
JOINT STRUCTURE ANALYSIS WITH APPLICATIONS TO MUSIC
ANNOTATION AND SYNCHRONIZATION

Meinard M üller
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ABSTRACT

The general goal of music synchronization is to automati-
cally align different versions and interpretations related to
a given musical work. In computing such alignments, re-
cent approaches assume that the versions to be aligned cor-
respond to each other with respect to their overall global
structure. However, in real-world scenarios, this assump-
tion is often violated. For example, for a popular song there
often exist various structurally different album, radio, or ex-
tended versions. Or, in classical music, different recordings
of the same piece may exhibit omissions of repetitions or
significant differences in parts such as solo cadenzas. In this
paper, we introduce a novel approach for automatically de-
tecting structural similarities and differences between two
given versions of the same piece. The key idea is to perform
a single structural analysis for both versions simultaneously
instead of performing two separate analyses for each of the
two versions. Such a joint structure analysis reveals the re-
petitions within and across the two versions. As a further
contribution, we show how this information can be used for
deriving musically meaningful partial alignments and anno-
tations in the presence of structural variations.

1 INTRODUCTION

Modern digital music collections contain an increasing
number of relevant digital documents for a single musical
work comprising various audio recordings, MIDI files, or
symbolic score representations. In order to coordinate the
multiple information sources, various synchronization pro-
cedures have been proposed to automatically align musi-
cally corresponding events in different versions of a given
musical work, see [1, 7, 8, 9, 14, 15] and the references
therein. Most of these procedures rely on some variant of
dynamic time warping (DTW) and assume a global corre-
spondence of the two versions to be aligned. In real-world
scenarios, however, different versions of the same piece may
exhibit significant structural variations. For example, inthe
case of Western classical music, different recordings often

The research was funded by the German Research Foundation (DFG)
and the Cluster of Excellence on Multimodal Computing and Interaction.

exhibit omissions of repetitions (e. g., in sonatas and sym-
phonies) or significant differences in parts such as solo ca-
denzas of concertos. Similarly, for a given popular, folk, or
art song, there may be various recordings with a different
number of stanzas. In particular for popular songs, there
may exist structurally different album, radio, or extended
versions as well as cover versions.

A basic idea to deal with structural differences in the
synchronization context is to combine methods from mu-
sic structure analysis and music alignment. In a first step,
one may partition the two versions to be aligned into musi-
cally meaningful segments. Here, one can use methods from
automated structure analysis [3, 5, 10, 12, 13] to derive sim-
ilarity clusters that represent the repetitive structure of the
two versions. In a second step, the two versions can then be
compared on the segment level with the objective for match-
ing musically corresponding passages. Finally, each pair of
matched segments can be synchronized using global align-
ment strategies. In theory, this seems to be a straightforward
approach. In practise, however, one has to deal with several
problems due to the variability of the underlying data. In
particular, the automated extraction of the repetitive struc-
ture constitutes a delicate task in case the repetitions reveal
significant differences in tempo, dynamics, or instrumen-
tation. Flaws in the structural analysis, however, may be
aggravated in the subsequent segment-based matching step
leading to strongly corrupted synchronization results.

The key idea of this paper is to perform a single, joint
structure analysis for both versions to be aligned, which pro-
vides richer and more consistent structural data than in the
case of two separate analyses. The resulting similarity clus-
ters not only reveal the repetitions within and across the two
versions, but also induce musically meaningful partial align-
ments between the two versions. In Sect. 2, we describe our
procedure for a joint structure analysis. As a further con-
tribution of this paper, we show how the joint structure can
be used for deriving a musically meaningful partial align-
ment between two audio recordings with structural differ-
ences, see Sect. 3. Furthermore, as described in Sect. 4,
our procedure can be applied for automatic annotation of a
given audio recording by partially available MIDI data. In
Sect. 5, we conclude with a discussion of open problems and
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Figure 1. Joint structure analysis and partial synchronization for two structurally different versions of the Aria of the Goldberg Variations
BWV 988 by J.S. Bach. The first version is played by G. Gould (musical form A

1
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1) and the second by M. Perahia (musical form
A

2
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2
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2

1B
2

2 ). (a) Joint similarity matrixS . (b) Enhanced matrix and extracted paths.(c) Similarity clusters. (d) Segment-based score
matrixM and match (black dots).(e) Matched segments.(f) Matrix representation of matched segments.(g) Partial synchronization result.

prospects on future work.
The problem of automated partial music synchronization

has been introduced in [11], where the idea is to use the con-
cept of path-constrained similarity matrices to enforce mu-
sically meaningful partial alignments. Our approach carries
this idea even further by using cluster-constraint similarity
matrices, thus enforcing structurally meaning partial align-
ments. A discussion of further references is given in the
subsequent sections.

