
An Evolutionary Approach for Learning Motion

Class Patterns

Meinard Müller1, Bastian Demuth2, and Bodo Rosenhahn1

1 Max-Planck-Institut für Informatik
Campus E1-4, 66123 Saarbrücken, Germany

meinard@mpi-inf.mpg.de
2 Universität Bonn, Institut für Informatik III

Römerstr. 164, 53117 Bonn, Germany

Abstract. This article presents a genetic learning algorithm to derive
discrete patterns that can be used for classification and retrieval of 3D
motion capture data. Based on boolean motion features, the idea is to
learn motion class patterns in an evolutionary process with the objec-
tive to discriminate a given set of positive from a given set of negative
training motions. Here, the fitness of a pattern is measured with respect
to precision and recall in a retrieval scenario, where the pattern is used
as a motion query. Our experiments show that motion class patterns can
automate query specification without loss of retrieval quality.

1 Introduction

Motion capture or mocap systems [3] allow for tracking and recording of human
motions at high spatial and temporal resolutions. The resulting 3D mocap data
is used for motion analysis and synthesis in fields such as sports sciences, biome-
chanics, and computer animation [2, 4, 9]. Furthermore, in computer vision, it
has also been used as prior knowledge for human tracking [10–12]. Even though
there is a rapidly growing corpus of freely available mocap data, there still is
a lack of efficient motion retrieval systems that work in a purely content-based
fashion without relying on manually generated annotations. Here, the main dif-
ficulty is due to the fact that similar types of motions may exhibit significant
spatial as well as temporal variations [2, 4]. To cope with spatial variations,
Müller et al. [6] have introduced the concept of relational features that cap-
ture semantically meaningful boolean relations between specified points of the
kinematic chain underlying the mocap data. For example, such features may ex-
press whether a hand is raised or not or whether certain parts of the body such
as legs are bent or stretched, see Fig. 1a. Furthermore, to cope with temporal
variations, a feature-dependent temporal segmentation is used by merging adja-
cent motion frames that satisfy the same boolean relations, see Fig. 1b. Motion
retrieval can then be performed very efficiently by using standard index-based
string matching techniques, see [6]. One remaining major problem is that the
retrieval performance heavily depends on the query formulation, which involves
manual and time-consuming specification of a query-dependent feature selection.

(a)

Right knee bent?

(b)

Fig. 1. (a) Relational feature checking whether the right knee is bent or stretched.
(b) Segmentation of a parallel leg jumping motion D = Djump with respect to a
combination of the features “left knee bent” and “right knee bent”. Poses assuming
the same feature values are indicated by identically marked trajectory segments. The
trajectories of the body points “top of head” and “right ankle” are shown.

The main contribution of this paper is to overcome this problem by applying a
genetic algorithm to learn motion class patterns from positive and negative train-
ing motions. Such a pattern can be thought of as an automated, locally adaptive
feature selection for the motion class represented by the positive training mo-
tions. In the experiments, we will demonstrate that the retrieval performance of
automatically learned patterns is similar to manually selected and heavily tuned
patterns. The paper is organized as follows. In Sect. 2, we briefly review the
underlying motion retrieval procedure and fix the notation. Then, in Sect. 3,
we describe in detail our proposed evolutionary learning algorithm. Finally, in
Sect. 4, we summarize our experiments and conclude in Sect. 5 with prospects
on future work. Further references will be given in the respective sections.

2 Motion Representation and Retrieval

In this section, we summarize the motion retrieval concept described in [6], while
introducing some notation. In the following, a mocap data stream D is regarded
as a sequence of data frames, each representing a human pose as illustrated by
Fig. 1b. A human pose is encoded in terms of a global position and orientation as
well as joint angles of an underlying skeleton model. Mathematically, a relational
feature is a boolean function from the set of poses to the set {0, 1}. In the
following, we fix a feature function F = (F1, . . . , Ff), which consists of f such
relational features. A feature function is applied to a mocap data stream D in
a pose-wise fashion. An F -segment of D is defined to be a subsequence of D of
maximal length consisting of consecutive frames that exhibit the same F -feature
values. Picking for each segment one representative feature vector one obtains a
so-called F -feature sequence of D, which is denoted by F [D]. We also represent
such a sequence by a matrix MF [D] ∈ {0, 1}f×K, where K denotes the number
of F -segments and the columns of MF [D] correspond to the feature vectors in
F [D]. For example, consider a feature function F = (F1, F2) that consists of
f = 2 relational features, the first checking whether the left and the second

checking whether right knee is bent or stretched. Applying F to the jumping
motion D = Djump as shown in Fig. 1b results in the feature sequence

