
SHEET MUSIC-AUDIO IDENTIFICATION

Christian Fremerey, Michael Clausen, Sebastian Ewert
Bonn University, Computer Science III

Bonn, Germany
{fremerey,clausen,ewerts}@cs.uni-bonn.de

Meinard M üller
Saarland University and MPI Informatik

Saarbruecken, Germany
meinard@mpi-inf.mpg.de

ABSTRACT

In this paper, we introduce and discuss the task of sheet
music-audio identification. Given a query consisting of a
sequence of bars from a sheet music representation, the
task is to find corresponding sections within an audio inter-
pretation of the same piece. Two approaches are proposed:
a semi-automatic approach using synchronization and a
fully automatic approach using matching techniques. A
workflow is described that allows for evaluating the match-
ing approach using the results of the more reliable syn-
chronization approach. This workflow makes it possible to
handle even complex queries from orchestral scores. Fur-
thermore, we present an evaluation procedure, where we
investigate several matching parameters and tempo estima-
tion strategies. Our experiments have been conducted on a
dataset comprising pieces of various instrumentations and
complexity.

1 INTRODUCTION

When listening to an audio recording of a piece of mu-
sic, an obvious problem is to decide, which bar of a corre-
sponding sheet music representation is currently played.
For technical reasons, we tackle this problem from the
viewpoint ofsheet music-audio identification: Given a se-
quence of bars from the sheet music as a query, the task is
to find all temporal sections in the audio recording, where
this bar sequence from the query is played.

One application of this task is to find out, whether there
are differences between the default bar sequence follow-
ing the instructions in the sheet music and what is actually
played in the audio interpretation. In case there are differ-
ences, sheet music-audio identification may also be used to
automatically determine the bar sequence that is played in
the interpretation, and to identify special parts like caden-
zas that have no counterpart in the sheet music.

If the bar sequence played in the audio interpretation
is known in advance, sheet music-audio identification can

We gratefully acknowledge support from the German Research
Foundation DFG. The work presented in this paper was supported by the
PROBADO project (http://www.probado.de/, grant INST 11925/1-1) and
the ARMADA project (grant CL 64/6-1).

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2009 International Society for Music Information Retrieval.

be solved by first performing sheet music-audio synchro-
nization and then using the synchronization results to iden-
tify the temporal sections in the audio that correspond to
a given query sequence of bars. In case the correct bar
sequence is not known, a more direct approach must be
taken. Here, sheet music-audio matching as performed
in [1] seems to be a reasonable strategy.

In the literature, alignment, identification and retrieval
has been a popular field of research for the single-domain
cases of either audio or symbolic data, see [2] and the ref-
erences therein. For the cross-domain case, a lot of effort
has been put into the task of off-line and on-line alignment
of score data and audio data [3–6]. Here, the assumption is
made that the bar sequence of the score is already known.
The idea of using cross-domain synchronization results as
ground truth or training data for more complicated music
information retrieval tasks has already been formulated for
the application of automatic transcription of pop music [7].

First important steps towards cross-domain matching
and identification of polyphonic musical works have been
conducted by the groups of Pickens and Orio [4, 8]. Us-
ing either audio transcription techniques [8] or a statistical
model for the production of audio data from polyphonic
score data [4] a complete audio track (song or movement)
is used as a query to find the corresponding work in the
score domain. First experiments for approaching the task
of cross-domain work identification by querying arbitrary
segments of score data have been conducted by Syoto et
al. [9] as well as in our previous work [1]. None of the
above approaches explicitly handles differences in bar se-
quence structure or repeats between the score and audio
data, even though this is a common and practical relevant
issue in real-world digital music libraries.

The paper is structured as follows. Section 2 specifies
the task of sheet-music audio identification in more detail
and discusses some difficulties and pitfalls. Our two ap-
proaches to sheet music-audio identification are presented
in Section 3, one using synchronization and the other us-
ing matching. Section 4 explains how MIDI events for
comparison with the audio data are created from the sheet
music data. The synchronization and matching procedures
are outlined in Sections 5 and 6. Section 7 describes an
evaluation procedure for the matching approach using the
more reliable results of the synchronization approach as a
ground truth. Some experiments and results on our test
dataset are reported in Section 8 before closing the paper
with conclusions and an outlook on future work in Section
9.

