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ABSTRACT

A performance of a piece of music heavily depends on
the musician’s or conductor’s individual vision and per-
sonal interpretation of the given musical score. As ba-
sis for the analysis of artistic idiosyncrasies, one requires
accurate annotations that reveal the exact timing and in-
tensity of the various note events occurring in the perfor-
mances. In the case of audio recordings, this annotation is
often done manually, which is prohibitive in view of large
music collections. In this paper, we present a fully auto-
matic approach for extracting temporal information from
a music recording using score-audio synchronization tech-
niques. This information is given in the form of a tempo
curve that reveals the relative tempo difference between an
actual performance and some reference representation of
the underlying musical piece. As shown by our experi-
ments on harmony-based Western music, our approach al-
lows for capturing the overall tempo flow and for certain
classes of music even finer expressive tempo nuances.

1. INTRODUCTION

Musicians give a piece of music their personal touch by
continuously varying tempo, dynamics, and articulation.
Instead of playing mechanically they speed up at some
places and slow down at others in order to shape a piece
of music. Similarly, they continuously change the sound
intensity and stress certain notes. The automated analysis
of different interpretations, also referred to asperformance
analysis, has become an active research field [1–4]. Here,
one goal is to find commonalities between different inter-
pretations, which allow for the derivation of general perfor-
mance rules. A kind of orthogonal goal is to capture what
is characteristic for the style of a particular musician. Be-
fore one can analyze a specific performance, one requires
the information about when and how the notes of the un-
derlying piece of music are actually played. Therefore, as
the first step of performance analysis, one has to annotate
the performance by means of suitable attributes that make
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explicit the exact timing and intensity of the various note
events. The extraction of such performance attributes con-
stitutes a challenging problem, in particular for the case of
audio recordings.

Many researchers manually annotate the audio mate-
rial by marking salient data points in the audio stream.
Using novel music analysis interfaces such as the Sonic
Visualiser [5], experienced annotators can locate note on-
sets very accurately even in complex audio material [2,3].
However, being very labor-intensive, such a manual pro-
cess is prohibitive in view of large audio collections. An-
other way to generate accurate annotations is to use a
computer-monitoredplayer piano. Equipped with optical
sensors and electromechanical devices, such pianos allow
for recording the key movements along with the acoustic
audio data, from which one directly obtains the desired
note onset information [3, 4]. The advantage of this ap-
proach is that it produces precise annotations, where the
symbolic note onsets perfectly align with the physical on-
set times. The obvious disadvantage is that special-purpose
hardware is needed during the recording of the piece.
In particular, conventional audio material taken from CD
recordings cannot be annotated in this way. Therefore,
the most preferable method is to automatically extract the
necessary performance aspects directly from a given audio
recording. Here, automated approaches such asbeat track-
ing [6, 8] andonset detection [9] are used to estimate the
precise timings of note events within the recording. Even
though great research efforts have been directed towards
such tasks, the results are still unsatisfactory, in particu-
lar for music with weak onsets and strongly varying beat
patterns. In practice, semi-automatic approaches are often
used, where one first roughly computes beat timings using
beat tracking software, which are then adjusted manually
to yield precise beat onsets.

In this paper, we present a novel approach towards
extracting temporal performance attributes from music
recordings in a fully automated fashion. We exploit the
fact that for many pieces there exists a kind of “neutral”
representation in the form of a musical score (or MIDI file)
that explicitly provides the musical onset and pitch infor-
mation of all occurring note events. Using music synchro-
nization techniques, we temporally align these note events
with their corresponding physical occurrences in the mu-
sic recording. As our main contribution, we describe vari-
ous algorithms for deriving tempo curves from these align-
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Figure 1. First measure of Beethoven’s Pathétique Sonata
Op. 13. The MIDI-audio alignment is indicated by the arrows.

ments which reveal the relative tempo differences between
the actual performance and the neutral reference represen-
tation. We have evaluated the quality of the automatically
extracted tempo curves on harmony-based Western music
of various genres. Besides a manual inspection of a rep-
resentative selection of real music performances, we have
also conducted a quantitative evaluation on synthetic audio
material generated from randomly warped MIDI files. Our
experiments indicate that our automated methods yield ac-
curate estimations of the overall tempo flow and, for cer-
tain classes of music such as piano music, of even finer
expressive tempo nuances.

