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ABSTRACT

Chroma-based audio features are a well-established tool for

analyzing and comparing music data. By identifying spectral

components that differ by a musical octave, chroma features

show a high degree of invariance to variations in timbre. In

this paper, we describe a novel procedure for making chroma

features even more robust to changes in timbre and instru-

mentation while keeping their discriminative power. Our idea

is based on the generally accepted observation that the lower

mel-frequency cepstral coefficients (MFCCs) are closely re-

lated to timbre. Now, instead of keeping the lower coeffi-

cients, we will discard them and only keep the upper coef-

ficients. Furthermore, using a pitch scale instead of a mel

scale allows us to project the remaining coefficients onto the

twelve chroma bins. Our systematic experiments show that

the resulting chroma features have indeed gained a significant

boost towards timbre invariance.

Index Terms— Chroma feature, MFCC, timbre-invariance,

audio matching, music retrieval

1. INTRODUCTION

One main goal of content-based music analysis and retrieval

is to reveal semantically meaningful relationships between

different music excerpts contained in a given data collection.

Here, the notion of similarity used to compare different music

excerpts is a delicate issue and largely depends on the respec-

tive application. In particular, for detecting harmony-based

relations, chroma features have turned out to be a power-

ful mid-level representation for comparing and relating mu-

sic data in various realizations and formats [2, 4, 5, 7, 8].

Chroma-based audio features are obtained by pooling a sig-

nal’s spectrum into twelve bins that correspond to the twelve

pitch classes or chroma of the equal-tempered scale. Identi-

fying pitches that differ by an octave, chroma features show

a high degree of robustness to variations in timbre and are

well-suited for the analysis of Western music which is char-

acterized by a prominent harmonic progression [2]. In par-
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ticular, such features are useful in tasks such as cover song

identification [4, 8] or audio matching [5, 7], where one often

has to deal with large variations in timbre and instrumentation

between different versions of a single piece of music.

In this paper, we present a method for making chroma

features even more robust to changes in timbre while keeping

their discriminative power as needed in matching applica-

tions. Here, our general idea is to discard timbre-related

information expressed by certain mel-frequency cepstrum

coefficients (MFCCs). More precisely, recall that the mel-

frequency cepstrum is obtained by taking a decorrelating

cosine transform of a log power spectrum on a logarith-

mic mel scale [6]. A generally accepted observation is that

the lower MFCCs are closely related to the aspect of tim-

bre [1, 9]. Therefore, intuitively spoken, one should achieve

some degree of timbre-invariance when discarding exactly

this information. As our main contribution, we combine this

idea with the concept of chroma features by first replacing

the nonlinear mel scale by a nonlinear pitch scale. We then

apply a cosine transform on the logarithmized pitch represen-

tation and only keep the upper coefficients, which are finally

projected onto the twelve chroma bins to obtain a chroma

representation. The technical details of this procedure are

described in Sect. 2. We report on two experiments showing

that out novel chroma features indeed have gained a signif-

icant boost towards timbre invariance. We first describe an

experiment based on audio data systematically synthesized by

different instruments (Sect. 3). Then, using real audio data,

we show how our novel features improve the matching qual-

ity between harmonically-related music excerpts contained

in different versions and arrangements of the same piece of

music (Sect. 4). Conclusions and prospects on future work

are given in Sect. 5.

2. FEATURE DESIGN

In this section, we present the technical details for our novel

audio features, see Fig. 1 for an overview. As front end

transform, the audio signal is decomposed into 120 frequency

bands corresponding to the MIDI pitches 1 to 120 using a

suitable multirate filter bank. We then take the short-time

mean-square power (local energy) for each of the 120 sub-

bands by convolving the squared subband signals with a
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Fig. 1. Overview of the computation of the CRP (chroma

DCT-reduced log pitch) features.
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Fig. 2. Various chromagrams of the theme’s beginning

of the second Waltz, Jazz Suite No. 2 by Shostakovich.