2 SHEET MUSIC-AUDIO IDENTIFICATION

In the following, we assume that we are given one scanned
sheet music representation and one audio interpretation of
the same piece of music. We assign a unique label(p, b)
to each bar written in the sheet music, wherep is the page
number andb is the bar number on the page. Furthermore,
B denotes the set of all bar labels of the piece. Sheet mu-
sic may contain jump directives like repeat signs, alterna-
tive endings, dacapos or segnos. Following these direc-
tives as they are written in the sheet music, one obtains a
sequenceδ = (δ1, . . . , δn), δi ∈ B, indicating thedefault
sequenceof bars that is to be played when performing the
piece. In practice, however, the given audio recording does
not always follow this sequenceδ. Performers might, for
example, choose to ignore or add repeats, or even intro-
duce shortcuts. This leads to a possibly different sequence
π = (π1, . . . , πd), πi ∈ B ∪ {↑}, which we callperfor-
mance sequence. Here, we use the label↑ to mark sec-
tions that are not written in the sheet music, e.g., caden-
zas. Given the performance sequenceπ, the audio record-
ing can be segmented into time intervalsI1, . . . , Id such
that time intervalIi corresponds to the section in the au-
dio data where barπi is played (or something that is not
written in the score in caseπi =↑).

Given a query sequence of barsQ = (q0, . . . , qm), Q a
substring ofδ, the task of sheet music-audio identification
is to find all time intervalsT in the audio data where the
query sequence of bars is played. More formally,

H(Q) := {T | ∃j : Q = (πj , πj+1, . . . , πj+m)

∧T = Ij ∪ Ij+1 ∪ . . . ∪ Ij+m}

denotes the set ofhitsw.r.t. Q. Note that in case of repeats
that are notated as repeat signs, there can be more than
one hit for a given query. Also note that besides the time
intervalsT there might be other time intervals in the audio
data where the same musical content is played, but that
belong to a different sequence of bars in the sheet music.
We denote this kind of time intervals aspseudo-hits.

3 TWO APPROACHES

Given a scanned sheet music representation and an audio
recording of the same piece of music, in a first step we use
optical music recognition (OMR) software to extract infor-
mation about musical symbols like staffs, bars and notes
from the sheet music scans. Note that the obtained sym-
bolic score data usually suffers from recognition errors.
For simplicity, we here assume that the set of bar labels
B and the default sequenceδ are correctly obtained from
the OMR output. Given a queryQ = (q0, . . . , qm), which
is a substring ofδ, we want to find the set of hitsH(Q) as
specified in Section 2. We now describe two approaches
with different pre-conditions.

For the first approach, we assume that the performance
sequenceπ = (π1, . . . , πd), πi ∈ B ∪ {↑}, is known. In
this case, we are left with the calculation of the correspond-
ing time intervalsI1, . . . , Id. This can be done by using
sheet music-audio synchronization. The set of hitsH(Q)
can then be computed by finding occurrences of the query
sequence in the performance sequence.

In the second approach, the performance sequenceπ is
unknown. In this case, a reasonable strategy is to use sheet
music-audio matching to search for sections in the audio
recording with a similar musical content compared to the
query sequence of bars. These sections may be considered
as an approximation of the set of hitsH(Q). However,
one should be aware of the fact that this method cannot
distinguish correct hits from pseudo-hits, and is therefore
expected to deliver false positives. In the following, we
will refer to such false positives ascontent-induced confu-
sion. Such confusion is also expected to be introduced by
query sequences that differ only slightly, either in musical
content or by a very small number of bars at the beginning
or end of the sequence. This issue becomes particularly
relevant, since the presence of OMR errors prohibits using
too strict settings for rating similarity in the matching.

Due to the additional informationπ that is given in the
first approach, this approach works much more robust and
reliable than the second approach. The required perfor-
mance sequenceπ can be created with little effort by man-
ually editing an automatically generated list of jump di-
rectives acquired from the available default sequenceδ.
Therefore, we consider this approach semi-automatic. On
the contrary, the second approach is fully automatic, but
the results are less reliable. In the optimum case, only
content-induced confusion would occur. In practice, how-
ever, extra confusion is likely to be introduced by short-
comings of the matching procedure.

The idea followed in this paper is to use the more reli-
able results of the semi-automatic first approach to create
ground truth results for evaluating the less reliable fully
automatic second approach. Using this method, we com-
pare different settings of the matching procedure used in
the second approach to learn which one works best for the
task of sheet music-audio identification.

