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Abstract

In this paper, we introduce a novel iterative motion track-

ing framework that combines 3D tracking techniques with

motion retrieval for stabilizing markerless human motion

capturing. The basic idea is to start human tracking without

prior knowledge about the performed actions. The resulting

3D motion sequences, which may be corrupted due to track-

ing errors, are locally classified according to available mo-

tion categories. Depending on the classification result, a

retrieval system supplies suitable motion priors, which are

then used to regularize and stabilize the tracking in the next

iteration step. Experiments with the HumanEVA-II bench-

mark show that tracking and classification are remarkably

improved after few iterations.

1. Introduction

Markerless Motion Capturing (Mocap) is an active field

of research in computer vision and graphics [9] with appli-

cations in animation (games, avatars), medicine or sports

science. The goal is to determine the 3D positions and

orientations as well as the joint angles of a human actor

from image data. In such a tracking scenario, it is common

to assume as input a sequence of multiview images of the

performed motion as well as a surface mesh of the actor’s

body. Since the pose and joint parameters are usually un-

known and have to be computed from the image data, one

typically has to cope with high-dimensional search spaces

(typically more than 30 dimensions for a full body model).

To make the tracking problem feasible, the manifold of all

virtual possible configurations is often reduced to a lower-

dimensional subspace. One possibility is to explicitly pre-

vent self-occlusions and to impose fixed joint angle limits

as suggested in [7, 21]. Another option is to directly learn

a mapping from the image or silhouette space to the space

of pose configurations [1, 17]. A very popular strategy for

restricting the search space is dimensionality reduction, ei-

ther by linear or by nonlinear projection methods. In [18],

the low-dimensional space is obtained via PCA and the mo-

tion patterns in this space are structured in a binary tree. In

Figure 1. Iterative motion tracking framework.

[20] it has been suggested to learn a Gaussian mixture from

pose configurations. Similarly, in [24], a nonlinear projec-

tion is employed, in this case via a Gaussian process model.

A recent research strand integrates further sources of in-

formation in the motion capture process, e. g., by captur-

ing light sources [2] or by using physical models and forces

arising from a ground plane [5, 25]. A common problem

with learning-based approaches is that the user needs a good

guess on the type of pattern to be expected. For instance,

if the user knows that the subject is performing a walk-

ing pattern, suited training data is selected and integrated

in the tracking system. Current probabilistic learning ap-

proaches are limited in their ability to handle large training

sets. Only recently, local regression methods have been pro-

posed that allow for coping with a large number of motion

patterns within a tracking scenario [23]. In activity recog-

nition, many works rely on 2D descriptors or image silhou-

ettes, such as presented in [8, 22]. To the best of our knowl-

edge, no approach uses activity recognition for stabilizing a

tracking framework yet.

In this paper, we introduce a tracking framework that

combines methods for markerless motion capturing with a

retrieval component in an iterative fashion, see Fig. 1. We

start the iteration without applying any prior knowledge on

the actions to be performed. The tracking system takes a

multiview image sequence (‘Video’) and returns a sequence

of joint positions over time (‘3D Mocap’). In our system,

we rely on a region-based approach performing joint pose

estimation and optimized region splitting similar to [16].

However, our general framework also allows for applying

other tracking techniques as presented in [3, 6, 14].

Due to noise, occlusions, and other ambiguities in the

image data, tracking may fail for parts of the sequence re-



Figure 2. Tracking without priors may lead to pose deformations.

sulting in corrupted poses, see Fig. 2. However, despite of

these errors, the overall rough course or at least parts of the

motion may still be recognized to a reasonable degree. In

the next step, the 3D mocap tracking results are locally clas-

sified according to available motion categories. In our ap-

proach, these categories are encoded in form of class motion

templates (MTs) as introduced in [10]. MTs show a high de-

gree of robustness under spatial and temporal deformations,

while revealing consistent aspects of a motion category. In

particular, it turns out that typically occurring tracking er-

rors do not have a significant influence on the classification

result using MTs. For example, after recognizing a walking

cycle in the tracked sequence, this increase of knowledge

about the tracked sequence can be used to allocate a simple

prior such as ‘left foot moves to the front’. Such priors are

integrated in the tracking procedure as regularization terms,

and the tracking step is repeated to yield an enhanced track-

ing result. Iterating such a procedure, as shown by our ex-

periments with the HumanEVA-II benchmark, remarkably

improves the result after few iterations.