2 JOINT STRUCTURE ANALYSIS

The objective of a joint structure analysis is to extract there-
petitive structure within and across two different music rep-
resentations referring to the same piece of music. Each of
the two versions can be an audio recording, a MIDI version,
or a MusicXML file. The basic idea of how to couple the
structure analysis of two versions is very simple. First, one
converts both versions into common feature representations
and concatenates the resulting feature sequences to form a
single long feature sequence. Then, one performs a com-
mon structure analysis based on the long concatenated fea-
ture sequence. To make this strategy work, however, one
has to deal with various problems. First, note that basi-
cally all available procedures for automated structure analy-
sis have a computational complexity that is at least quadratic
in the input length. Therefore, efficiency issues become
crucial when considering a single concatenated feature se-
quence. Second, note that two different versions of the
same piece often reveal significant local and global tempo
differences. Recent approaches to structure analysis such
as [5, 12, 13], however, are built upon the constant tempo
assumption and cannot be used for a joint structure analysis.
Allowing also tempo variations between repeating segments
makes the structure analysis problem a much harder prob-
lem [3, 10]. We now summarize the approach used in this
paper closely following [10].

Given two music representations, we transform them

into suitable feature sequencesU := (u1, u2, . . . , uL) and
V := (v1, v2, . . . , vM ), respectively. To reduce different
types of music data (audio, MIDI, MusicXML) to the same
type of representation and to cope with musical variations
in instrumentation and articulation, chroma-based features
have turned out to be a powerful mid-level music repre-
sentation [2, 3, 8]. In the subsequent discussion, we em-
ploy a smoothed normalized variant of chroma-based fea-
tures (CENS features) with a temporal resolution of1 Hz,
see [8] for details. In this case, each12-dimensional feature
vectoruℓ, ℓ ∈ [1 : L], andvm, m ∈ [1 : M ], expresses
the local energy of the audio (or MIDI) distribution in the
12 chroma classes. The feature sequences strongly correlate
to the short-time harmonic content of the underlying music
representations. We now define the sequenceW of length
N := L + M by concatenating the sequencesU andV :

W := (w1, w2, . . . , wN ) := (u1, . . . , uL, v1, . . . , vM ).

Fixing a suitable local similarity measure— here, we use the
inner vector product—the(N×N)-joint similarity matrix S
is defined byS(i, j) := 〈wi, wj〉, i, j ∈ [1 : N ]. Each tuple
(i, j) is called acell of the matrix. Apath is a sequencep =
(p1, . . . , pK) with pk = (ik, jk) ∈ [1 : N ]2, k ∈ [1 : K],
satisfying1 ≤ i1 ≤ i2 ≤ . . . ≤ iK ≤ N and1 ≤ j1 ≤
j2 ≤ . . . ≤ jK ≤ N (monotonicity condition) as well as
pk+1 − pk ∈ Σ, whereΣ denotes a set of admissible step
sizes. In the following, we useΣ = {(1, 1), (1, 2), (2, 1)}.

As an illustrative example, we consider two different
audio recordings of the Aria of the Goldberg Variations
BWV 988 by J.S. Bach, in the following referred to asBach
example. The first version with a duration of115 seconds is
played by Glen Gould without repetitions (corresponding to
the musical formA1B1) and the second version with a du-
ration of241 seconds is played by Murray Perahia with re-
petitions (corresponding to the musical formA2

1A
2
2B

2
1B2

2 ).
For the feature sequences holdL = 115, M = 241, and
N = 356. The resulting joint similarity matrix is shown in
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Figure 2. Joint structure analysis and partial synchronization for two structurally modified versions of Beethoven’s Fifth Symphony Op. 67.
The first version is a MIDI version and the second one an audio recording by Bernstein.(a) Enhanced joint similarity matrix and extracted
paths.(b) Similarity clusters.(c) Segment-based score matrixM and match (indicated by black dots).(d) Matrix representation of matched
segments.(e) Partial synchronization result.