F [D] =
((

1
1

)

,
(

0
1

)

,
(

0
0

)

,
(

0
1

)

,
(

1
1

))

and MF [D] =
(

1 0 0 0 1
1 1 0 1 1

)

, (1)

where the five columns correspond to the K = 5 motion segments. Such a feature
sequence or matrix can then be used as a query for efficient index-based motion
retrieval as described in [6].

Note that for the parallel leg jumping motion above, first both knees are
bent, then stretched, and finally bent again. This information is encoded by the
first, third, and fifth column of F [D]. The feature vectors

(

0
1

)

in the second and
fourth column arise because the actor does not bend or stretch both legs at the
same time. Instead, he has a tendency to keep the right leg bent a bit longer
than the left leg. However, in a parallel leg jumping motion, there are many
possible transitions from, e.g.,

(

1
1

)

(legs bent) to
(

0
0

)

(legs stretched), such as
(

1
1

)

→
(

0
0

)

,
(

1
1

)

→
(

0
1

)

→
(

0
0

)

, or
(

1
1

)

→
(

1
0

)

→
(

0
1

)

→
(

0
0

)

. To account
for such irrelevant transitions, Müller et al. [6] introduce some fault tolerance
mechanism based on fuzzy sets. The idea is to allow at each position in the query
sequence a whole set of possible, alternative feature vectors instead of a single
one. In the following, we encode alternative feature values by asterisks in the
matrix representation MF [D]. For example, the second column of the matrix
(

1 ∗ 0 ∗ 1
1 ∗ 0 1 1

)

encodes the set V2 =
{(

0
0

)

,
(

0
1

)

,
(

1
0

)

,
(

1
1

)}

of four alternative feature

vectors and the fourth column the set V4 =
{(

0
1

)

,
(

1
1

)}

. The asterisks can be

used to mask out irrelevant transitions between the alternating vectors
(

1
1

)

and
(

0
0

)

from the original feature sequence.
More generally, we consider matrices X ∈ {0, 1, ∗}f×K, which are referred

to as motion class patterns. As indicated by the example above, the kth column
X(k) of X encodes a subset Vk ⊆ {0, 1}f of alternative feature vectors, also re-
ferred to as fuzzy set. Furthermore, X encodes a sequences V (X) := (V1, . . . , VK)
of fuzzy sets, also referred to as fuzzy query. Such fuzzy queries3 can be efficiently
processed using an index that is based on inverted lists, see [6].

3 Genetic Learning Algorithm

Let T + be a set of positive training motions representing a certain class of se-
mantically related motions. For example, T + may consist of several parallel leg
jumping motions performed by different actors and in various styles. Further-
more, let T − be a set of negative training motions that are not considered to
be in the motion class of interest. For example, T − may contain one leg jump-
ing motions, jumping jacks, or walking motions. The overall goal is to learn a
motion class pattern that suitably characterizes the motion class represented by
T +. In this section, we present a genetic algorithm to automatically derive such

3 Note that one can enforce the admissible condition needed in the matching algorithm
by taking suitable complements and unions of neighboring fuzzy sets, see [4, 6].

Input: T + Set of positive training motions.

T − Set of negative training motions.
F Feature function consisting of f components F1, . . . , Ff .
p Size of the population, where p > f .
µ Rate of mutation.
r Number of parents used in the recombination step.
s Number of fittest offsprings used in the next generation, where s < p.
G Number of generations.

Initialization: Compute indices IF
T + and IF

T − for the training sets, see [6].

Choose an initial population Π(0) of size |Π(0)| = p.

Evolution: Repeat the following procedure for g = 0, . . . , G − 1:
(1) Compute the fitness of the individuals in the population Π(g).
(2) Select r individuals as parents based on universal stochastic sampling.
(3) Generate r(r − 1)/2 offsprings by pairwise recombination of the parents.
(4) Modify offspring via mutation with respect to the mutation rate µ.
(5) Compute the fitness of all resulting offspring and pick the s fittest one.