The remainder of this paper is organized as follows.
After reviewing some basics on music synchronization
(Sect. 2), we introduce various algorithms for extracting
tempo curves from expressive music recordings (Sect. 3).
Our experiments are described in Sect. 4, and prospects on
future work are sketched in Sect. 5. Further related work
is discussed in the respective sections.

2. MUSIC SYNCHRONIZATION

The largest part of Western music is based on the equal-
tempered scale and can be represented in the form of musi-
cal scores, which contain high-level note information such
as onset time, pitch, and duration. In the following, we as-
sume that a score is given in the form of a “neutral” MIDI
file, where the notes are played with a constant tempo in
a purely mechanical way. We refer to this MIDI file as
reference representation of the underlying piece of mu-
sic. On the other hand, we assume that the performance
to be analyzed is given in the form of an audio recording.
In a first step, we use conventionalmusic synchronization
techniques to temporally align the note events with their
corresponding physical occurrences in the audio record-
ing [10, 11]. The synchronization result can be regarded
as an automated annotation of the audio recording with the
note events given by the MIDI file, see Fig. 1.

Most synchronization algorithms rely on some variant
of dynamic time warping (DTW) and can be summarized
as follows. First, the MIDI file and the audio recording
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Figure 2. Left: Cost matrix and cost-minimizing alignment
path for the Beethoven example shown in Fig. 1. The reference
representation (MIDI) corresponds to the horizontal and the per-
formance (audio) to the vertical axis.Right: Original (black)
and onset-rectified alignment path (red). The MIDI note onset
positions are indicated by the blue vertical lines.

to be aligned are converted into feature sequences, say
X := (x1, x2, . . . , xN ) andY := (y1, y2, . . . , yM ), re-
spectively. Then, anN × M cost matrixC is built up
by evaluating a local cost measurec for each pair of fea-
tures, i. e.,C((n, m)) = c(xn, ym) for n ∈ [1 : N ] :=
{1, 2, . . . , N} andm ∈ [1 : M ]. Each tuplep = (n, m)
is called acell of the matrix. A (global)alignment path
is a sequence(p1, . . . , pL) of length L with pℓ ∈ [1 :
N ] × [1 : M ] for ℓ ∈ [1 : L] satisfyingp1 = (1, 1),
pL = (N, M) andpℓ+1 − pℓ ∈ Σ for ℓ ∈ [1 : L − 1].
Here,Σ = {(1, 0), (0, 1), (1, 1)} denotes the set of admis-
sible step sizes. Thecost of a path(p1, . . . , pL) is defined
as

∑L
ℓ=1 C(pℓ). A cost-minimizing alignment path, which

constitutes the final synchronization result, can be com-
puted via dynamic programming fromC, see Fig. 2. For
a detailed account on DTW and music synchronization we
refer to [11].

Based on this general strategy, we employ a synchro-
nization algorithm based on high-resolution audio features
as described in [12]. This approach, which combines the
high temporal accuracy of onset features with the robust-
ness of chroma features, generally yields robust music
alignments of high temporal accuracy. In the following,
we use a feature resolution of50 Hz with each feature vec-
tor corresponding to20 milliseconds of MIDI or audio. For
details, we refer to [12].

3. COMPUTATION OF TEMPO CURVES

The feeling of pulse and rhythm is one of the central com-
ponents of music and closely relates to what one gener-
ally refers to as tempo. In order to define some notion of
tempo, one requires a proper reference to measure against.
For example, Western music is often structured in terms of
measures and beats, which allows for organizing and sec-
tioning musical events over time. Based on a fixed time
signature, one can then define the tempo as the number of
beats per minute (BPM). Obviously, this definition requires
a regular and steady musical beat or pulse over a certain
period in time. Also, the very process of measurement is
not as well-defined as one may think. Which musical enti-
ties (e. g., note onsets) characterize a pulse? How precisely
can these entities be measured before getting drowned in
noise? How many pulses or beats are needed to obtain a



meaningful tempo estimation? With these questions, we
want to indicate that the notion of tempo is far from be-
ing well-defined. Different representations of timing and
tempo are presented in [7].