Fig. 1a, where the boundaries between the two versions are
indicated by white horizontal and vertical lines.

In the next step, the path structure is extracted from the
joint similarity matrix. Here, the general principle is that
each path of low cost running in a direction along the main
diagonal (gradient(1, 1)) corresponds to a pair of similar
feature subsequences. Note that relative tempo differences
in similar segments are encoded by the gradient of the path
(which is then in a neighborhood of(1, 1)). To ease the
path extraction step, we enhance the path structure ofS by
a suitable smoothing technique that respects relative tempo
differences. The paths can then be extracted by a robust and
efficient greedy strategy, see Fig. 1b. Here, because of the
symmetry ofS, one only has to consider the upper left part
of S. Furthermore, we prohibit paths crossing the bound-
aries between the two versions. As a result, each extracted
path encodes a pair of musically similar segments, where
each segment entirely belongs either to the first or to the sec-
ond version. To determine the global repetitive structure,we
use a one-step transitivity clustering procedure, which bal-
ances out the inconsistencies introduced by inaccurate and
incorrect path extractions. For details, we refer to [8, 10].

Altogether, we obtain a set of similarity clusters. Each
similarity cluster in turn consists of a set of pairwise similar
segments encoding the repetitions of a segment within and
across the two versions. Fig. 1c shows the resulting set of
similarity clusters for our Bach example. Both of the clus-
ters consist of three segments, where the first cluster corre-
sponds to the threeB-partsB1, B2

1 , andB2
2 and the sec-

ond cluster to the threeA-partsA1, A2
1, andA2

2. The joint
analysis has several advantages compared to two separate
analyses. First note that, since there are no repetitions inthe
first version, a separate structure analysis for the first version

would not have yielded any structural information. Second,
the similarity clusters of the joint structure analysis naturally
induce musically meaningful partial alignments between the
two versions. For example, the first cluster shows thatB1

may be aligned toB2
1 or to B2

2 . Finally, note that the deli-
cate path extraction step often results in inaccurate and frag-
mented paths. Because of the transitivity step, the joint clus-
tering procedure balances out these flaws and compensates
for missing parts to some extent by using joint information
across the two versions.

On the downside, a joint structural analysis is computa-
tionally more expensive than two separate analyses. There-
fore, in the structure analysis step, our strategy is to use a
relatively low feature resolution of1 Hz. This resolution
may then be increased in the subsequent synchronization
step (Sect. 3) and annotation application (Sect. 4). Our cur-
rent MATLAB implementation can easily deal with an over-
all length up toN = 3000 corresponding to more then forty
minutes of music material. (In this case, the overall com-
putation time adds up to10-400 seconds with the path ex-
traction step being the bottleneck, see [10]). Thus, our im-
plementation allows for a joint analysis even for long sym-
phonic movements of a duration of more than20 minutes.

Another drawback of the joint analysis is that local in-
consistencies across the two versions may cause an over-
fragmentation of the music material. This may result in
a large number of incomplete similarity clusters contain-
ing many short segments. As an example, we consider a
MIDI version as well as a Bernstein audio recording of the
first movement of Beethoven’s Fifth Symphony Op. 67. We
structurally modified both versions by removing some sec-
tions. Fig. 2a shows the enhanced joint similarity matrix
and Fig. 2b the set of joint similarity clusters. Note that



some of the resulting16 clusters contain semantically mean-
ingless segments stemming from spuriously extracted path
fragments. At this point, one could try to improve the over-
all structure result by a suitable postprocessing procedure.
This itself constitutes a difficult research problem and is not
in the scope of this paper. Instead, we introduce a proce-
dure for partial music alignment, which has some degree of
robustness to inaccuracies and flaws in the previously ex-
tracted structural data.