(6) Replace the s individuals in Π(g) exhibiting the lowest fitness by the s

offsprings picked in (5). The resulting population is denoted by Π(g+1).

Output: Fittest individuum in Π(G).

Fig. 2. Genetic algorithm for learning motion class patterns.

pattern from T + and T −. Generally, a genetic algorithm is a population-based
optimization technique to find approximate solutions to optimization problems,
see [8]. In our case, the optimization criterion is based on the retrieval perfor-
mance in terms of precision and recall when using the motion class pattern as
fuzzy query. Fig. 2 gives an overview of our genetic learning algorithm, which is
explained in the subsequent subsections. In the following, we fix a feature func-
tion F = (F1, . . . , Ff) (typically consisting of 10 − 20 components) and omit F
in the notation by writing M [D] instead of MF [D].

3.1 A Model for Individuals

A population consists of a set of individuals, where each individual is a de-
scription of some motion class pattern representing a candidate solution of the
optimization problem. In our scenario, an individual Ind is defined to be a tu-
ple Ind := (D, Feat, Col, Fix). Here, D ∈ T + denotes a reference motion and
Feat ⊆ [1 : f] represents a selection of features comprised in the feature function
F = (F1, . . . , Ff). From these two parameters, one obtains a motion class pattern
M [D, Feat] with entries in Σ = {0, 1, ∗} as follows. First, the feature sequence
matrix M [D] ∈ {0, 1}f×K is modified by replacing all entries with a row index
in [1 : f] \ Feat by the entry ∗. Then, any coinciding consecutive columns are
replaced by a single column yielding the matrix M [D, Feat] having L columns,
L ≤ K. The component Col is a subset Col ⊆ [1 : L], which models the transi-
tion segments. Furthermore, the component Fix is a map Fix : Col 7→ 2Feat that
assigns to each column ℓ ∈ Col a subset Fix(ℓ) ⊆ Feat. Intuitively, the function
Fix is used to fix and blend out certain entries in M [D, Feat]. More precisely,
all entries of M [D, Feat] having some column index ℓ ∈ Col and some row index
in Feat \ Fix(ℓ) are replaced by the entry ∗. The resulting matrix is denoted
by M [Ind]. For example, let K = 6, f = 4, and Feat = {1, 3, 4}. Then, for the

pattern M [D] given in (2), one obtains L = 5. Furthemore, let Col = {2, 4}
with Fix(2) = ∅ and Fix(4) = {1, 4}. Then one obtains the following patterns
M [D, Feat] and M [Ind]:

M [D] =

(

0 0 0 0 0 0
1 1 1 0 1 0
1 0 0 0 1 1
1 1 0 1 1 1

)

, M [D, Feat] =

(

0 0 0 0 0
∗ ∗ ∗ ∗ ∗
1 0 0 0 1
1 1 0 1 1

)

, M [Ind] =

(

0 ∗ 0 0 0
∗ ∗ ∗ ∗ ∗
1 ∗ 0 ∗ 1
1 ∗ 0 1 1

)

(2)

3.2 Fitness Function

We now define a fitness function Fit that measures the quality of a given individ-
ual. First, an individual Ind is transformed into a fuzzy query V := V (M [Ind]).
The resulting fuzzy query is evaluated on the union T := T + ∪ T −. The fitness
function assigns a high fitness to the individual if the associated fuzzy query
leads to a high recall as well as a high precision. More precisely, let H(Ind) ⊂ T
denote the subset of motion documents retrieved by V . The recall value R and
the precision value P with respect to V are defined as

R := R(Ind) :=
|H(Ind) ∩ T +|

|T +| and P := P (Ind) :=
|H(Ind) ∩ T +|

|H(Ind)| . (3)

Obviously, 0 ≤ R ≤ 1 and 0 ≤ P ≤ 1. Note that a high recall value R implies
that many motions from T + are retrieved by V , whereas a high precision value
P (Ind) implies that most motions from T − are rejected by V . It is the objective
to identify fuzzy queries, which simultaneously maximize R and P .

As described later, our genetic algorithm will be initialized by individuals
typically revealing high recall but low precision values. In the course of the evolu-
tionary process more and more specialized individuals will enter the population.
Therefore, at the beginning of the process the improvement of the precision val-
ues is of major concern, while with increasing generations the recall values gain
more and more importance. This motivates the following definition of a fitness
function, which depends on the number g of generations already performed:

Fit(g, Ind) := P (Ind) · R(Ind)min(4,
√

g). (4)

for g ∈ N. Note that 0 ≤ Fit(g, Ind) ≤ 1. The formula min(4,
√

g) in the
exponent of R(Ind) puts an increasing emphasis on the recall value for increasing
g and has been determined experimentally.