The remainder of the paper is organized as follows. We

first summarize the tracking procedure (Sect. 2) and de-

scribe the retrieval component (Sect. 3). In Sect. 4, we

explain how to fuse the retrieval results with our tracking

procedure. To the best of our knowledge, such an iterative

tracking procedure using retrieved motion priors has not yet

been considered before and constitutes the main contribu-

tion of our paper. Besides stabilization of 3D tracking we

also gain a classification which closes the gap between sym-

bolic labels on the motion patterns and the underlying ac-

tions. The experiments are presented in Sect. 5. A summary

can be found in Sect. 6.

2. Tracking Procedure

The input of our tracking procedure is a data stream of

multi-view images (obtained by a set of calibrated and syn-

chronized cameras) as well as a surface mesh of the subject

to be tracked (obtained by a body laser scanner). We fur-

ther assume that the mesh is rigged so that all mesh points

are associated in a fixed way to the joints of an underly-

ing kinematic chain. Then, the tracking problem consists

of computing the configuration parameters (joint angles as

well as root orientation and translation) of the kinematic

chain from the given image data. Here, the surface mesh

should be transformed with the configuration parameters in

such a way that the projection of the mesh covers the ob-

served subject in the images as accurately as possible.

2.1. Kinematic Chains

The subject to be tracked is modeled by a so-called kine-

matic chain, which is generally used to model a flexibly

linked rigid body such as a human skeleton [4]. In the fol-

lowing, we use homogeneous coordinates to represent 3D

points and exponential functions of twists to represent rigid

body motions. The configuration of a kinematic chain can

then be described by a consecutive evaluation of exponen-

tial functions of twists, see [4]. More precisely, let x ∈ R
3

be a 3D coordinate of a joint in the neutral configuration

(standard pose) of the kinematic chain. Let X = (x
1 ) be

the respective homogeneous coordinate and define π as the

associated projection with π(X) = x. Furthermore, let ξ

be a rigid body motion, which can be represented as ξ =
exp(θξ̂) with a twist ξ̂ and θ ∈ R. The overall configuration

of the kinematic chain is specified by a rigid body motion

ξ = exp(θξ̂) encoding the root orientation and translation

as well as a sequence ξ1 = exp(θ1ξ̂1), . . . , ξn = exp(θnξ̂n)
of rigid body motions encoding the joint angles. Note that

the twists ξ̂1, . . . , ξ̂n are fixed for a specific kinematic chain.

Thus, the configuration of a fixed kinematic chain is speci-

fied by the following (6 + n) free parameters:

χ := (ξ,Θ) with Θ := (θ1, . . . , θn). (1)

In other words, the configuration parameter vector χ con-

sists of the 6 degrees of freedom for the rigid body motion

ξ and the joint angle vector Θ, see also [15]. Now, for a

given point x on the kinematic chain, we define J (x) ⊆
{1, . . . , n} to be the ordered set that encodes the joint trans-

formations affecting x. Then, for a given configuration pa-

rameter vector χ := (ξ,Θ), the point x is transformed ac-

cording to

Y = exp(θξ̂)
∏

j∈J (x)

exp(θj ξ̂j)X. (2)

2.2. Pose Estimation

In our setup, the vector χ is unknown and has to be de-

termined from the image data. In the following, instead of

regarding points on the kinematic chain, we use points on

the surface mesh. As the mesh is rigged, the mesh points

are directly associated to a joint. Given a set of 3D surface

mesh points xi, i ∈ I , we assume for the moment that one

knows corresponding 2D coordinates of these points within

a given image. In Sect. 2.3, we describe how to obtain such



correspondences. Furthermore, we represent each 2D point

as a reconstructed projection ray given in 3D Plücker form

Li = (ni,mi) [13]. For pose estimation, the basic idea is to

apply the (unknown) rigid body motions on 3D points xi ac-

cording to χ and to claim incidence with the reconstructed

projection rays. Due to the properties of Plücker lines, this

incidence can be expressed as
(

π
(

exp(θξ̂)
∏

j∈J (xi)

exp(θj ξ̂j)
)

× ni

)

− mi = 0. (3)

To simultaneously account for the incidences of all points
xi, i ∈ I , one minimizes the following term in a least-
squares sense:

argmin
χ

∑

i

∥

∥

∥

(

π
(

exp(θξ̂)
∏

j∈J (xi)

exp(θj ξ̂j)Xi

)

× ni

)

− mi

∥

∥

∥

2

2
(4)

To solve for the unknown parameters in the exponential

functions, we linearize each function by using the first two

elements of the respective Taylor series: exp(θξ̂) ≈ 1l+ θξ̂.