4 DATA PREPARATION

To compare sheet music data with audio data, we first cre-
ate MIDI note events from the OMR results. However,
OMR results often suffer from non-recognized or misclas-
sified symbols. Especially in orchestral scores with many
parts, erroneous or missing clefs and key signatures lead
to wrong note pitches when creating MIDI events. Fur-
thermore, orchestral scores can comprise parts for trans-
posing instruments, i.e., the notated pitch is different from
the sounding pitch. Such transposition information is not
output by current OMR software, but it is essential for cre-
ating correctly pitched MIDI events. To be able to handle
even complex orchestral scores, a so-calledstaff signature
text file is generated from each page and is manually cor-
rected. The staff signature file contains information about
the clef, the key signature and the transposition at the be-
ginning of each staff that is found on the page, see Figure
1. It also identifies which staffs belong to the same grand
staff. The information from the staff signature files is used
to correct errors in the OMR output and to add the missing
information about transposing instruments.

There are several choices to be made regarding onset
times and tempo, when creating the MIDI events from the
OMR results. Since in the OMR output, notes or beams

Figure 1. Staff signature annotation for an example grand staff taken from a score of the “Symphony to Dante’s Divina
Commedia S109 - Inferno” by Franz Liszt. Positive key signature values count the number of sharps, negative values count
the number of flats. Transposition values are specified as theamount of semitones the pitch has to be modified with to
sound correctly.

are often missed out, the accumulated note durations are
not a good estimator for note onset times. This is espe-
cially the case for scores with multiple staffs and possi-
bly multiple voices per staff, where the voice onset times
might drift apart. Instead we use the horizontal position
of notes within each measure as an estimator for the on-
set time. Even though this does not deliver onset times
that perfectly match the musical meter, this method is very
robust against surrounding errors and effectively inhibits
voices from drifting apart.

Another parameter that is required to convert sheet mu-
sic data to MIDI events is the tempo. This parameter is
usually not output by OMR systems. If the performance
sequenceπ is known in advance, the mean tempo can be
calculated from the duration of the audio track. Whenπ

is not known, one might either use a fixed tempo or try to
estimate a tempo based on the musical content. Note that
the actual tempo used in audio interpretations can easily
vary from 40 to 220 beats per minute (quarter notes per
minute). We will investigate the effects of different tempo
estimation strategies in our experiments in Section 8.

Both the MIDI data and the audio data are converted
to sequences of normalized chroma-based features. Each
feature is a12-dimensional vector encoding the local en-
ergy distribution among the12 traditional pitch classes of
Western classical music commonly labeled C,C♯, D, . . .,B.

5 SYNCHRONIZATION

After transforming both the MIDI data as well as the au-
dio data into sequences of normalized chroma vectors, we
use dynamic time warping (DTW) to synchronize the two
sequences. Here, the main idea is to build up a cross-
similarity matrix by computing the pairwise distance be-
tween each score chroma vector and each audio chroma

vector. In our implementation, we simply use the in-
ner vector product for the comparison. An optimum-cost
alignment path is determined from this matrix via dynamic
programming. To speed up this computationally expensive
procedure, we use an efficient multiscale version of DTW.

6 MATCHING PROCEDURE

The task of the matching procedure is to find sections in the
audio interpretation that are considered similar to a given
query of score data. In this paper, we use a variant of the
subsequence dynamic time warpingalgorithm for this task.
For details we refer to the literature [2]. As in the case of
synchronization, both the audio data and the score data are
first converted to feature sequences. Each feature vector
from the score query is compared to each feature vector
from the audio database by means of a suitablelocal cost
measure. The results of this comparison are stored in a
cost matrix, see Figure 2. Finding candidate matches from
this cost matrix means finding paths connecting the bot-
tom row and the top row of the matrix. In particular, we
are interested in pathsp where the sum of the local cost of
the matrix cells covered by the path is as small as possible.
Such paths are calculated using dynamic programming by
iteratively advancing from the bottom left towards the top
right using a constrained set of allowed step directions en-
suring that a path never runs backwards in time. For each
matrix cell, the minimum cost of any valid path leading to
that cell is saved in a so-calledaccumulated cost matrix.
Matches are then identified by finding minima in the top
row of the accumulated cost matrix.

Given a query bar sequenceQ, the match-
ing procedure outputs a set of matchesM(Q) =
{(p1, c1), . . . , (pN , cN)}, wherepi is a path connecting
the top and bottom rows andci ∈ R≥0 is the cost of

Figure 2. Illustration of the subsequence DTW cost matrix
for a score query with a length of two measures accounting
for 11 seconds of MIDI data (Beethoven Sonata 3, Opus 2
No 3, Adagio, measures 16–17). An excerpt of 27 seconds
of audio data including one correct match is displayed. The
optimum-cost pathp for the correct match is rendered as a
sequence of squares connected by lines.

the pathpi. The results are ranked with respect to the
path cost. The choice of allowed step directions can be
varied and associated step weights can be introduced to
favor certain directions and behaviors. Several settings
for step directions and step weights will be tested in our
experiments in Section 8.