3.3 Initialization

For the start, we generate an initial population Π(0) of size p > f . First, we
define f individuals Indn = (Dn, Featn, Coln), n ∈ [1 : f], based on some
randomly chosen but fixed reference motion Dn := D0 ∈ T +. Furthermore, we
set Featn := {n} and Col := ∅ with trivial Fix. The entries of M [Indn] have
the value ∗ except for the entries in row n, which alternately assume the values
0 and 1. For the remaining p − f elements of Π(0), we generate individuals
Ind = (D, Feat, Col, Fix) with a randomly chosen reference motion D ∈ T +, a
randomly chosen set Feat consisting of two elements in [1 : f], and Col = ∅.

0

Ind1 Ind2 Ind3 Ind4 Ind5 Ind6 Ind7 Ind8

1

Sample 1
1/4

Sample 2 Sample 3 Sample 4

Fig. 3. An example for universal stochastic sampling selecting r = 4 individuals from
a population of size p = 8. The selected individuals are Ind1, Ind3, Ind4, and Ind7.

3.4 Genetic Operations

We now describe the genetic operations of selection, recombination, and muta-
tion, which are needed to breed a new population from a given population.

Selection. In each step of our genetic algorithm, we select r individuals (the
parents), which are used to create new individuals (the offsprings). To increase
the possibility of obtaining offsprings of high fitness, one should obviously revert
to parents that reveal the highest fitness values in the current population. On
the other hand, to avoid an early convergence towards some poor local optimum,
it is important to have some genetic diversity within the parents used in the
reproduction process. Therefore, we use a selection process known as stochastic

universal sampling, see [8]. Let Π(g) denote the current population. Then all
individuals of Π(g) are arranged in a list (Ind1, . . . , Indp) with decreasing fitness.
The interval [0, 1] is partitioned into p subintervals, where the kth subinterval,
1 ≤ k ≤ p, has a length corresponding to the proportion of the fitness value of
Indk to the sum of the fitness values over all individuals contained in Π(g). To
select r individuals from Π(g), the interval [0, 1] is sampled in some equidistant
fashion, where two neighboring samples have a distance of 1/r. Furthermore,
the first sample is randomly chosen with the interval [0, 1/r], see Fig. 3. Each
sample determines an individual according the subinterval it is contained in.
That way, each individual of Π(g) has a probability that is proportional to its
relative fitness value to be selected for reproduction.

Recombination. In the recombination step two parent individuals are used to
derive a new offspring individual by combining and mixing the properties (the
genes) of the parents. In this process, we need a suitable notion of randomly
choosing subsets from a given set. For a finite set A, we first randomly gener-
ate a natural number n with 1 ≤ n ≤ |A| by suitably rounding the output of
some normally distributed random variable with expectation value µ and stan-
dard deviation σ. We then form a subset B of size n by randomly picking n
elements of A with respect to a uniform distribution on A. For short, we write

B ⊆(µ,σ)
rand A. In our recombination procedure, we use the parameters µ = 0.7|A|

and σ = 0.3|A|. For these parameters, we will simply write B ⊆rand A. We
now describe how to recombine two parents Ind1 := (D1, Feat1, Col1, Fix1)
and Ind2 := (D2, Feat2, Col2, Fix2) in order to obtain a new offspring Ind :=
(D, Feat, Col, Fix). The following list defines the recombination operator de-
pending on the degree of correspondence of the two parents.

1. Suppose D1 = D2, Feat1 = Feat2, and Col1 = Col2. Then set D :=
D1, Feat := Feat1, Col := Col1, and define Fix by randomly choosing

Fix(ℓ) ⊆rand Fix1(ℓ)∪Fix2(ℓ) for ℓ ∈ Feat. In case this results in Fix(ℓ) =
Feat, the element ℓ is removed from Col and Fix is suitably restricted.