This leads to three linear equations with 6 + n unknowns

for each exponential function. In case of many correspon-

dences (i. e., in case there are many mesh points xi with cor-

respondences), one obtains an over-determined linear sys-

tem of equations, which can be solved in the least squares

sense. The approximation errors introduced by the lin-

earization step are handled by applying an iterative com-

putation scheme, see [15] for details.

2.3. Region­based Pose Tracking

In our framework we use the region-based tracking ap-

proach as presented in [16], to which we refer to details.

However, alternatively, one may also use other techniques

as presented in [3, 6, 14].

The concept is to estimate pose parameters χ such that

the projection of the resulting surface mesh optimally splits

the image into a foreground (subject) and a background re-

gion. Here, the splitting is regarded as optimal if suitable

image features (color, texture) are maximally dissimilar in

the two regions with regard to estimated density functions,

see [16]. Starting with a first estimate χ, the transformed

mesh points yi (see Eq. (2)) are projected onto image points

pi yielding correspondences in a natural way. One then con-

siders only the visible image points pi that lie on the contour

line separating foreground and background. Next, these

points are shifted inwards or outwards (orthogonal to the

contour line) according to force vectors so that the result-

ing points, say qi, better explain the color distributions of

the foreground and background regions, see Fig. 3. Finally,

using the points qi with the correspondent mesh points xi

(obtained from the transformed mesh points yi) one is then

in the situation for applying the minimization (4) to obtain

an improved estimation of the pose parameters. The entire

process is iterated until convergence, see [16] for details.

Figure 3. Example forces (enlarged force vectors, green) acting on

the contour line of the projected surface mesh.

3. Retrieval Component

In this section, we review the concept of motion tem-

plates (MT) in Sect. 3.1, explain our MT-based classifica-

tion procedure in Sect. 3.2 and finally describe the alloca-

tion of priors in Sect. 3.3.

3.1. Motion Templates

We now summarize the main idea of motion templates

referring to [10] for details. As underlying feature represen-

tation, we use the concept of relational features that capture

semantically meaningful Boolean relations between spec-

ified points of the kinematic chain underlying the mocap

data, see [11]. In the following, we use a set of f = 41
relational features where the first 39 features are defined

as in [10], and the last two features express whether the

right/left foot is moving to the front. Then, a given mo-

cap sequence is converted into a sequence of f -dimensional

Boolean feature vectors in a framewise fashion. Denoting

the number of frames by K, we think of the resulting se-

quence as a feature matrix X ∈ {0, 1}f×K . An example is

shown in Fig. 4 (b), where, for the sake of clarity, we display

a subset comprising only 6 of the f = 41 features.

In our scenario, we assume that each motion category is

given by a class C consisting of γ ∈ N logically related ex-

ample motions. To learn a motion class representation that

grasps the essence of the class, we compute a semantically

meaningful average over the γ feature matrices of training

examples. Here, to cope with temporal variations in the ex-

ample motions, we use an iterative warping and averaging

algorithm [10], which converges to an output matrix XC re-

ferred to as a motion template (MT) for the class C. After

a subsequent quantization step, one obtains a quantized MT

with values over the set {0, 1, ∗} as indicated by Fig. 4 (a).

The length (number of columns) of the MT corresponds to

the average length of the training motions. The black/white

regions in a class MT indicate periods in time (horizontal

axis) where certain features (vertical axis) consistently as-

sume the same values zero/one in all training motions, re-

spectively. By contrast, gray regions (corresponding to the
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Figure 4. (a): Marked motion template for motion class

‘walk2StepsLstart’. The feature numbers correspond to the fea-

tures used in [10]. The annotation for the relational constraint

‘leftFootOnGround’ is indicated by the green rectangle. (b): Fea-

ture matrix for the subsegment of DEVA consisting of the first

three walking cycles. The second walking cycle (frames 160 to

240) has not been tracked correctly. (c): Feature matrix (b) with

allocated priors (green rectangles). (d): Feature matrix after regu-

larized tracking using the priors of (c).

wildcard character ∗) indicate inconsistencies mainly re-

sulting from variations in the training motions. In other

words, the black/white regions encode characteristic aspects

that are shared by all motions, whereas the gray regions

represent the class variations coming from different realiza-

tions. For further details, we refer to [10].

