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Introduction

Many different methods for the detection of note onsets
in music recordings have been proposed and applied to
tasks such as music transcription, beat tracking, tempo
estimation, and music synchronization. Most of the
proposed onset detectors rely on the fact that note onsets
often go along with a sudden increase of the signal’s
energy, which particularly holds for instruments such as
piano, guitar, or percussive instruments. Much more
difficult is the detection of onsets in the case of more
fluent note transitions, which is often the case for classical
music dominated by string instruments. In this paper,
we introduce improved novelty curves that yield good
indications for note onsets even in the case of only smooth
temporal and spectral intensity changes in the signal.
We then show how these novelty curves can be used
to significantly improve the temporal accuracy in music
synchronization tasks.

Onset Detection

The most characteristic property going along with a
note onset is a sudden increase in the signal’s energy.
However, simultaneously occurring events in polyphonic
music may lead to masking effects that even out the
energy ascents and prevent an observation of a significant
energy increase. To circumvent this masking effects,
detection functions were proposed that analyze the signal
in a band-wise fashion [4] and try to extract transients
occurring in a specific frequency region of the signal. A
widely used approach to onset detection in the frequency
domain is the spectral flux or novelty method described
in [1] that analyzes the lapse of the spectral content of
the signal and thus adds the possibility for detecting
changes of pitch or timbre of the signal. As a side-effect
of a sudden energy increase, there often is an accompa-
nying broadband noise burst appearing in the signal’s
spectrum. This effect is mostly masked by the signal’s
energy in lower frequency regions but well detectable in
the high-frequency content [2] of the spectrum.

Combining these ideas, we now describe an approach
for computing a novelty curve that indicates note onset
candidates. As it turns out, our novelty curve is suited for
detecting percussive as well as pitched-percussive onsets
even if there is only a weak attack phase. Given a
music recording, a short-time Fourier transform is used
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Figure 1: First 12 measures of Beethoven’s Symphony
No. 5 (Op. 67) interpreted by Bernstein. (a) Score
representation. (b) Linear magnitude spectrogram |X|. (c)
Logarithmic magnitude spectrogram Y . (d) Novelty curve
∆̄mag based on the magnitude spectrogram |X|. (e) Ground
truth annotation of onsets. (f) Novelty curve ∆̄comp based
on the compressed spectrogram Y .

to obtain a spectrogram X = (X(k, t))k,t with k ∈ [1 :
K] := {1, 2, . . . ,K} and t ∈ [1 : T ]. Here, K denotes
the number of Fourier coefficients, T denotes the number
of frames, and X(k, t) denotes the kth Fourier coefficient
for time frame t. Note that the Fourier coefficients of
X are linearly spaced on the frequency axis. Using
suitable binning strategies, various approaches switch
over to a logarithmic spaced frequency axis, e.g., by
using mel-frequency bands or pitch bands, see [4]. Here,
we keep the linearly spaced frequency axis, since it
puts greater emphasis on the high-frequency regions of
the signal, thus accentuating the afore mentioned noise
bursts visible in the high-frequency content. Next, we



apply a logarithm to the magnitude spectrogram |X| of
the signal yielding Y := log(1 + C · |X|) for a suitable
positive constant C > 1, see [5]. The advantages
of such a compression step may be summarized as
follows. First, it accounts for the logarithmic sensation
of human sound intensity. Furthermore, the compression
factor C allows for adjusting the dynamic range of
the signal. By increasing C, the low-intensity values
within the spectrogram are more and more highlighted,
thus preventing a masking by high-intensity values.
This effect is clearly visible in Fig. 1, which shows
the magnitude spectrogram |X| and the compressed
spectrogram Y for a Bernstein recording of Beethoven’s
Fifth Symphony. Here, the logarithmic compression
enhances the clarity of the weak transients, especially
in the high-frequency content. On the downside, a large
compression factor C may also amplify non-relevant low-
energy noise components. In our experiments, we use the
value C = 1000, but our results as well as the findings
reported by Klapuri et al. [5] show that the specific choice
of C does not effect the final result in a substantial way.