3 PARTIAL SYNCHRONIZATION

Given two different representations of the same underlying
piece of music, the objective ofmusic synchronization is to
automatically identify and link semantically corresponding
events within the two versions. Most of the recent synchro-
nization approaches use some variant of dynamic time warp-
ing (DTW) to align the feature sequences extracted from
the two versions, see [8]. In classical DTW, all elements
of one sequence are matched to elements in the other se-
quence (while respecting the temporal order). This is prob-
lematic when elements in one sequence do not have suit-
able counterparts in the other sequence. In the presence of
structural differences between the two sequences, this typ-
ically leads to corrupted and musically meaningless align-
ments [11]. Also more flexible alignment strategies such as
subsequence DTW or partial matching strategies as used in
biological sequence analysis [4] do not properly account for
such structural differences.

A first approach for partial music synchronization has
been described in [11]. Here, the idea is to first construct
a path-constrained similarity matrix, which a priori con-
stricts possible alignment paths to a semantically meaning-
ful choice of admissible cells. Then, in a second step, a
path-constrained alignment can be computed using standard
matching procedures based on dynamic programming.

We now carry this idea even further by using the seg-
ments of the joint similarity clusters as constraining ele-
ments in the alignment step. To this end, we consider pairs
of segments, where the two segments lie within the same
similarity cluster and belong to different versions. More
precisely, letC = {C1, . . . , CM} be the set of clusters ob-
tained from the joint structure analysis. Each similarity clus-
ter Cm, m ∈ [1 : M ], consists of a set of segments (i. e.,
subsequences of the concatenated feature sequenceW ). Let
α ∈ Cm be such a segment. Then letℓ(α) denote the
length ofα and c(α) := m the cluster affiliation. Recall
thatα either belongs to the first version (i. e.,α is a subse-
quence ofU ) or to the second version (i. e.,α is a subse-
quence ofV ). We now form two lists of segments. The first
list (α1, . . . , αI) consists of all those segments that are con-
tained in some cluster ofC and belong to the first version.
The second list(β1, . . . , βJ) is defined similarly, where the
segments now belong to the second version. Both lists are

sorted according to the start positions of the segments. (In
case two segments have the same start position, we break
the tie by also considering the cluster affiliation.) We define
a segment-basedI × J-score matrixM by

M(i, j) :=

{

ℓ(αi) + ℓ(βj) for c(αi) = c(βj),
0 otherwise,

i ∈ [1 : I], j ∈ [1 : J ]. In other words,M(i, j) is positive
if and only if αi andβj belong to the same similarity clus-
ter. Furthermore,M(i, j) depends on the lengths of the two
segments. Here, the idea is to favor long segments in the
synchronization step. For an illustration, we consider the
Bach example of Fig. 1, where(α1, . . . , αI) = (A1, B1)
and(β1, . . . , βJ ) = (A2

1, A
2
2, B

2
1 , B2

2). The resulting matrix
M is shown in Fig. 1d. For another more complex example,
we refer to Fig. 2c.

Now, a segment-basedmatch is a sequenceµ =
(µ1, . . . , µK) with µk = (ik, jk) ∈ [1 : I] × [1 : J ] for
k ∈ [1 : K] satisfying1 ≤ i1 < i2 < . . . < iK ≤ I

and1 ≤ j1 < j2 < . . . < jK ≤ J . Note that a match
induces a partial assignment of segment pairs, where each
segment is assigned to at most one other segment. The
score of a matchµ with respect toM is then defined as
∑K

k=1
M(ik, jk). One can now use standard techniques to

compute a score-maximizing match based on dynamic pro-
gramming, see [4, 8]. For details, we refer to the litera-
ture. In the Bach example, the score-maximizing matchµ is
given byµ = ((1, 1), (2, 3)). In other words, the segment
α1 = A1 of the first version is assigned to segmentβ1 = A2

1

of the second version andα2 = B1 is assigned toβ3 = B2
1 .