3.2. Classification Procedure

Given a mocap sequence D and a specific motion class

C, we now define a distance function that reveals all motion

subsegments of D correlating to C. Let X ∈ {0, 1, ∗}f×K

be a quantized class MT of length K and Y ∈ {0, 1}f×L the

feature matrix of D of length L. We define for k ∈ [1 : K]
and ℓ ∈ [1 : L] a local cost measure cQ(k, ℓ) between the

k-th column X(k) of X and the ℓ-th column Y (ℓ) of Y . Let

I(k) := {i ∈ [1 : f ] | X(k)i 6= ∗}, where X(k)i denotes

the ith entry of the kth column of X . Then, if |I(k)| > 0,

we set

cQ(k, ℓ) =
1

|I(k)|

∑

i∈I(k)

|X(k)i − Y (ℓ)i|, (5)

otherwise we set cQ(k, ℓ) = 0. In other words, cQ(k, ℓ)
only accounts for the consistent entries of X with X(k)i ∈
{0, 1} and leaves the other entries unconsidered. Based on

this local distance measure and a subsequence variant of

dynamic time warping (DTW), one obtains a distance func-

tion ∆C : [1 : L] → R ∪ {∞} as described in [10] with

the following interpretation: a small value ∆C(ℓ) for some

ℓ ∈ [1 : L] indicates the presence of a motion subsegment

of D that is similar to the motions in C starting at a suitable
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Figure 5. Distance function ∆C for DEVA with respect to the class

(a) ‘walk2StepsLstart’, (b) ‘jog2StepsLstart’, and (c): Combined

distance function ∆min obtained by minimizing (a) and (b).

frame index aℓ < ℓ and ending at frame index ℓ . Here, the

starting frame index aℓ can be recovered by a simple back-

tracking within the DTW procedure. In other words, look-

ing for all local minima in ∆C below a suitable matching

threshold τ > 0 one can identify all subsegments of D that

are similar to the class MT. As example, Fig. 5 (a) shows a

distance function based on the quantized MT for the class

‘walk2StepsLstart’ for D = DEVA. Note that each of the

first five local minima (frames 0 to 400) reveals the end of a

walking cycle starting with the left foot.

Now, let C1, . . . CP be the available motion classes,

where p ∈ [1 : P ] denotes the class label of class Cp. Then,

given a mocap sequence D of length L, the classification

task is to identify all motion subsegments within D that be-

long to one of the P classes. To this end, we compute a

distance function ∆p := ∆Cp
for each class Cp and mini-

mize the resulting functions over p ∈ [1 : P ] to obtain a

single function ∆min : [1 : L] → R ∪ {∞}:

∆min(ℓ) := min
p∈[1:P ]

∆p(ℓ), (6)

ℓ ∈ [1 : L]. Furthermore, we store for each frame the min-

imizing index p ∈ [1 : P ] yielding a function ∆arg : [1 :
L] → [1 : P ] defined by:

∆arg(ℓ) := argmin
p∈[1:P ]

∆p(ℓ). (7)

The function ∆arg yields the local classification of the mo-

cap sequence D by means of the class labels p ∈ [1 : P ].
Fig. 5 shows an example-based on P = 2 motion classes.

3.3. Allocation of Priors

We now explain how to generate suitable motion priors,

which can then be used to regularize the tracking process.

Recall that a class motion template XC explicitly encodes

characteristic motion aspects (corresponding to black/white

regions) that are typically shared by motions of class C.

We select some of these aspects by marking suitable entries

within the template XC . These entries are also referred to

as MT priors. As an example, consider Fig. 4 (a), where the
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Figure 6. Pose priors are allocated by looking for subsequences in

Y that all align to the same MT Xp.

entries of row 26 between columns 22 and 58 are marked

by the green rectangle. Feature 26 expresses whether the

right foot rests (black, value 0) or assumes a high velocity

(white, value 1). Since all entries have the value 0 within

the green rectangle, this MT prior basically expresses that

the right foot rests (stays on the ground) during this phase of

the motion. Note that the MT priors are part of the database

knowledge and do not depend on the sequence to be tracked.