To compute novelty curves, one basically applies a first
order differentiator to the magnitude spectrum |X| or
compressed magnitude spectrum Y . More precisely, we
sum up only positive intensity changes to emphasize
onsets while discarding offsets. We define the novelty
function ∆mag : [1 : T − 1] → R for the magnitude
spectrum |X| as follows:

∆mag(t) :=

K
∑

k=1

∣

∣

∣
|X(k, t + 1)| − |X(k, t)|

∣

∣

∣

>0
(1)

for t ∈ [1 : T − 1], where |x|>0 := x for a positive real
number x and |x|>0 := 0 for a negative real number x. To
obtain our final novelty function ∆̄mag, we subtract the
local average and only keep the positive part (half wave
rectification). The final curve is shown in Figure 1d for
our Beethoven example. Similarly, we define the novelty
function ∆comp : [1 : T − 1] → R for the compressed
spectrum Y as follows:
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for t ∈ [1 : T −1], where |x|>1 := x for a real number x >

1 and |x|>1 := 1 for a real number x ≤ 1. From ∆comp

we obtain the final novelty function ∆̄comp as above, see
Figure 1f.

Comparing ∆̄mag and ∆̄comp shown in Figure 1 clearly
illustrates the benefits of the compression step. Note
that the logarithmization gives higher weight to an
absolute intensity difference within a quiet region of the
signal than within a louder region, which follows the
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Figure 2: Chroma representations of the Beethoven
example. (a) Audio recording. (b) MIDI file. (c-d)
Corresponding novelty curves ∆̄comp.

psychoacoustic principle that a just-noticeable change
in intensity is roughly proportional to the absolute
intensity [6]. Furthermore, the compression leads to a
better temporal localization of the onset, because the
highest relative slope of the attack phase approaches the
actual onset position and noticeably reduces the influence
of amplitude changes (e.g. tremolo) in high intensity
regions.

Music Synchronization

As an application, we now show how novelty curves
can be used for improving the temporal accuracy in
music synchronization tasks. In general terms, music

synchronization denotes a procedure which, for a given
position in one representation of a piece of music,
determines the corresponding position within another
representation. Depending upon the respective data
formats, one distinguishes between various synchroniza-
tion tasks [3]. For example, the goal of MIDI-audio
synchronization is to coordinate MIDI events with audio
data. The result can be regarded as an automated
annotation of the audio recording with available MIDI
data.

Most synchronization algorithms [7, 3, 9] rely on some
variant of dynamic time warping (DTW) and can be sum-
marized as follows. First, the two music data streams to
be aligned are converted into feature sequences, say V :=
(v1, v2, . . . , vN ) and W := (w1, w2, . . . , wM ), respectively.
Note that N and M do not have to be equal, since the
two versions typically have different lengths. Then, an
N × M cost matrix C is built up by evaluating a local
cost measure c for each pair of features, i. e., C(n,m) =
c(vn, wm) for 1 ≤ n ≤ N, 1 ≤ m ≤ M . Finally, an
optimum-cost alignment path is determined from this
matrix via dynamic programming, which encodes the
synchronization result. Our synchronization approach
follows these lines using the standard DTW algorithm,
see [3] for a detailed account on DTW in the music
context. For an illustration, we refer to Fig. 3a, which
shows a cost matrix along with an optimal alignment
path.
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Figure 3: (a) Conventional chroma-based cost matrix Cchroma. (b) Cost matrix of novelty curves Cnovelty. (c) Combined cost
matrix Cchroma+novelty.

In order to synchronize different music representations,
one needs to find suitable feature representations being
robust towards those variations that are to be left
unconsidered in the comparison. In this context, chroma-
based features have turned out to be a powerful tool for
synchronizing harmony-based music, see [3, 8]. Here,
the chroma refer to the 12 traditional pitch classes of
the equal-tempered scale encoded by the pitch spelling
attributes C, C♯, D, . . ., B. Representing the short-time
energy content of the signal in each of the 12 pitch classes,
chroma features show a high degree of robustness to
variations in timbre and articulation [8]. Furthermore,
normalizing the features makes them invariant to dy-
namic variations. For details on how to derive chroma
features from audio and MIDI files, we refer to the cited
literature. For our Beethoven example, Fig. 2 shows
chroma representations of an audio and MIDI version.