In principle, the score-maximizing matchµ constitutes
our partial music synchronization result. To make the pro-
cedure more robust to inaccuracies and to remove cluster
redundancies, we further clean the synchronization resultin
a postprocessing step. To this end, we convert the score-
maximizing matchµ into a sparsepath-constrained simi-
larity matrix Spath of size L × M , whereL and M are
the lengths of the two feature sequencesU and V , re-
spectively. For each pair of matched segments, we com-
pute an alignment path using a global synchronization algo-
rithm [9].Each cell of such a path defines a non-zero entry
of Spath, where the entry is set to the length of the path (thus
favoring long segments in the subsequent matching step).
All other entries of the matrixSpath are set to zero. Fig. 1f
and Fig. 2d show the resulting path-constrained similarity
matrices for the Bach and Beethoven example, respectively.
Finally, we apply the procedure as described in [11] us-
ing Spath (which is generally much sparser than the path-
constrained similarity matrices as used in [11])to obtain a
purified synchronization result, see Fig. 1g and Fig. 2e.

To evaluate our synchronization procedure, we per-
formed similar experiments as described in [11]. In one
experiment, we formed synchronization pairs each consist-
ing of two different versions of the same piece. Each pair
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Figure 3. Partial synchronization results for various MIDI-audio synchronization pairs. The top figures show the final path components
of the partial alignments and the bottom figures indicate theground truth (Row A), the final annotations (Row B), and a classification into
correct (Row D) and incorrect annotations (Row C), see text for additional explanations. The pieces are specified in Table 1. (a) Haydn (RWC
C001),(b) Schubert (RWC C048, distorted),(c) Burke (P093),(d) Beatles (“Help!”, distorted).

consists either of an audio recording and a MIDI version or
of two different audio recordings (interpreted by different
musicians possibly in different instrumentations). We man-
ually labeled musically meaningful sections of all versions
and then modified the pairs by randomly removing or dupli-
cating some of the labeled sections, see Fig. 3. The partial
synchronization result computed by our algorithm was ana-
lyzed by means of its path components. A path component
is said to becorrect if it aligns corresponding musical sec-
tions. Similarly, a match is said to becorrect if it covers
(up to a certain tolerance) all semantically meaningful cor-
respondences between the two versions (this information is
given by the ground truth) and if all its path components are
correct. We tested our algorithm on more than387 different
synchronization pairs resulting in a total number of1080
path components. As a result,89% of all path components
and71% of all matches were correct (using a tolerance of3
seconds).

The results obtained by our implementation of the
segment-based synchronization approach are qualitatively
similar to those reported in [11]. However, there is one cru-
cial difference in the two approaches. In [11], the authors
use a combination of various ad-hoc criteria to construct
a path-constrained similarity matrix as basis for their par-
tial synchronization. In contrast, our approach uses only the
structural information in form of the joint similarity clusters
to derive the partial alignment. Furthermore, the availabil-
ity of structural information within and across the two ver-
sions allows for recovering missing relations based on suit-
able transitivity considerations. Thus, each improvementof
the structure analysis will have a direct positive effect onthe
quality of the synchronization result.

4 AUDIO ANNOTATION

The synchronization of an audio recording and a corre-
sponding MIDI version can be regarded as an automated
annotation of the audio recording by means of the explicit
note events given by the MIDI file. Often, MIDI versions
are used as a kind of score-like symbolic representation of

the underlying musical work, where redundant information
such as repetitions are not encoded explicitly. This is a fur-
ther setting with practical relevance where two versions to
be aligned have a different repetitive structure (an audio ver-
sion with repetitions and a score-like MIDI version without
repetitions). In this setting, one can use our segment-based
partial synchronization to still obtain musically adequate au-
dio annotations.

We now summarize one of our experiments, which has
been conducted on the basis of synchronization pairs con-
sisting of structurally equivalent audio and MIDI versions. 1

