
or S = S may lead to semantically useless alignmentshe upper right and lower left, say by a cél,m), while
as illustrated by Fig. 1c. Our idea is to retain control overeliminating a cell(a, b) that lies on one of the shorter path
the final alignment by using the path-constrained simifarit components in case the following three conditions are-satis
matrix S = SP¢. This inherently leads to semantically more fied. First, the extension kiy:, m) must comply with the step



its path components. A path component is said tacbe

rect if it aligns corresponding musical sections astcbngly
correctif, additionally, its start and end points appear at the
labelled musical segment boundaries up to a certain taderan
see Fig. 4. Similarly, a match is said to (srongly) correctf

itis maximal (up to a certain tolerance) and if all its patimco
ponents are (strongly) correct. We tested our algorithm on
128 different synchronization pairs resulting in a total num-
Fig. 4. Alignment of a solo recording of the song “Yesterday” per of318 path components. As a reswt% of all paths are

by Paul McCartney with the corresponding original Beatles'correct andi3% are even strongly correct (using a tolerance
album version. The solo version was modified by removingy 5 seconds). Furthermor&]% (44%) of all matches were
(a) a chorus section anf) intro and outro sections. White qrrect (strongly correct). Using a tolerancefogeconds,
diamonds indicate start and end points of musical sections. the number of correct (strongly correct) matches increased
to 85% (58%). First experiments show that the correctness
) . o . rates can be further improved by combining alignment result
size condition. Second, th? SUbSt'tUt'or_‘ conditior= n or obtained from different temporal resolutions (e.gHz and

b = m must hold. (In our |mplementat|on, we allow SOme o Hz) and by integrating prior knowledge about the musi-
tolerance of up tar indices, i.e.n —7 < a < n+7OF 5 grcture, e. g., obtained from a previous audio stractu

m= ZCS b<m+ sz szfj' the relatllve score condi- analysis [2]. For a detailed presentation of represergaiy
tion §P¢(n,m) > p - SP(a, b) for some tolerance parame- ¢ ' \e refer tdit t p: / / ww- mdb. i ai . uni - bonn. de/

Ferp € (0, 1.) must hold (we usg = 0.6). This process is proj ects/partial Sync/. Here, one also finds sonifica-
iterated until the longest path component cannot be furth

. eﬁons of the alignment results.
extended. We then remove this component from the matc
and proceed in the same fashion with the remaining cells of
the match. All resulting extended path components consti-

tute a new match./, see Fig. 3c. This procedure decrease§ . . o
. n this paper, we have introduced a new synchronization pro-
or retains the number of path components. However, on the

downside, the new matglf has a lower overall score than cedure, which allows for partially aligning possibly lonigda

To partially compensate for this loss without again inciregs gﬁggeoitzsr&iggii?f];t:zﬁ(?é\ée%iﬂ%g;ﬁggglf&gg;fres
the number of path components, we rest§éef to all con- ) "

extends recent synchronization procedures, which aredbase

nected regions of positive score that contain at least olhe ce 1 the assumption of alobal correspondence. For future work
of i’ (the score of all other cells is set to zero). We then repea? P 9 P ) !

. . : . we will characterize the unaligned parts and extend ounalig
the partial matching procedure to obtain an optimal mafth ment scenario to also account for temporally reordered-stru
with respect to the so restricted similarity matrix, see Bid} P y

This match constitutes our final alignment result. tures. As an |mporta_1nt future a_pphcaﬂon, our matc_hlng pro
cedure may be applied for partially annotating audio record

ings even in situations where one only has fragments of cor-
responding MIDI or score material (using a direct conversio
of symbolic music into a chroma representation, see [1]).

To evaluate our synchronization procedure, we manually la-
belled musically meaningful sections of several audio re€o
ings of various genres. The recordings we considered eaxhibi
omissions and insertions of segments that have a duration &%
20 seconds or more. In our evaluation, allowing a tolerance
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