2. Suppose D1 = D2, Feat1 = Feat2, and Col1 6= Col2. Then set D := D1,
Feat := Feat1, and choose Col ⊆rand Col1 ∪ Col2. Finally, define Fix by
Fix(ℓ) := Fix1(ℓ) for ℓ ∈ Col∩Col1 and Fix(ℓ) := Fix2(ℓ) for ℓ ∈ Col\Col1.

3. Suppose D1 = D2 and Feat1 6= Feat2. Then set D := D1 and chose
Feat ⊆rand Feat1 ∪ Feat2. Note that Feat1, Feat2, and Feat generally
induce different segmentations on D, which prevents to directly transfer
properties encoded by the parameters Col and Fix from the parents to the
offspring. To transfer at least part of the information, we proceed as follows.
Suppose D is segmented into K segments with respect to Feat1, then let
(1 = s1 < s2 < . . . < sK) be the indices of the start frames of the segments.
Similarly, let (1 = t1 < t2 < . . . < tL) be the start indices in the segmenta-
tion of D induced by Feat. Then all ℓ ∈ [1 : L] with sk = tℓ for some k ∈ Col1
are added to Col and Fix(ℓ) := Fix1(k). In other words, the offspring inher-
its all Fix1-properties from the first parent that refer to segments having the
same starting frame with respect to Feat1 and Feat. Similarly, the offspring
also inherits all Fix2-properties from the second parent.

4. Suppose D1 6= D2. Then randomly set D := D1 or D := D2, and chose
Feat ⊆rand Feat1 ∪ Feat2. Finally, define Col := ∅ with trivial Fix.

Mutation. The concept of mutation introduces another degree of randomness
in the reproduction process to ensure that all potential individuals have some
probability to appear in the population thus avoiding an early convergence
towards some poor local optimum. Each of the offspring individuals Ind :=
(D, Feat, Col, Fix) are further modified in the following way. First, a number
d ∈ N0 of modifications is determined by rounding the output of some exponen-
tially distributed random variable with expectation value µ (in our experiments
we chose µ = 2). Then, one successively performs d basic mutations, where the
type of modification is chosen randomly from the following list of five types:.

1. The reference motion D is replaced by a randomly chosen motion in T +.
Furthermore, Col is replaced by the empty set with trivial Fix.

2. In case Feat 6= [1 : f] (otherwise perform Step 3), the set Feat is extended
by an additional element, which is randomly chosen from [1 : f]\Feat. Note
that this leads to a refined segmentation. Therefore, the parameters Col and
Fix are adjusted by suitably relabeling segment indices.

3. In case |Feat| > 1 (otherwise perform Step 2), an element is randomly
removed from Feat. This may lead to a coarsened segmentation. In this
case, Col and Fix are adjusted as described in Step 3 of the recombination.

4. Let L be the number of columns of M [Ind]. In case |Col| < L−1 (otherwise
perform Step 5), the set Col is extended by an additional element ℓ randomly
chosen from [1 : L] \ Col and Fix is extended by setting Fix(ℓ) := ∅.

5. In case Col 6= ∅ (otherwise perform Step 4), an element ℓ ∈ Col is chosen
randomly and the set Fix(ℓ) is extended by an element randomly chosen
from Feat \ Fix(ℓ). In case this results in Fix(ℓ) = Feat, the element ℓ is
removed from Col and Fix is suitably restricted.

3.5 Breeding the Next Generation

To create the population Π(g+1) from the population Π(g), we proceed as follows.
First, r parent individuals are selected from Π(g). Any two of these r parent

individuals are recombined to yield r(r−1)
2 offsprings, which are then mutated

individually. Then the fitness values are computed for the resulting offsprings.
Finally, the s fittest offsprings are picked to replace the s individuals in Π(g)

that exhibit the lowest fitness.

4 Experiments

For our experiments, we used the HDM05 motion database that consists of sev-
eral hours of systematically recorded motion capture data [7]. From this data,
we manually cut out suitable motion clips and arranged them into 64 different
classes. Each such motion class (MC) contains 10 to 50 different realizations of
the same type of motion, covering a broad spectrum of semantically meaningful
variations. For example, the motion class “Parallel Leg Jump” contains 36 vari-
ations of a jumping motion with both legs. The resulting motion class database

DMC contains 1, 457 motion clips, amounting to 50 minutes of motion data.
We now describe one of our experiments conducted with 15 motion classes,

see Table 1. For each of these motion classes, we automatically generated a set
T + of positive training motions consisting of one third of the available example
motions of the respective class (e. g. 12 motions in case of “Parallel Leg Jump”).
Similarly, T − was generated by randomly choosing one third of the motions of
the other 14 classes. Depending on the respective motion class, we either used
a feature function Fℓ or a feature function Fu similar to the ones described
in [6]. Fℓ has 11 components characterizing the lower body, whereas Fu has 12
components characterizing the upper body. In our experiments, the following
parameters turned out to be suitable: we chose a population size of p = 50 and
used r = 7 parents for the recombination. All resulting s = 28 offsprings were
used for replacement. Furthermore, G = 50 generations turned out to yield a
good convergence.