(a)/(b): Conventional chromagram of string/trombone ver-

sion. (c)/(d): CRP(55) chromagram of string/trombone ver-

sion. All chroma vectors are normalized.

rectangular window corresponding to 200 ms with a 50%
overlap. The resulting feature representation has a resolution

of 10 Hz (10 features per second) and is referred to as pitch

representation. To obtain a conventional chroma representa-

tion (chromagram), one adds up the corresponding values of

the pitch representation that belong the same chroma yielding

a 12-dimensional vector for each analysis window. We refer

to [7] for details and to Fig. 2 for an illustration.

For our novel audio features, we process the pitch repre-

sentation before doing the chroma binning. The steps are sim-

ilar to the ones in the computation of MFCCs [6], where one

uses a mel scale instead of a pitch scale. First the pitch repre-

sentation is logarithmized. Here, we replace each value v by

log(C · v +1) with a positive constant C. In our experiments,

C = 1000 turned out to be a suitable value, even though

any value between 100 and 10000 produced a similar result.

Then, we apply a discrete cosine transform (DCT) of size 120
to each of the 120-dimensional logarithmized pitch vectors.

The resulting 120 coefficients have a similar interpretation as

the MFCCs. In particular, the lower coefficients are related

to timbre as observed by various researchers, see [1, 9] and

the references therein. Now our goal of achieving timbre-

invariance is the exact opposite of the goal of capturing tim-

bre. Therefore, we discard the information given by the lower

n − 1 coefficients for a parameter n ∈ [1 : 120] by setting

them to zero while leaving the upper coefficients unchanged.

Each resulting 120-dimensional vector is then transformed by

the inverse DCT and projected onto the twelve chroma bins

to obtain a 12-dimensional chroma vector. Finally, all chroma

vectors are normalized to have unit length. The resulting au-

dio features are referred to as CRP(n) (chroma DCT-reduced

log pitch) features, see Fig. 1.

As illustration, we consider the second Waltz of the Jazz

Suite No. 2 by Shostakovich, which also serves as running

example in the subsequent sections. The theme of this piece

appears four times played in four different instrumentations

(strings, clarinet, trombone, tutti). Furthermore, there are

significant differences between the four themes with respect

to secondary voices. Due to these differences, the resulting

conventional chromagrams may strongly deviate from each

other. This is illustrated by Fig. 2 (a) and (b) showing the con-

ventional chromagrams of the theme’s beginning of the first

(strings) and third (trombone) excerpt in an interpretation by

Yablonsky. Contrary, the corresponding two CRP(55) chro-

magrams as shown in (c) and (d) coincide to a much larger

degree.

3. EXPERIMENTS ON CHORD CHROMA CLASSES

We quantitatively compared our CRP(n) features for various

parameters n ∈ [1 : 120] with some commonly used chroma

types including two freely available chroma implementations

by Ellis [3] (Chroma-IF-Ellis, Chroma-P-Ellis) as well as the

conventional chroma features described in Sect. 2 (Chroma-

Pitch). In all cases, the feature resolution was roughly 10 Hz

and all chroma vectors were normalized. The various chroma

types will serve as baseline to illustrate the boost of robust-

ness achieved by CRP(n) features.

In our first experiment, we used systematically synthe-

sized audio material. To this end, we created a MIDI file

containing all possible single pitches (1-chords), duads (2-

chords) and triads (3-chords) within a fixed octave. This re-

sulted in 12 +
(

12
2

)

+
(

12
3

)

= 220 chords. The MIDI file

was then synthesized in 24 different ways using eight differ-

ent instruments each playing the file in three different octaves.

Here, we used the software Cubase in combination with a

high quality sample library. Fixing a specific chroma type,

we converted each of the resulting 24 audio files into a chro-

magram. Next, for each of the 220 chords we formed a class

consisting of 48 chroma vectors—one representative chroma

vector within the attack and one within the sustain phase of

each of the 24 realizations of the respective chord. The classes

are referred to as chord chroma classes. The distance between

two normalized chroma vectors was computed using the co-

sine distance (1 − 〈·, ·〉).
Now, disregarding timbre and dynamics, any two chroma

vectors within a chord chroma class are considered as sim-

ilar, whereas two chroma vectors from different classes are

considered as dissimilar. To measure the degree of timbre in-

variance of a given chroma type, we computed the distances

between any two chroma vectors that belong to the same



Chroma type µO µI ρ

Chroma-IF-Ellis 0.66 0.35 1.88

Chroma-P-Ellis 0.42 0.18 2.38

Chroma-Pitch 0.75 0.23 3.26

CRP(35) 0.99 0.10 10.30

CRP(55) 1.00 0.10 9.83

CRP(75) 1.00 0.11 8.76

Table 1. Performance of several chroma types in the experi-

ments on chord chroma classes.

chord chroma class. Let µI be the average over the resulting

220 ·
(

48
2

)

distances. Note that µI should be small in the case

that the chroma type has a high degree of timbre invariance.