In this paper, we assume that we have a reference repre-
sentation of a piece of music in the form of a MIDI file gen-
erated from a score using a fixed global tempo (measured
in BPM). Assuming that the time signature of the piece is
known, one can recover measure and beat positions from
MIDI time positions. Given a specific performance in the
form of an audio recording, we first compute a MIDI-audio
alignment path as described in Sect. 2. From this path we
derive atempo curve that describes for each time position
within the MIDI reference (given in seconds or measures)
the tempo of the performance (given as a multiplicative
factor of the reference tempo or in BPM). Fig. 4 and Fig. 5
show some tempo curves for various performances.

Intuitively, the value of the tempo curve at a certain ref-
erence position corresponds to the slope of the alignment
path at that position. However, due to discretization and
alignment errors, one needs numerically robust procedures
to extract the tempo information by using average values
over suitable time windows. In the following, we describe
three different approaches for computing tempo curves us-
ing a fixed window size (Sect. 3.1), an adaptive window
size (Sect. 3.2), and a combined approach (Sect. 3.3).

3.1 Fixed Window Size

Recall from Sect. 2 that the alignment pathp =
(p1, . . . , pL) between the MIDI reference and the perfor-
mance is computed on the basis of the feature sequences
X = (x1, . . . , xN ) andY = (y1, . . . , yM ). Note that one
can recover beat and measure positions from the indices
n ∈ [1 : N ] of the reference feature sequence, since the
MIDI representation has constant tempo and the feature
rate is assumed to be constant.

To compute the tempo of the performance at a specific
reference positionn ∈ [1 : N ], we basically proceed as
follows. First, we choose a neighborhood ofn given by
indicesn1 andn2 with n1 ≤ n ≤ n2. Using the alignment
path, we compute the indicesm1 andm2 aligned withn1

andn2, respectively. Then, the tempo atn is defined as
quotient n2−n1+1

m2−m1+1 . The main parameter to be chosen in
this procedure is the size of the neighborhood. Further-
more, there are some technical details to be dealt with.
Firstly, the boundary cases at the beginning and end of the
reference need special care. To avoid boundary problems,
we extend the alignment pathp to the left and right by set-
tingpℓ := (ℓ, ℓ) for ℓ < 1 andpℓ := (N+ℓ−L, M+ℓ−L)
for ℓ > L. Secondly, the indicesm1 andm2 are in general
not uniquely determined. Generally, an alignment pathp
may assign more than one indexm ∈ [1 : M ] to a given
indexn ∈ [1 : N ]. To enforce uniqueness, we chose the
minimal index over all possible indices. More precisely,
we define a functionϕp : Z → [1 : M ] by setting

ϕp(n) := min{m ∈ [1 : M ] | ∃ℓ ∈ Z : pℓ = (n, m)}.

We now give the technical details of the sketched pro-
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Figure 3. Ground truth tempo curve (step function) and various
computed tempo curves.(a) τ

FW
w

using a fixed window size with
small w (left) and largew (right). (b) τ

AW
v

using an adaptive
window size with smallv (left) and largev (right).

cedure for the case that the neighborhoods are of a fixed
window (FW) sizew ∈ N. The resulting tempo curve is
denoted byτFW

w : [1 : N ] → R≥0. For a given alignment
pathp and an indexn ∈ [1 : N ], we define

n1 := n −
⌊

w−1
2

⌋

and n2 := n +
⌈

w−1
2

⌉

. (1)

Thenw = n2 −n1 +1 and the tempo at reference position
n is defined by

τFW
w (n) =

w

ϕp(n2) − ϕp(n1) + 1
. (2)

The tempo curveτFW
w crucially depends on the window

sizew. Using a small window allows for capturing sudden
tempo changes. However, in this case the tempo curve be-
comes sensible to inaccuracies in the alignment path and
synchronization errors. In contrast, using a larger window
smooths out possible inaccuracies, while limiting the abil-
ity to accurately pick up local phenomena. This effect is
also illustrated by Fig. 3 (a), where the performance is syn-
thesized from a temporally warped MIDI reference. We
continue this discussion in Sect. 4.