7 EVALUATION PROCEDURE

Sheet music-audio matching depends on a multitude of pa-
rameters and settings used in the steps of creating MIDI
events, creating feature sequences, and performing the
matching procedure. In this work, we are interested in find-
ing out which parameters work best for the task of sheet
music-audio identification. We do this by evaluating and
comparing several parameter sets on a test dataset consist-
ing of a collection of musicaltracks, with each track being
represented by one sheet music representation and one au-
dio interpretation.

In the evaluation, we perform the matching procedure
on a set of test queries. For each test queryQ, we then eval-
uate the matching resultsM(Q) using a set of ground truth
hits H(Q) and a suitable confusion measure. To calculate
the confusion measure, we first identify which matches
output by the matching procedure correspond to ground
truth hits. LetT = [t0, t1] ∈ H(Q) be the ground truth hit
and(p, c) ∈ M(Q) be a match whose pathp corresponds
to the time intervalT ′ = [t′0, t

′
1] in the audio. The match

(p, c) is then considered to correspond to the ground truth
hit T , if both the durations and the locations roughly coin-
cide. More precisely, with∆ := t1 − t0 and∆′ := t′1 − t′0
we require that

|∆′ − ∆| < 0.2∆ and |t′1 − t1| < 0.2∆.

In the following, we call a match that corresponds to
a ground truth hit acorrect matchand a match that does
not correspond to a ground truth hit anincorrect match.
Let M(Q) = {(p1, c1), . . . , (pN , cN)} be the set of all
matches for a queryQ, and letC ⊆ [1 : N] be the set of
indices of correct matches andI ⊆ [1 : N] be the set of
indices of incorrect matches. The confusion measure we

Figure 3. Scape plot for Beethoven’s Piano Sonata no.7
op.10 no.3 Rondo (Allegro) using the confusion measure
ΓH,M .

use in this paper is a binary-valued functionΓH,M that on
input Q takes the value1 if at least one ground truth hit
in M(Q) has no corresponding match or if there is an in-
correct match with lower cost than the highest-cost correct
match, and0 otherwise:

ΓH,M (Q) :=

1 missed ground truth hit
1 mini∈I ci < maxi∈C ci

0 otherwise.

In other words,ΓH,M (Q) = 0 if all ground truth hits are
found and are ranked higher than any incorrect match. In
case ofΓH,M (Q) = 1 we also speak ofconfusion.

Using the results of sheet music-audio synchronization
that have been calculated in a preprocessing step, a set of
ground truth hits can be calculated for any input query se-
quence of barsQ that is a substring ofδ. This allows us to
test each track using a grid of queries that covers not only
the whole track but also a wide range of query lengths.
The results can be nicely visualized in a so calledscape
plot [10]. Figure 3 shows a scape plot using the confusion
measureΓH,M . Time runs from left to right. The lowest
row shows the results for the shortest query length. The
query length successively increases when moving upwards
in the plot. The darker shaded areas indicate confusion.

From Figure 3, one can see that longer queries lead to
less confusion and better separability of correct and in-
correct matches. The plot also reveals where in the track
and up to what query lengths the confusion happens. To
not only be able to visually compare parameters for each
individual track, but to also enable comparisons for the
whole dataset, we summarize the results of all queries in
one number per track by simply averaging over the com-
plete grid of queries. Subsequently, we calculate the av-
erage over all tracks to end up with a single number for
each set of parameters. If one parameter set works better
than another parameter set, this fact should manifest in a
lower averageΓH,M value. Note that one should not com-
pare absolute values of the confusion measure for differ-
ent tracks or datasets, because the absolute values depend
on too many uncontrolled factors like the content-induced
confusion, the tempo of the audio interpretation, and the
content-dependent “uniqueness” of bars. Therefore, we
keep datasets fixed, when studying the effects of using
different parameters by comparing the confusion measure

Composer Work Instrumentation #Pages #Tracks Duration
Beethoven Piano Sonatas 1–15 Piano 278 54 5h 01min

Liszt “A Symphony to Dante’s Divina
Commedia”

Symphonic Orchestra 145 2 44min

Mendelssohn Concert in E minor, Op.64 Violin and Orchestra 55 3 26min
Mozart String Quartetts 1–13 String Quartett 190 46 2h 46min

Schubert
“Die scḧone Muellerin”, “Winter-
reise” and “Schwanensang”

Singer and Piano 257 58 3h 04min

Table 1. Information and statistics on the test dataset used for evaluation.