With these parameters, our evolutionary algorithm required in average 7.2
seconds for each generation (using MATLAB 6.5 run on an Athlon XP 1800+).
Therefore, using G = 50, it took roughly six minutes to compute one motion class
pattern. For each of the 15 motion classes, we performed the entire algorithm ten
times. To determine the quality, the resulting patterns were used as fuzzy queries
and evaluated on the entire motion class database DMC. Table 1 summarizes the
retrieval results in terms of precision and recall. The first precision-recall (PR)
pair of each of the 15 motion classes indicates the average PR values over the ten
patterns. The second and third pairs show the best and worst PR values among
the ten patterns. Finally, the fourth pair shows the PR values of a manually
optimized query specification by a retrieval expert indicating what seems to
be achievable by a manual query process. For example, in case of the class
“Elbow-to-knee” in average 25.6 of the 27 correct motions with a precision of

Elbow-to-knee Cartwheel Jumping Jack Parallel Leg Jump One Leg Jump

recall (average) 25.6/27 = 0.95 19.3/21 = 0.92 49.5/52 = 0.95 25.3/36 = 0.70 40.0/42 = 0.95

precision (average) 0.92 0.83 0.99 0.56 0.94

recall (best) 26/27 = 0.96 21/21 = 1.00 52/52 = 1.00 28/36 = 0.78 41/42 = 0.98

precision (best) 26/26 = 1.00 21/21 = 1.00 52/52 = 1.00 28/44 = 0.64 41/43 = 0.95

recall (worst) 26/27 = 0.96 18/21 = 0.86 47/52 = 0.90 18/36 = 0.50 39/42 = 0.93

precision (worst) 26/33 = 0.79 18/199 = 0.09 47/48 = 0.98 18/28 = 0.64 39/42 = 0.93

recall (manual) 24/27 = 0.89 21/21 = 1.00 51/52 = 0.98 21/36 = 0.58 33/42 = 0.79

precision (manual) 24/26 = 0.92 21/21 = 1.00 51/55 = 0.93 21/34 = 0.62 33/182 = 0.18

Hit-on-Head Right Kick Sit-down Lie-down Rotate Arms

recall (average) 10.9/13 = 0.84 26.0/30 = 0.87 14.2/20 = 0.71 15.7/20 = 0.78 14.6/16 = 0.91

precision (average) 0.82 0.65 0.85 0.89 0.95

recall (best) 11/13 = 0.85 26/30 = 0.87 15/20 = 0.75 18/20 = 0.90 16/16 = 1.00

precision (best) 11/13 = 0.85 26/28 = 0.93 15/16 = 0.94 18/19 = 0.95 16/16 = 1.00

recall (worst) 10/13 = 0.77 20/30 = 0.67 13/20 = 0.65 11/20 = 0.55 14/16 = 0.88

precision (worst) 10/16 = 0.63 20/49 = 0.41 13/16 = 0.81 11/28 = 0.39 14/16 = 0.88

recall (manual) 12/13 = 0.92 25/30 = 0.83 16/20 = 0.80 19/20 = 0.95 16/16 = 1.00

precision (manual) 12/14 = 0.86 25/41 = 0.61 16/40 = 0.40 19/21 = 0.90 16/16 = 1.00