Now, let D be a mocap sequence of length L ob-

tained from some previous tracking procedure and let Y ∈
{0, 1}f×L be the corresponding feature matrix. The goal is

to automatically transfer suitable MT priors to the tracked

sequence to obtain what we refer to as tracking priors. Let

C1, . . . CP be the available motion classes with correspond-

ing motion templates Xp = XCp
, p ∈ [1 : P ], each

equipped with suitable MT priors. We compute the func-

tions ∆min and ∆arg as described in Sect. 3.2. Recall that a

local minimum ℓ ∈ [1 : L] of ∆min close to zero indicates

the presence of a motion subsegment of D (starting at a suit-

able frame index aℓ < ℓ and ending at frame index ℓ) that

corresponds to motion class ∆arg(ℓ) ∈ [1 : P ]. Therefore,

we fix a quality threshold τ > 0 and look for all essen-

tial local minima ℓ ∈ [1 : L] with ∆min(ℓ) < τ . (Here,

essential means that we only consider one local minimum

within a suitable temporal window to avoid local minima

being too close to each other.) Using the same DTW pro-

cedure as in Sect. 3.2, we then derive an alignment between

the motion template Xp with p := ∆arg(ℓ) and the feature

subsequence of Y ranging from aℓ to ℓ. Fig. 4 shows an

example, where the alignment is indicated by the red ar-

rows. Note that such an alignment establishes temporal cor-

respondences between semantically related frames and thus

allows for transferring the MT priors within Xp to corre-

sponding regions within Y , see Fig. 4 (c). These regions, in

the following referred to as tracking priors, are then used

for regularization in the tracking procedure (Sect. 4).

As an additional stabilizing factor, we take further ad-

vantage out of several subsequences of Y that all align to the

same MT Xp. The idea is to use Xp as a kind of mediator to

generate additional priors from the multiply aligned subse-

quences. We explain this idea by means of a simple example

consisting of two subsegments as indicated by Fig. 6. Here,

each circle denotes a correspondence (xℓ, ℓ) between frame

xℓ in Xp and frame ℓ ∈ [1 : L] of Y . In this example, essen-

Figure 7. Integration of the constraint foot on floor. Points on the

sole are pushed onto the floor.

tial local minima were found for frames 7 and 12 (matching

to the subsequences ranging from frames 3 to 7 and from

9 to 12). Now, suppose that the green alignment has a cost

close to zero (∆min(12) ≈ 0). In practice, such an align-

ment corresponds to a subsequence of Y that does not con-

tain tracking errors. By contrast, suppose that the subse-

quence corresponding to the red alignment contains some

tracking errors resulting in higher alignment cost. Then,

the idea is to use the poses of the “green subsequence”, re-

ferred to as pose priors, to stabilize the tracking of the “red

subsequence”. The correspondence of poses between the

subsequences is established via the alignments to Xp, see

Fig. 6. For example, frame 9 of Y yields a pose prior for

frame 3 of Y since both frames are aligned to the first frame

of Xp (indicated by the dashed arrow line). To put it in sim-

ple words, we first detect the presence of repetitions within

Y by means of the MT-based local classification and then

generate pose priors from the established correspondences.

4. Integration of Allocated Priors in Tracking

As explained in Sect. 3.3, a retrieval component is used

to allocate two types of priors to the tracking sequence. In

the following, we show how the allocated priors are inte-

grated into a subsequent tracking iteration.

Tracking priors provide information about certain move-

ment behaviors of body parts within a certain motion con-

text. As an example, we consider the tracking prior “left

foot should be on the floor for a certain frame”. We use

soft constraints to integrate this information in the tracking

framework, where the influence of a prior can be controlled

by a weighting parameter. In particular, soft constraints are

formulated as additional equations that are included in the

minimization step (4). To implement the example tracking

prior, all points ys, s ∈ S ⊂ I , on the sole of the foot (the

plantar) are projected onto the ground plane, yielding the

points zs. Then, we claim incidence ys − zs = 0 for s ∈ S,

to push the sole onto the ground plane, see Fig. 7. Using

Eq. (2) to express ys by the underlying kinematic chain, we

integrate the set of equations

π
(

exp(θξ̂)
∏

j∈J (ys)

exp(θj ξ̂j)Xs

)

− zs = 0, s ∈ S (8)

into the minimization step (4). Note that the unknowns are

the same as for (4), as zs are considered as constants for one

frame. In a similar manner it is straightforward to integrate

motion dynamics like arms swinging forward or backwards.
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Figure 8. Using pose priors to regularize tracking.