Figure 4. ΓH,M values averaged over the complete dataset
for every combination of5 tempo estimation strategies and
4 step direction and cost settings. Lower values are better.

values.

8 EXPERIMENTS AND RESULTS

Using the procedures described in the previous sections,
there are many aspects whose effect on sheet music-audio
identification should be investigated. Due to space lim-
itation, we restrict ourselves to investigating the effects
of different tempo estimation strategies in combination
with different step settings and cost settings in the sub-
sequence DTW. In particular, we test five tempo estima-
tion strategies:fixedXXXbpm: Fixed tempo ofXXX
beats per minute, withXXX taking the values50, 100
and 200. fixedAudio: Fixed mean tempo of the
corresponding audio interpretation (estimated via man-
ually annotatedπ and the duration of the audio file).
adaptiveMax100bpm: The tempo is determined indi-
vidually for each bar by taking into account the number
of different onset times within the bar. The tempo is cho-
sen such that the duration of the bar is200ms times the
number of different onset times. This leads to bars with
runs of short-duration notes being slowed down compared
to bars with long notes. Additionally, a maximum tempo
of 100bpm is used to limit the difference between slow and
fast bars.

Figure 5. Tempo distribution of the test dataset being
weighted the same way as the results in Figure 4

We use four different step and cost settings for
the subsequence DTW.classic: Step vectors
(1, 0), (0, 1), (1, 1) and cost weights1, 1, 1. focussed:
Step vectors(2, 1), (1, 2), (1, 1) and cost weights2, 1, 1.
offset: Same asclassic, but with an additional cost
offset of 1 which is added to each cell of the local cost
matrix. normalized: The same asclassic, but with
an additional modification at the stage of calculating the
accumulated cost matrix. At each matrix cell, the cost
being compared for making the decision about which
step vector leading to this cell delivers the minimum
accumulated cost are normalized by the accumulated path
length up to this cell. This normalization prevents short
paths being preferred over long paths, even if the short
paths have a higher average cost.

The dataset used for testing consists of5 sheet music
books covering a range of instrumentations and complex-
ities, see Table 1. One audio inpterpretation per track is
included. For each track in the dataset, we calculate the
ΓH,M value for a grid of queries similar to the one used to
create the scape plot in Figure 3. We start with a query
length of 5 bars and use a hop size of5 bars to move
throughout the track. The query length is successively in-
creased by5 bars up to a maximum query length of40
bars.

Figure 4 shows the results for testing all20 combina-
tions of settings on the test dataset. TheΓH,M values il-
lustrated in the figure are average values calculated by first
taking the average over all tracks within each scorebook,
and then taking the average over all scorebooks. This way,
each of the five different types of instrumentation and com-
plexity gets the same weight. Since we are measuring ef-
fects that depend on the tempo, we also need to look at the
distribution of tempi of the tracks in the test dataset. Figure

5 shows the distribution of tempi being weighted the same
way as the results in Figure 4 and confirms that there is no
bias towards slower or higher tempi that might distort our
results.

From the results in Figure 4 we can see that both the
tempo estimation strategy and the tested step direction and
cost settings clearly have an effect on the average amount
of confusion. The best overall results are achieved by the
settingfocussed when using the mean tempo of the
audio interpretation. This was expected, since this set-
ting is more focussed towards the diagonal direction and,
therefore, benefits the most from the fact that the tempo
is known. However, in cases where the difference be-
tween the estimated tempo and the actual tempo of the
interpretation becomes too large, the lack of flexibility
leads to confusion, as can be seen for the tempo strategies
fixed50bpm andfixed200bpm.

In the cases, where the tempo of the audio interpretation
is assumed to be unknown, the best results are achieved by
the settingclassic using thefixed50bpm tempo es-
timation strategy. Both settingsclassic andoffset
work best when the estimated tempo is low. A possible ex-
planation for this effect is that the accumulating cost lead
to a preference of short paths. Shorter paths contain less
steps and therefore accumulate less cost. When looking at
the cost matrix depicted in Figure 2, one may think of the
optimum-accumulated-cost paths tending to make short-
cuts towards the top of the cost matrix instead of following
the lane of minimum local cost. This effect leads to ad-
ditional confusion when the estimated tempo of the sheet
music data is high compared to the actual tempo of the au-
dio interpretation.