3.2 Adaptive Window Size

Using a window of fixed size does not account for specific
musical properties of the piece of music. We now intro-
duce an approach using an adaptive window size, which
is based on the assumption that note onsets are the main
source for inducing tempo information. Intuitively, in pas-
sages where notes are played in quick succession one may
obtain an accurate tempo estimation even when using only
a small time window. In contrast, in passages where only
few notes are played one needs a much larger window to
obtain a meaningful tempo estimation.

We now formalize this idea. We assume that the note
onsets of the MIDI reference are given in terms of fea-
ture indices. Furthermore, for notes with the same on-
set position we only list one of these indices. LetO =
{o1, . . . , oK} ⊆ [1 : N ] be the set of onset positions with
1 ≤ o1 < o2 < . . . < oK ≤ N . The distance between
two neighboring onset positions is referred to as inter on-
set interval (IOI). Now, when computing the tempo curve
at positionn ∈ [1 : N ], the neighborhood ofn is specified
not in terms of a fixed numberw of feature indices but in



terms of a fixed numberv ∈ N of IOIs. This defines an
onset-dependent adaptive window (AW). More precisely,
let τAW

v : [1 : N ] → R≥0 denote the tempo function to
be computed. To avoid boundary problems, we extended
the setO to the left and right by settingok := o1 + k − 1
for k < 1 andok := oK + k − K for k > K. First,
we computeτAW

v for all indicesn that correspond to onset
positions. To this end, letn = ok. Then we define

k1 := k −
⌊

v−1
2

⌋

and k2 := k +
⌈

v−1
2

⌉

.

Settingn1 := ok1
andn2 := ok2

, the tempo at reference
positionn = ok is defined as

τAW
v (n) :=

n2 − n1 + 1

ϕp(n2) − ϕp(n1) + 1
. (3)

Note that, opposed to (2), the window sizen2 − n1 + 1 is
no longer fixed but depends on the sizes of the neighbor-
ing IOIs around the positionn = ok. Finally, τAW

v (n) is
defined by a simple linear interpolation for the remaining
indicesn ∈ [1 : N ] \ O. Similar to the case of a fixed
window size, the tempo curveτAW

v crucially depends on
the numberv of IOIs, see Fig. 3 (b). The properties of the
various tempo curves are discussed in detail in Sect. 4.

3.3 Combined Strategy

So far, we have introduced two different approaches us-
ing on the one hand a fixed window size and on the other
hand an onset-dependent adaptive window size for com-
puting average slopes of the alignment path. Combining
ideas from both approaches, we now present a third strat-
egy, where we first rectify the alignment path using onset
information and then apply the FW-approach on the recti-
fied path for computing the tempo curve. As in Sect. 3.2,
let O = {o1, . . . , oK} ⊆ [1 : N ] be the set of on-
sets. By possibly extending this set, we may assume that
o1 = 1 and oK = N . Now, within each IOI given
by two neighboring onsetsn1 := ok and n2 := ok+1,
k ∈ [1 : K−1], we modify the alignment pathp as follows.
Let ℓ1, ℓ2 ∈ [1 : L] be the indices withpℓ1 = (n1, ϕp(n1))
andpℓ2 = (n2, ϕp(n2)), respectively. While keeping the
cellspℓ1 andpℓ2 , we replace the cellspℓ1 + 1, . . . , pℓ2 − 1
by cells obtained from a suitably sampled linear function
having the slope n2−n1+1

ϕp(n2)−ϕp(n1)+1 . Here, in the sampling,
we ensure that the step size condition given byΣ is ful-
filled, see Sect. 2. The resulting rectification is illustrated
by Fig. 2 (right). Using the rectified alignment path, we
then compute the tempo curve using a fixed window size
w ∈ N as described in Sect. 3.1. The resulting tempo
curve is denoted byτFWR

w . This third approach, as our ex-
periments show, generally yields more robust and accurate
tempo estimations than the other two approaches.