Unlike tracking priors, pose priors denote that a certain

joint angle configuration Θ at frame ℓ1 ∈ [1 : L] should

also be assumed in frame ℓ2 ∈ [1 : L] \ {ℓ1}. For example,

consider Fig. 8 where the generated pose prior suggests to

take Θ of frame ℓ1 = 157 for frame ℓ2 = 310. To this end,

equations similar to Eq. (8) can be integrated into the mini-

mization step (4) to regularize the joint angle configuration

at frame ℓ2 towards Θ in the subsequent tracking iteration.

5. Experiments

In our experiments, we used the Human EVA-II bench-

mark [19]. Here, a surface model, calibrated multiview im-

age sequences of four cameras, and background images are

provided. Note, that our region-based pose tracking does

not rely on background subtraction and therefore the back-

ground information is not used in our method. Instead,

we rely on the image data, projection matrices and a mesh

model. Due to color similarities and the sparse number of

cameras, tracking is challenging and the results are likely to

be corrupted if no priors are involved. Tracking results (as

3D marker positions) can be uploaded to a server at Brown

University for evaluation. As the sequence has been cap-

tured in parallel with a marker-based tracking system (us-

ing a Vicon system), an automated script can evaluate the

accuracy of a tracking result in terms of relative errors in

millimeters. In the Human EVA-II sequence S4, three dif-

ferent actions are performed consecutively, lasting for 6.7 s
(400 frames at 60Hz) each. A non-professional actor walks

in a circle, jogs in a circle, and then balances on each foot.

We decided for this sequence for several reasons: Firstly, it

is a public available benchmark, which allows a quantitative

comparison to other existing approaches. Secondly, the se-

quence contains three different patterns and we want to test,

whether our system is able to classify and single out the

involved motions correctly (walking and jogging). Thirdly,

walking and jogging are similar patterns, which allows us to

get a good feeling about the sensitivity of our approach in

classifying similar patterns. Fourthly, the balancing part is

not in the database, which means the algorithm should not

perform a classification at all, so that the tracking is only
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Figure 9. (a): ∆min for the initial tracking result. Essential local

minima are marked by a cyan dot. (b): Corresponding distance

functions ∆C for six MTs shown in a color coded fashion. Values

greater than τ = 0.7 are drawn in white. (c): Allocated tracking

priors. (d)-(f): Corresponding plots after the fourth iteration.

driven from the image data without any priors. All these

aspects can be covered by this sequence.

The database knowledge that is used by the retrieval sys-

tem is generated in a preprocessing step. To this end, we as-

sembled a total of 232 short 3D motion capture clips, which

we manually cut out from the freely available HDM05 mo-

cap database [12] (obtained from a Vicon system). The mo-

cap clips of an average length of 1.1 s were categorized into

P = 6 different motion categories, which are ‘walk two

steps’, ‘jog two steps’, and ‘change from walk to jog’, each

for starting with the left and right foot, respectively.

After extracting the relational features for each example

motion at a sampling rate of 60Hz, we computed a quan-

tized motion template classifier for each of the P motion

classes and marked suitable regions in the quantized MTs

as MT priors, see Fig. 4 (a). In our scenario, we marked

MT priors corresponding to ‘left/right foot is on ground’,

‘left/right foot moves to front’, ‘left/right hand moves to

front’, and ‘left/right elbow is bent’. Note that the set of mo-

tion templates along with the MT priors, which constitutes

our database knowledge, is independent of the sequence to

be tracked and has to be generated only once.