The settingnormalized delivers better results than
the classic andoffset settings for every tempo es-
timation strategy except for thefixed50bpm. For that
strategy, however, it clearly falls behind and leads to even
worse results than in thefixed100bpm case. A possible
explanation is that, in contrast to the settingsclassic
andoffset, the settingnormalized does not prefer
shorter paths over longer paths. This seems to be an ad-
vantage when the estimated tempo is not too low, but in
thefixed50bpm case, the lack of a driving force towards
keeping the path connecting the bottom and top rows short
causes paths to become much more sensitive to noise and
local dissimilarities.

The adaptiveMax100 yields only a tiny improve-
ment over thefixed100bpm estimation. The reason for
that probably is that the difference between the two strate-
gies usually affects only the slower pieces. A test run using
only the slower pieces might lead to a bigger advantage for
the adaptive strategy.

9 CONCLUSIONS

We introduced and discussed the task of sheet music-audio
identification, which is identifying sections of an audio
recording where a given query sequence of bars from the
sheet music is played. Two approaches to solving the task
have been described, a semi-automatic approach using syn-
chronization and a fully automatic approach using match-
ing techniques. We proposed a workflow that allows for

evaluating the matching approach by using results from
the more reliable synchronization approach. This work-
flow includes contributions that make it possible to per-
form synchronization and matching even for complex or-
chestral scores. We introduced the idea of using scape plots
to visualize results of matching or retrieval tasks that are
performed on a grid of test queries covering a complete
track of music over a wide range of query lengths. Finally,
we performed an evaluation using a subsequence DTW
based matching technique for the task of sheet music-audio
identification. Results were presented and discussed for
different sets of settings and tempo estimation strategies.

In our future work, we would like to investigate more
aspects of sheet music-audio identification to answer ques-
tions like the following: Which features work best? What
is the optimum feature resolution? Can the results be im-
proved by using a harmonic model on the MIDI events cre-
ated from the sheet music? What influence do OMR errors
have on the results? Besides comparing the amount of con-
fusion, we are also interested in comparing the temporal
accuracy of matches.

10 ACKNOWLEDGEMENTS

We would like to express our thanks to the Bavarian State
Library in Munich for their cooperation and for providing
the sheet music scans.

11 REFERENCES

[1] C. Fremerey, M. M̈uller, F. Kurth, and M. Clausen: “Auto-
matic Mapping of Scanned Sheet Music to Audio Record-
ings,” Proc. ISMIR, Philadelphia, USA, pp. 413–418, 2008.

[2] M. M üller: Information Retrieval for Music and Motion,
Springer, 2007.

[3] F. Soulez, X. Rodet, and D. Schwarz: “Improving polyphonic
and poly-instrumental music to score alignment,”Proc. IS-
MIR, Baltimore, USA, 2003.

[4] N. Orio: “Alignment of Performances with Scores Aimed at
Content-Based Music Access and Retrieval,”Proc. ECDL,
Rome, Italy, pp. 479–492, 2002.

[5] C. Raphael: “Aligning music audio with symbolic scores us-
ing a hybrid graphical model,”Machine Learning, Vol. 65
No. 2–3 pp. 389–409, 2006.

[6] R.B. Dannenberg and C. Raphael: “Music score align-
ment and computer accompaniment,”Communications of the
ACM, Vol. 49 No. 8 pp. 38–43, 2006.

[7] R.J. Turetsky and D.P.W. Ellis: “Ground-Truth Transcrip-
tions of Real Music from Force-Aligned MIDI Syntheses,”
Proc. ISMIR, Baltimore, USA, pp. 135–141, 2004.

[8] J. Pickens, J.P. Bello, G. Monti, T. Crawford, M. Dovey, and
M. Sandler: “Polyphonic Score Retrieval Using Polyphonic
Audio Queries: A Harmonic Modeling Approach,”Proc. IS-
MIR, Paris, France, pp. 140–149, 2002.

[9] I.S.H. Suyoto, A.L. Uitdenbogerd, and F. Scholer: “Search-
ing Musical Audio Using Symbolic Queries,”IEEE Transac-
tions on Audio, Speech, and Language Processing, Vol. 16
No. 2 pp. 372–381, 2008.

[10] C. Sapp: “Comparative Analysis of Multiple Musical Per-
formances,”Proc. ISMIR, Philadelphia, USA, pp. 497–500,
2008.