4. EXPERIMENTS

In this section, we first discuss some representative exam-
ples and then report on a systematic evaluation based on
temporally warped music. In the following, we specify
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Figure 4. Tempo curves of four different interpretations played
by different pianists of the first ten measures (slow introductory
theme markedGrave) of Beethoven’s Pathétique Sonata Op. 13.
(a) Score of measures4 and5. (b) Tempo curvesτFWR

w
for w ∝

3 seconds.(c) Tempo curvesτAW
v

for v = 10 IOIs.

the window sizew in terms of seconds instead of sam-
ples. For example, by writingw ∝ 3 seconds, we mean
that w ∈ N is a window size with respect to the feature
rate corresponding to3 seconds of the underlying audio.

In our first example, we consider Beethoven’s
Pathétique Sonata Op. 13. The first ten measures corre-
spond to the slow introductory theme markedGrave. For
these measure, Fig. 4 (b) shows the tempo curvesτFWR

w

for four different performances using the combined strat-
egy with a window sizew ∝ 3 seconds. From these curves,
one can read off global and local tempo characteristics. For
example, the curves reveal the various tempi chosen by the
pianists, ranging from roughly20 to 30 BPM. One of the
pianists (red curve) significantly speeds up after measure
5, whereas the other pianists use a more balanced tempo
throughout the introduction. It is striking that all four pi-
anists significantly slow down in measure8, then acceler-
ate in measure9, before slowing down again in measure
10. Musically, the last slow-down corresponds to the fer-
mata at the end of measure10, which concludes theGrave.
Similarly, the curves indicate a ritardando in all four per-
formances towards the end of measure4. In this passages,
there is a run of64th notes with a closing nonuplet, see
Fig. 4 (a). Using a fixed window size, the ritardando effect
is smoothed out to a large extent, see Fig. 4 (b). How-
ever, having many consecutive note onsets within a short
passage, the ritardando becomes much more visible when
using tempo curves with an onset-dependent adaptive win-
dow size. This is illustrated by Fig. 4 (c), which shows the
four tempo curvesτAW

v with v = 10 IOIs.
As a second example, we consider the Schubert Lied

Der Lindenbaum (D. 911 No. 5). The first seven measures
(piano introduction) are shown in Fig. 5 (a). Using the
combined strategy with a window sizew ∝ 3 seconds,
we computed tempo curves for13 different interpretations,
see Fig. 5 (b). As shown by the curves, all interpretations
exhibit an accelerando in the first few measures followed
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Figure 5. Tempo curves of13 different performances of the
beginning of the Schubert songDer Lindenbaum. (a) Score of
measures1 to 7. (b) Tempo curvesτFWR

w
for w ∝ 3 seconds.

by a ritardando towards the end of the introduction. Inter-
estingly, some of the pianists start with the ritardando in
measure4 already, whereas most of the other pianists play
a less pronounced ritardando in measure6. These exam-
ples indicate that our automatically extracted tempo curves
are accurate enough for revealing interesting performance
characteristics.

In view of a more quantitative evaluation, we computed
tempo curves using different approaches and parameters
on a corpus of harmony-based Western music of various
genres. To allow for a reproduction of our experiments,
we used pieces from the RWC music database [13]. In
the following, we consider15 representative pieces, which
are listed in Table 1. These pieces include five classical pi-
ano pieces, five classical pieces of various instrumentations
(full orchestra, strings, flute, voice) as well as five jazz
pieces and pop songs. To automatically determine the ac-
curacy of our tempo extraction procedures, we temporally
modified MIDI files for each of the15 pieces. To this end,
we generated continuous piecewise linear tempo curves
τGT, referred to asground-truth tempo curves. These
curves have a constant slope on segments of roughly10
seconds of duration, where the slopes are randomly gen-
erated either using a valuev ∈ [1 : 2] (corresponding
to an accelerando) or using a valuev ∈ [1/2 : 1] (cor-
responding to a ritardando). These values cover a range
of tempo changes of±100% of the reference tempo. In-
tuitively, the ground-truth tempo curves simulate on each
segment a gradual transition between two tempi to mimic
ritardandi and accelerandi. For an example, we refer to
Fig. 6. We then temporally warped each of the original
MIDI files with respect to a ground-truth tempo curveτGT

and generated from the modified MIDI file an audio ver-
sion using a high-quality synthesizer. Finally, we com-
puted tempo curves using the original MIDI files as ref-
erence and the warped audio versions as performances.