Similarly, we computed the average distance µO over any

two chroma vectors from different chord chroma class. Note

that µO should be large to guarantee discriminate power of

a chroma types. Finally, we form the quotient ρ := µO/µI

which expresses the across-class distance µO relative to the

within-class distance µI. Table 1 shows the values µI, µO,

and ρ for various chroma types. Note that the within-class

distance drastically decreases for our CRP(n), while retaining

the discriminative power even for large n.

4. EXPERIMENTS BASED ON AUDIO MATCHING

Our second experiment was conducted on real audio data and

is motivated by an application referred to as audio matching:

given a short query audio clip, the goal is to automatically re-

trieve all musically (harmonically) similar excerpts in differ-

ent versions and arrangements of the same underlying piece of

music [5, 7]. We will compare the CRP(n) features with con-

ventional chroma features by means of several performance

measures that express the matching quality.

As basis for the matching procedure, we use a distance

function locally comparing a query sequence with a given

database sequence. Let X = (X(1),X(2), . . . ,X(K)) and

Y = (Y (1), Y (2), . . . , Y (L)) be the feature sequences of the

query and the database, respectively. (In our case, the fea-

tures X(k), k ∈ [1 : K], and Y (ℓ), ℓ ∈ [1 : L], are nor-

malized chroma vectors.) Then, we define a distance function

∆ : [1 : L] → R ∪ {∞} between X and Y using a variant of

dynamic time warping (DTW):

∆(ℓ) :=
1

K
min

a∈[1:ℓ]

(

DTW
(

X , Y (a : ℓ)
)

)

, (1)

where Y (a : ℓ) denotes the subsequence of Y starting at

index a and ending at index ℓ ∈ [1 : L]. Furthermore,

DTW(X,Y (a : ℓ)) denotes the DTW distance between X
and Y (a : ℓ) with respect to a suitable local cost measure

(in our case, the cosine distance). For details on DTW and

the distance function, we refer to [7]. The interpretation of

∆ is as follows: a small value ∆(ℓ) for some ℓ ∈ [1 : L]
indicates that the subsequence of Y starting at frame aℓ (with

aℓ ∈ [1 : ℓ] denoting the minimizing index in (1)) and ending

at frame ℓ is similar to X .

Having this interpretation in mind, the two following

properties of ∆ are of crucial importance in view of the audio

matching application. First, the semantically correct matches

(in the following referred to as true matches) should cor-

respond to local minima of ∆ close to zero (thus avoiding

false negatives). We capture this property by defining µX
I

and maxX
I to be the average respective maximum of ∆ over

all indices that correspond to the local minima of the true

matches for a given query X . Second, ∆ should be well

above zero outside a neighborhood of the desired local min-

ima (thus avoiding false positives). Here, we define µX
O and

minX
O to be the average respective minimum of ∆ over all in-

dices outside these neighborhoods. From the above, it is clear

that µX
I and maxX

I should be small whereas µX
O and minX

O

should be large. Similar to Sect. 3, we express these two

properties within a single number, respectively, by defining

the quotients ρX
µ = µX

O/µX
I and ρX

min = maxX
I /minX

O .

We illustrate the definition of ∆ by means of our Shosta-

kovich example from Sect. 2. Suppose our database consists

of two interpretations (Yablonsky, Chailly) of the Waltz. Re-

call that the theme appears four times in the piece. Let E1

to E4 denote the corresponding excerpts in the first and E5

to E8 in the second recording. Now, using E3 (trombone)

as query, one has eight true matches. Using conventional

chroma features, seven of the eight matches (except of E5)

are indeed indicated by local minima of the resulting distance

function ∆, see the gray curve of Fig. 3. However, due to

the above mentioned differences in timbre, most of these lo-

cal minima are not well developed and have relatively large

∆-values. Now, using our CRP(n) features, one obtains for

all eight true matches (even for E5) much more concise local

minima, see the black curve of Fig. 3. This demonstrates that

the choice of a chroma type has a significant impact on the

final matching quality.