We first globally aligned the corresponding audio and MIDI
versions using a temporally refined version of the synchro-
nization procedure described in [9]. These alignments were
taken as ground truth for the audio annotation. Similar to
the experiment of Sect. 3, we manually labeled musically
meaningful sections of the MIDI versions and randomly re-
moved or duplicated some of these sections. Fig. 3a il-
lustrates this process by means of the first movement of
Haydn’s Symphony No. 94 (RWC C001).Row A of the
bottom part shows the original six labeled sections S1 to
S6 (warped according to the audio version). In the modi-
fication, S2 was removed (no line) and S4 was duplicated
(thick line). Next, we partially aligned the modified MIDI
with the original audio recording as described in Sect. 3.
The resulting three path components of our Haydn example
are shown in the top part of Fig. 3a. Here, the vertical axis
corresponds to the MIDI version and the horizontal axis to
the audio version. Furthermore,Row B of the bottom part
shows the projections of the three path components onto the
audio axis resulting in the three segments P1, P2, and P3.
These segments are aligned to segments in the MIDI thus
being annotated by the corresponding MIDI events. Next,
we compared these partial annotations with the ground truth
annotations on the MIDI note event level. We say that an
alignment of a note event to a physical time position of the
audio version is correct in aweak (strong) sense, if there is

1 Most of the audio and MIDI files were taken from the RWC music
database [6]. Note that for the classical pieces, the original RWC MIDI
and RWC audio versions are not aligned.



Original DistortedComposer Piece RWC
weak strong weak strong

Haydn Symph. No. 94, 1st Mov.C001 98 97 97 95
Beethoven Symph. Op. 67, 1st Mov.C003 99 98 95 91
Beethoven Sonata Op. 57, 1st Mov. C028 99 99 98 96
Chopin Etude Op. 10, No. 3 C031 93 93 93 92
Schubert Op. 89, No. 5 C048 97 96 95 95
Burke Sweet Dreams P093 88 79 74 63
Beatles Help! — 97 96 77 74

Average 96 94 91 87

Table 1. Examples for automated MIDI-audio annotation (most
of files are from the RWC music database [6]). The columns show
the composer, the piece of music, the RWC identifier, as well as the
annotation rate (in%) with respect to the weak and strong criterion
for the original MIDI and some distorted MIDI.

a ground truth alignment of a note event of the same pitch
(and, in the strong case, additionally lies in the same musical
context by checking an entire neighborhood of MIDI notes)
within a temporal tolerance of100 ms. In our Haydn exam-
ple, the weakly correct partial annotations are indicated in
Row D and the incorrect annotations inRow C.

The other examples shown in Fig. 3 give a representa-
tive impression of the overall annotation quality. Generally,
the annotations are accurate—only at the segment bound-
aries there are some larger deviations. This is due to our
path extraction procedure, which often results in “frayed”
path endings. Here, one may improve the results by cor-
recting the musical segment boundaries in a postprocessing
step based on cues such as changes in timbre or dynamics.
A more critical example (Beatles example) is shown Fig. 3d,
where we removed two sections (S2 and S7) from the MIDI
file and temporally distorted the remaining parts. In this ex-
ample, the MIDI and audio version also exhibit significant
differences on the feature level. As a result, an entire sec-
tion (S1) has been left unannotated leading to a relatively
poor rate of77% (74%) of correctly annotated note events
with respect to the weak (strong) criterion.

Finally, Table 1 shows further rates of correctly anno-
tated note events for some representative examples. Ad-
ditionally, we have repeated our experiments with sig-
nificantly temporally distorted MIDI files (locally up to
±20%). Note that most rates only slightly decrease (e. g.,
for the Schubert piece, from97% to 95% with respect
to the weak criterion), which indicates the robustness of
our overall annotation procedure to local tempo differ-
ences. Further results as well as audio files of sonifications
can be found athttp://www-mmdb.iai.uni-bonn.de/
projects/partialSync/

5 CONCLUSIONS

In this paper, we have introduced the strategy of performinga
joint structural analysis to detect the repetitive structure within and
across different versions of the same musical work. As a core
component for realizing this concept, we have discussed a struc-
ture analysis procedure that can cope with relative tempo differ-
ences between repeating segments. As further contributions, we

have shown how joint structural information can be used to deal
with structural variations in synchronization and annotation appli-
cations. The tasks ofpartial music synchronization and annotation
is a much harder then theglobal variants of these tasks. The rea-
son for this is that in the partial case one needsabsolute similarity
criteria, whereas in the global case one only requiresrelative cri-
teria. One main message of this paper is that automated music
structure analysis is closely related to partial music alignment and
annotation applications. Hence, improvements and extensions of
current structure analysis procedures to deal with variouskinds of
variations is of fundamental importance for future research.
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