Climb Stairs Walk Walk Backwards Walk Sideways Walk Cross-over

recall (average) 26.1/28 = 0.93 14.5/16 = 0.91 11.4/15 = 0.76 14.8/16 = 0.93 11.1/13 = 0.85

precision (average) 0.96 0.43 0.52 0.97 0.78

recall (best) 27/28 = 0.96 15/16 = 0.94 12/15 = 0.8 15/16 = 0.94 13/13 = 1.00

precision (best) 27/27 = 1.00 15/30 = 0.50 12/19 = 0.63 15/15 = 1.00 13/16 = 0.81

recall (worst) 25/28 = 0.89 14/16 = 0.88 12/15 = 0.80 14/16 = 0.88 11/13 = 0.85

precision (worst) 25/29 = 0.86 14/52 = 0.27 12/43 = 0.28 14/14 = 1.00 11/22 = 0.50

recall (manual) 22/28 = 0.79 15/16 = 0.94 8/15 = 0.53 16/16 = 1.00 10/13 = 0.77

precision (manual) 22/23 = 0.96 15/33 = 0.45 8/22 = 0.36 16/17 = 0.94 10/13 = 0.77

Table 1. Retrieval results for motion retrieval based on ten automatically learned
motion class patterns for each class (average, best, worst) for motion retrieval based
on an optimized manual query specification (manual).

0.92 were recovered by the motion class patterns. The best pattern could recover
26 of the 27 correct motions with a precision of 1.00. In case of the optimized
manual query specification, we obtained a recall of 24/27 = 0.89 and a precision
of 0.92. From our experiments, we can say that for a large number of whole
body movements our automatically learned motion class patterns are capable
to produce qualitatively similar retrieval results as manual feature selection and
query specifications.

5 Conclusions

In this paper, we have presented an evolutionary approach for learning motion
class patterns, which offer an automated alternative to manual query specifi-
cation without loss of retrieval quality. We introduced a novel genetic learning
algorithm with a model for individuals, rules for selection, recombination and
mutation as well as a suitable fitness function. Opposed to previous automated
query specification approaches as described in [5], our motion class patterns can
be directly plugged-in into the index-based matching scenario of [6] affording
very efficient motion retrieval. For the future, we plan to employ similar genetic
algorithms for automated keyframe selection as required in [5]. Another appli-
cation we have in mind is the combination of efficient retrieval methods with
learning approaches in order to generate suitable prior knowledge as needed to
stabilize and support human motion tracking [1].

References

1. T. Brox, B. Rosenhahn, D. Cremers, and H.-P. Seidel. Nonparametric density
estimation with adaptive anisotropic kernels for human motion tracking. In Proc.
2nd Workshop on Human Motion, LNCS 4814:152–165, Springer, 2006.

2. L. Kovar and M. Gleicher. Automated extraction and parameterization of motions
in large data sets. ACM Trans. Graph., 23(3):559–568, 2004.

3. T. B. Moeslund, A. Hilton, and V. Krüger. A survey of advances in vision-based
human motion capture and analysis. Computer Vision and Image Understanding,
104(2):90–126, 2006.

4. M. Müller. Information Retrieval for Music and Motion. Springer, 2007.
5. M. Müller and T. Röder. Motion templates for automatic classification and re-

trieval of motion capture data. In Proc. ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation, 137–146. ACM Press, 2006.

6. M. Müller, T. Röder, and M. Clausen. Efficient content-based retrieval of motion
capture data. ACM Trans. Graph., 24(3):677–685, 2005.

7. M. Müller, T. Röder, M. Clausen, B. Eberhardt, B. Krüger, and A. Weber. Docu-
mentation: Mocap Database HDM05. Computer Graphics Technical Report CG-
2007-2, Universität Bonn, 2007.

8. H. Pohlheim. Evolutionäre Algorithmen: Verfahren, Operatoren und Hinweise.
Springer, 1999.

9. B. Rosenhahn, R. Klette, and D. Metaxas. Human Motion Understanding, Mod-
eling, Capture, and Animation. Springer, 2007.

10. H. Sidenbladh, M. J. Black, and L. Sigal. Implicit probabilistic models of hu-
man motion for synthesis and tracking. In A. Heyden, G. Sparr, M. Nielsen,
and P. Johansen, editors, Proc. European Conference on Computer Vision, LNCS
2353:784–800, Springer, 2002.

11. C. Sminchisescu and A. Jepson. Generative modeling for continuous non-linearly
embedded visual inference. In Proc. Int. Conf. on Machine Learning, 2004.

12. R. Urtasun, D. J. Fleet, and P. Fua. 3D people tracking with Gaussian process
dynamical models. In Proc. International Conference on Computer Vision and
Pattern Recognition, 238–245, IEEE Computer Society Press, 2006.