In order to quantitatively evaluate the CRP(n) features for

various parameters n ∈ [1 : 120] and the other chroma types,

we generated a database consisting of 31 audio recordings of

12 different pieces comprising classical and popular music by

Bach, Shostakovich, Wagner, Queen, Genesis, Beatles, and

others. For each piece there are at least two different record-

ings typically comprising the original version and an arrange-

ment (e.g., piano version of an orchestral piece) or cover song.

For each piece, we picked an excerpt and manually annotated

all musically similar excerpts within all the recordings. These

excerpts are the true matches when using any of these ex-

cerpts as query. For example, the database contains two ver-

sions (Yablonsky, Chailly) of the Shostakovich example with

the above mentioned 8 annotated excerpts. Altogether, we an-

notated 90 excerpts with an average length of 30 seconds. We

used any of these excerpts as query, computed the distance

functions over all database audio files, and derived the values

µX
I , maxX

I , µX
O , minX

O , ρX
µ , and ρX

min. Averaging over all

90 queries, we obtain the corresponding numbers µI, maxI,

µO, minO, ρµ, and ρmin. Note that ρµ is not the quotient of
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Fig. 3. Different distance functions shown for two recordings (Yablonsky, Chailly) of the Shostakovich example using the

excerpt E3 as query. The following chroma types were used: Chroma-IF-Ellis (thin gray), Chroma-Pitch (bold gray) and

CRP(55) (black). For the query, there are 8 annotated excerpts.

Chroma type µO minO µI maxI ρµ ρmin

Chroma-IF-Ellis 0.41 0.25 0.16 0.20 2.74 1.33

Chroma-P-Ellis 0.19 0.11 0.06 0.08 3.15 1.35

Chroma-Pitch 0.48 0.26 0.15 0.20 3.84 1.53

CRP(35) 0.68 0.31 0.14 0.18 5.81 1.99

CRP(55) 0.64 0.27 0.12 0.16 6.24 2.00

CRP(75) 0.57 0.21 0.10 0.14 5.97 1.62

Table 2. Performance of several chroma types in the experi-

ments based on audio matching.
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Fig. 4. Dependence of the performance measure ρmin on the

parameter n ∈ [1 : 120] using CRP(n) features.

µO and µI, but the average of the ρX
µ . Analogously, this also

holds for ρmin.

Table 2 shows these numbers using various chroma

type. For example, using the conventional chroma features

(Chroma-Pitch), the average distance of the true matches is

µI = 0.15, whereas the average distance outside the matches

is µO = 0.48, resulting in a quotient ρµ = 3.84. In view of

the audio matching application, the values maxI and minO

are even more expressive: in case the maximal distance over

the true matches is below the minimal distance outside the

true matches (in this case one has ρX
min > 1), all true matches

will appear as the top matches. In this case, the true matches

are separated from spurious matches. With respect to this

measure, our novel CRP(n) features achieve a significant

improvement. For example, one obtains ρmin = 2.00 when

using CRP(55) features, whereas one has ρmin = 1.53 when

using the conventional chroma features (Chroma-Pitch).

In a final experiment, we computed for each n ∈ [1 :
120] the performance measure ρmin using the correspond-

ing CRP(n) features. The resulting curve, which is shown in

Fig. 4, indicates that one obtains the best separation between

true and spurious matches for parameters n ∈ [22 : 60].

5. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a new type of chroma feature,

which shows a higher degree of robustness to changes in tim-

bre than conventional chroma features. Using our novel CRP

features, one can significantly improve the performance in

matching and classification applications, where one wants to

be invariant to instrumentation and tone color. Actually, the

essence of this improvement is best explained by Fig. 3. For

the future, we plan to apply CRP features for various tasks in

music information retrieval. We will also further explore and

improve CRP features. Here, first experiments indicate that

one may further reduce the number of coefficients without a

degradation of the discriminative power.
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