In the initialization step, tracking is performed without



Figure 10. Improvements obtained by our iterative tracking proce-

dure. Top: Result without prior knowledge (initialization). Mid-

dle: Result after the first iteration. Bottom: Result after the third

iteration. The frames from left to right show examples of the walk-

ing, jogging, and balancing part (frames 210, 750 and 1170). Sev-

eral tracking errors (see arms and legs) are corrected.

using any regularizing priors. The resulting tracking se-

quence is then locally classified according to the precom-

puted MTs. In our experiments, a quality threshold of

τ = 0.07 turned out to be a robust choice. In Fig. 9 (a),

we show the resulting ∆min. Essential local minima be-

low τ = 0.07 are marked by a cyan dot. Note that for

the walking part of the benchmark sequence (frames 1 to

400), ∆min assumes lower values than for the jogging part

(frames 400 to 800), which indicates that the walking part

contains less tracking errors than the jogging part. Note

also that for the balancing part (frames 830 to 1200), ∆min

is far above τ revealing a strong difference to walking or

jogging patterns. The function ∆arg assigns the essential lo-

cal minima to appropriate motion categories, see Fig. 9 (b).

Furthermore, each motion subsequence induced by a local

minimum is aligned to the corresponding MT. Based on

these local alignments, suitable tracking priors are allocated

for the next iteration, see Fig. 9 (c). Fig. 9 (d)-(f) show the

corresponding distance functions and allocated priors in the

fourth iteration. Note that the local minima of ∆min shown

in Fig. 9 (d) have gained a substantial qualitative boost. Fur-

thermore, the occurrence of the different motion categories

are revealed in a much more distinctive way in the fourth

iteration, compare (e) and (b) of Fig. 9. This all indicates a

stabilization of the tracking procedure over the iterations.

We now discuss the actual improvements in the tracking

results achieved by our novel iterative approach. Fig. 10

shows representative poses overlayed with the tracking re-

sult (indicated by the yellow meshes) after the initial step,

the first iteration, and the third iteration. As seen, the ini-

tial tracking result contains various serious tracking errors
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Figure 11. Framewise tracking error (in millimeters) in the initial-

ization (red), first (blue), and third iteration (black). (a): Without

image noise. (b): With Gaussian noise (40 pixels standard devia-

tion) added to each frame.

no additional noise +40 px image noise

∅ σ max ∅ σ max

Initial step 79.1 26.2 165.9 75.2 28.2 184.0

Iteration 1 51.8 18.5 134.1 65.0 24.2 144.4

Iteration 3 47.9 12.8 105.8 51.0 15.5 139.0

Table 1. Improvements of the tracking quality over various itera-

tions. Average errors, standard deviations, and maximal errors (in

millimeter) over all 1257 frames of the sequence are shown.

(a) (b)

Figure 12. Gaussian noise has been added to each image. Pose

overlay of frame 500 after the initial tracking (a) and after the

third iteration (b). During the iterations, several tracking errors

(see right arm and both legs) are corrected.

such as a swap of legs or an incorrect inflection of the arms.

These errors are corrected within few iterations. The abso-

lute difference of the 3D joint positions of the tracking result

and the ground truth positions are indicated by Table 1 and

by Fig. 11. These numbers were obtained by the automated

evaluation system supplied by Brown University [19]. Dur-

ing the iterations, the average error is reduced from 79mm
to 48mm after few iterations, see Table 1. The significant

improvements are also indicated by Fig. 11 (a).

In a second experiment we added Gaussian noise (stan-

dard deviation: 40 pixels) to each frame. Two example

frames after the initialization and the third iteration are

shown in Fig. 12. During iterations, the average error

dropped from 75mm to 51mm, see Table 1 and Fig. 11 (b).

These results demonstrate the stabilizing effects achieved

by our iterative tracking approach. Note that our framework

requires that a sequence is tracked several times. Currently,

our tracking implementation requires 7 s per frame result-

ing in 2.5 h for the entire 1257 frames. After tracking, the

classification and allocation steps require 15 s.



6. Summary

In this paper, we introduced an iterative tracking ap-

proach that dynamically integrates motion priors retrieved

from a database to stabilize tracking. Intuitively, our idea

is to pursue a joint bottom-up and top-down strategy in the

sense that we start with a rough initial tracking which is then

improved by incorporating high-level motion cues. These

motion cues are allocated upon a local classification of the

initial tracking result. In addition to stabilization, the lo-

cal classification can also be used for automatic motion an-

notation. By means of the HumanEVA-II benchmark, we

showed that even simple motion priors lead to significant

improvements in the tracking. There are still limitations in

our approach. In particular, the presence of strong tracking

errors may lead to a confusion in the local classification;

misallocated priors may then worsen the tracking error. In

future work, we plan to develop techniques that can cope

with such situations, e. g., by integrating statistical confi-

dence measures for the classification and by simultaneously

considering alternative motion priors.
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