To determine the accuracy of a computed tempo curve
τ , we compared it with the corresponding ground-truth
tempo curveτGT. Here, the idea is to measure devia-
tions by scale rather than byabsolute value. Therefore,

0 10 20 30 40 50 60 70 80 90 100 110 120
0

0.5

1

1.5

2

Figure 6. Piecewise linear ground-truth tempo curve (red) and
computed tempo curves (black).

FW AW FWR
RWC ID (Comp./Int., Instr.) µ σ µ σ µ σ

C025 (Bach, piano) 3.29 7.30 2.60 5.05 1.59 2.86
C028 (Beethoven, piano) 3.24 6.98 6.36 21.14 2.66 6.72
C031 (Chopin, piano) 3.32 7.72 2.77 4.76 1.75 3.42
C032 (Chopin, piano) 2.54 4.17 3.05 4.67 1.56 2.34
C029 (Schumann, piano) 4.52 8.86 4.18 5.97 2.44 5.13
C003 (Beethoven, orchestra) 4.20 5.39 10.58 22.97 3.56 4.79
C015 (Borodin, strings) 2.44 2.85 4.68 9.85 2.25 2.71
C022 (Brahms, orchestra) 1.70 1.95 2.41 2.96 1.31 1.66
C044 (Rimski-K., flute/piano) 1.62 2.59 2.47 4.27 1.61 2.58
C048 (Schubert, voice/piano) 2.61 3.27 3.95 7.76 2.07 2.98
J001 (Nakamura, piano) 1.44 1.87 1.44 2.43 1.03 1.59
J038 (HH Band, big band) 2.24 2.96 3.20 5.41 1.91 2.74
J041 (Umitsuki, sax/bass/perc.)1.88 2.40 3.75 4.69 1.72 2.34
P031 (Nagayama, electronic) 2.01 2.42 8.35 14.89 1.94 2.39
P093 (Burke, voice/guitar) 2.50 3.26 6.21 14.74 2.34 3.13
Average over all 2.64 4.27 4.40 8.77 1.98 3.16

Table 1. Tempo curve evaluation using the approaches FW and
FWR (withw ∝ 4 seconds) and AW (withv = 10 IOIs). The ta-
ble shows for each of the15 pieces the mean errorµ and standard
deviationσ (given in percent) of the computed tempo curves and
the ground truth tempo curve. For generating the ground-truth
tempo curves, MIDI segments of10 seconds were used.

as distance function, we use the average multiplicative dif-
ference and standard deviation (both measured in percent)
of τ andτGT. More precisely, we define

µ(τ, τGT) = 100 ·
1

N
·

N
∑

n=1

(

2| log2(τ(n)/τGT(n))| − 1
)

.

Similarly, we define the standard deviationσ(τ, τGT). For
example, one obtainsµ(τ, τGT) = 100% in the case
τ = 2 · τGT (double tempo) and in the caseτ = 1

2 · τGT

(half tempo). Similarly, a computed tempo of110 BPM or
90.9 BPM would imply a mean error ofµ = 10% assum-
ing a ground-truth tempo of100 BPM.