Onset-Enhanced Synchronization

Using chroma features for music synchronization leads
to reasonable alignment results. However, since the
chroma features account only for the rough harmonic
flow of a piece the temporal accuracy of alignments from
purely chroma-based approaches is often not sufficient
depending on the respective application and on the type
of music.

To address this issue, the authors of [10] introduce a
synchronization strategy that employs a combination of
two cost matrices to account for complementary musical
information. One cost matrix is based on conventional
chroma features and the second one on chroma-based
onset features. The onset features proposed in [10]
are particularly designed for piano music, where certain
characteristics of the piano sound are exploited. The
combination of the two cost matrices leads to a sig-
nificantly enhanced precision of the alignments for this
kind of music. However, because of the simple energy
based onset detection method, the alignment accuracy is
not improved for music comprising instruments with soft
onsets like strings.

Using our novelty curves, one can significantly improve
the temporal accuracy of synchronization results even
in the case of instruments that have a weak attack
phase. Again, we combine two cost matrices. The

first cost matrix Cchroma is based on chroma features.
Accounting for the rough harmonic progression of the
two representations to be synchronized, this matrix is
used to regulate the overall course of the cost-minimizing
alignment path and to assure a robust synchronization,
see Fig. 3a. For the second matrix, the novelty curves
∆̄comp of both, the audio and MIDI file, are used, see
Fig. 2c-d. The novelty curve for the MIDI file can directly
be derived from the encoded onset times and velocities.
The cost matrix is computed in a similar way as described
in [10], where we use the Euclidean distance as local
cost measure c. The resulting cost matrix Cnovelty,
which is shown in Fig. 3b for our Beethoven example,
provides a rich structure. As a first observation, note
that horizontal and vertical lines in Cnovelty of an overall
high cost indicate onset positions in the two versions to
be synchronized. Second, at the crossing of a vertical and
a horizontal line, a small diagonal “corridor” of low cost
can be found in Cnovelty indicating correspondences of
onset positions. Third, sections in the feature sequences
with no onsets lead to regions in Cnovelty having zero cost.
The purpose of this second matrix is to locally refine the
alignment path without affecting the rough overall course
of the alignment path.

We now combine the two introduced cost matrices to
create a third cost matrix Cchroma+novelty := Cchroma +
Cnovelty, see Fig. 3c. The cost matrix obtained from
the novelty curves reveals a grid-like structure of high
costs, which is superimposed on top of the coarse-
grained cost matrix obtained from the chroma fea-
tures. The rough course of the alignment path is
more or less determined by the chroma features, while
the small diagonal corridors of low costs only locally
regulate the alignment path to run through correspond-
ing onset positions. Comparing the resulting cost-
minimizing alignment paths of Cchroma in Fig. 3a and of
Cchroma+novelty in Fig. 3c, one can observe a significant
improvement in temporal accuracy. Especially in regions
with only marginal changes of the harmonic content,
Cchroma fails to yield a precise alignment. Here, the
cost matrix Cchroma+novelty guides the alignment path
through corresponding onset positions, thus leading to
significantly improved synchronization results.



Conclusion

In this contribution, we described an approach for ex-
tracting novelty curves from music signals yielding good
indicators for note onsets even in the case of only smooth
temporal and spectral intensity changes within the signal.
Furthermore, we showed how these features can be used
for enhancing conventional music synchronization strate-
gies, resulting in significant improvements with regard
to the temporal accuracy of the alignments especially
for music comprising instruments with a soft attack
phase. For the future, we plan to employ the improved
synchronization results for tasks such as performance
analysis, where one objective is to extract expressive
tempo information from music recordings.
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