In a first experiment, we computed the curvesτFW
w and

τFWR
w with w ∝ 4 seconds as well asτAW

v with v = 10
IOIs for each of the15 pieces. Table 1 shows the mean
error µ and standard deviationσ between the computed
tempo curves and the ground truth tempo curves. For ex-
ample, for the Schubert songDer Lindenbaum with iden-
tifier C048, the mean error between the computed tempo
curve τFW

w and the ground-truth tempoτGT amounts
to 2.61%. This error decreases to2.07% when using
the FWR-approach based on the rectified alignment path.
Looking at the average mean error over all pieces, one
can notice that the error amounts to2.64% for the FW-
approach,4.40% for the AW-approach, and1.98% for
the FWR-approach. For example, assuming a tempo of
100 BPM, the last number implies a mean difference of
less than2 BPM between the computed tempo and the ac-
tual tempo.

In general, the FWR-approach yields the best tempo es-



FW FWR AW
w [sec]

µ σ µ σ
v [IOI]

µ σ

1 10.62 49.88 5.58 12.47 2 14.50 31.00
2 5.37 14.21 3.58 6.16 4 9.54 23.44
3 4.39 6.90 3.42 5.34 6 7.34 17.34
4 4.62 6.52 3.99 5.74 8 6.18 12.99
5 5.48 7.08 5.06 6.63 10 5.65 10.66
6 6.79 8.02 6.52 7.74 12 5.46 9.48
7 8.40 9.19 8.22 9.00 16 5.54 8.20
8 10.15 10.51 10.03 10.38 20 5.98 8.09

Table 2. Tempo curve evaluation using the approaches FW, AW,
and FWR with various window sizesw (given in seconds) and
v (given in IOIs). The table shows the average values over all
15 pieces, see Table 1. For generating the ground-truth tempo
curves, MIDI segments of5 seconds were used.

timation, whereas the AW-approach often produces poorer
results. Even though the onset information is of crucial
importance for estimating local tempo nuances, the AW-
approach relies on accurate alignment paths that correctly
align the note onsets. Synchronization approaches as de-
scribed in [12] can produce highly accurate alignments in
the case of music with pronounced note attacks. For ex-
ample, this is the case for piano music. In contrast, such
information is often missing in string or general orches-
tral music. This is the reason why the purely onset-based
AW-strategy yields a relatively poor tempo estimation with
a mean error of10.58% for Beethoven’s Fifth Symphony
(identifierC003). On the other hand, using a fixed window
size without relying on onset information, local alignment
errors cancel each other out, which results in better tempo
estimations. E. g., the error drops to3.56% for Beethoven’s
Fifth Symphony when using the FWR-approach.

Finally, we investigated the dependency of the accuracy
of the tempo estimation on the window size. We generated
strongly fluctuating ground-truth tempo curves using MIDI
segments of only5 seconds length (instead of10 seconds
as in the last experiment). For the corresponding synthe-
sized audio files, we computed tempo curves for various
window sizes. The mean errors averaged over all15 pieces
are shown in Table 2. The numbers show that the mean
error is minimized when using medium-sized windows.
E. g., in the FWR-approach, the smallest error of3.42%
is attained for a window size ofw ∝ 3 seconds. Actually,
the window size constitutes a trade-off between robustness
and temporal resolution. On the one hand, using a larger
window, possible alignment errors cancel each other out,
thus resulting in a gain of robustness. On the other hand,
sudden tempo changes and fine agogic nuances can be re-
covered more accurately when using a smaller window.

5. CONCLUSIONS

In this paper, we have introduced automated methods for
extracting tempo curves from expressive music recordings
by comparing the performances with neutral reference rep-
resentations. In particular when using a combined strategy
that incorporates note onset information, we obtain accu-
rate and robust estimations of the overall tempo progres-
sion. Here, the window size constitutes a delicate trade-
off between susceptibility to alignment errors and sensibil-
ity towards timing nuances of the performance. In prac-

tice, it becomes a difficult problem to determine whether
a given change in the tempo curve is due to an align-
ment error or whether it is the result of an actual tempo
change in the performance. Here, one idea for future work
is to use tempo curves as a means for revealing problem-
atic passages in the music representations where synchro-
nization errors may have occurred with high probability.
Furthermore, it is of crucial importance to further improve
the temporal accuracy of synchronization strategies. This
constitutes a challenging research problem in particular
for music with less pronounced onset information, smooth
note transitions, and rhythmic fluctuation.
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