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ABSTRACT explicit the exact timing and intensity of the various note

events. The extraction of such performance attributes con-
A performance of a piece of music heavily depends on stitutes a challenging problem, in particular for the case o
the musician’s or conductor’s individual vision and per- audio recordings.
sonal interpretation of the given musical score. As ba-  \any researchers manually annotate the audio mate-
sis for the analysis of artistic idiosyncrasies, one regpiir  yig| by marking salient data points in the audio stream.
accurate annotations that reveal the exact timing and in-ysijng novel music analysis interfaces such as the Sonic
tensity of the various note events occurring in the perfor- vjisyaliser [5], experienced annotators can locate note on-
mances. In the case of audio recordings, this annotation issets very accurately even in complex audio material [2, 3].
often done manually, which is prohibitive in view of large  However, being very labor-intensive, such a manual pro-
music collections. In this paper, we present a fully auto- cess is prohibitive in view of large audio collections. An-
matic approach for extracting temporal information from other way to generate accurate annotations is to use a
a music recording using score-audio synchronization tech-computer-monitoreglayer piano. Equipped with optical
niques. This information is given in the form of a tempo  sensors and electromechanical devices, such pianos allow
curve that reveals the relative tempo difference between aroy recording the key movements along with the acoustic
actual performance and some reference representation ofdio data, from which one directly obtains the desired
the underlying musical piece. As shown by our experi- note onset information [3,4]. The advantage of this ap-
ments on harmony-based Western music, our approach alproach is that it produces precise annotations, where the
lows for capturing the overall tempo flow and for certain sympolic note onsets perfectly align with the physical on-
classes of music even finer expressive tempo nuances.  set times. The obvious disadvantage is that special-perpos
hardware is needed during the recording of the piece.
1. INTRODUCTION In particular, conventional audio material taken from CD
o ) ) ) ) recordings cannot be annotated in this way. Therefore,
Musicians give a piece of music their personal touch by {he most preferable method is to automatically extract the
continuously varying tempo, dynamics, and articulation. pecessary performance aspects directly from a given audio
Instead of playing mechanically they speed up at SOMeyacording. Here, automated approaches sudieadrack-
places .and _slo_w down at othe_rs in order to shape a piecqng [6,8] andonset detection [9] are used to estimate the
of music. Similarly, they continuously change the sound recise timings of note events within the recording. Even
intensity and stress certain notes. The automated analysighough great research efforts have been directed towards
of different interpretations, also referred topsformance  gych tasks, the results are still unsatisfactory, in partic
analysis, has become an active research field [1-4]. Here, |5; for music with weak onsets and strongly varying beat
one goal is to find commonalities between different inter- patterns. In practice, semi-automatic approaches are ofte
pretations, which allow for the derivation of general perfo used, where one first roughly computes beat timings using

mance rules. A kind of orthogonal goal is to capture what paq¢ tracking software, which are then adjusted manually
is characteristic for the style of a particular musician- Be 4 yield precise beat onsets.

fore one can analyze a specific performance, one requires

:jheerlInzorm'zggno??noUt'zvgreenaacrt]dar:lowI?zgo$;e?;:2?eug_ extracting temporal performance attributes from music
ying pi usl ually played. » as recordings in a fully automated fashion. We exploit the

the first step of performance analysis, one has to annotatt?act that for many pieces there exists a kind of “neutral”

the performance by means of suitable attributes that makerepresentation in the form of a musical score (or MIDI file)

that explicitly provides the musical onset and pitch infor-
Permission to make digital or hard copies of all or part of thork for mation of all occurring note events. Using music synchro-
personal or classroom use is granted without fee providatctipies are nization techniques, we temporally align these note events
not made or distributed for profit or commercial advantagethat copies with their corresponding physical occurrences in the mu-
bear this notice and the full citation on the first page. sic recording. As our main contribution, we describe vari-
(© 2009 International Society for Music Information Retrieva ous algorithms for deriving tempo curves from these align-

In this paper, we present a novel approach towards
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04 w w w w w w w w w path for the Beethoven example shown in Fig. 1. The reference
0-3%' & wl — representation (MIDI) corresponds to the horizontal aredptér-

02k p formance (audio) to the vertical axiRight: Original (black)

045 : : : , : : : : : and onset-rectified alignment path (red). The MIDI note bnse
positions are indicated by the blue vertical lines.

Figure 1. First measure of Beethoven’s Pathétique Sonata

Op. 13. The MIDI-audio alignment is indicated by the arrows.
to be aligned are converted into feature sequences, say
X = (x1,22,...,zn) @andY := (y1,y2,...,Yynm), re-

ments which reveal the relative tempo differences bet\NeenSpecuve'y'. Then, anv x M cost matrixC' is bu"t up
by evaluating a local cost measurdor each pair of fea-

the actual performance and the neutral reference represen- .
: . . ures, i.e..C((n,m)) = c(Tn,ym) forn € [1 : N] :=
tation. We have evaluated the quality of the automatically
A{1,2,...,N}andm € [1 : M]. Each tuplep = (n,m)
extracted tempo curves on harmony-based Western musi : .
. : . . is called acell of the matrix. A (global)alignment path
of various genres. Besides a manual inspection of a rep-. :
. ; : is a sequencépy,...,pr) of length L with p, € [1 :
resentative selection of real music performances, we have e
L . . . N] x [1: M]for¢ e [1: L] satisfyingp; = (1,1),
also conducted a quantitative evaluation on syntheticcaudi
) . pr = (N,M)andpps1 —pe € Xforl € [1: L —1].
material generated from randomly warped MIDI files. Our Here,s = {(1,0), (0,1), (1,1)} denotes the set of admis
experiments indicate that our automated methods yield ac- ’ SRR

Lo ibl izes. Theost of h(ps,... i fin
curate estimations of the overall tempo flow and, for cer- sib eLstegs esA tstq .apa.t (p1|z ’pLz S She E.dh
tain classes of music such as piano music, of even fineraSZZ_:1 (pe). » cost-minimizing alignment path, whic
expressive tempo nuances constitutes the final synchronization result, can be com-

. . . . puted via dynamic programming frodl, see Fig. 2. For
The remainder of this paper is organized as follows. ; : N
o : . .. " adetailed account on DTW and music synchronization we
After reviewing some basics on music synchronization refer to [11]
(Sect. 2), we introduce various algorithms for extracting o
. : : Based on this general strategy, we employ a synchro-
tempo curves from expressive music recordings (Sect. 3)

Our experiments are described in Sect. 4, and prospects c)rr]uzann algorithm based on high-resolution audio feature

future work are sketched in Sect. 5. Further related work 2 described in [12]. This approach, which .combmes the
o . . ; high temporal accuracy of onset features with the robust-
is discussed in the respective sections.

ness of chroma features, generally yields robust music
alignments of high temporal accuracy. In the following,
2. MUSIC SYNCHRONIZATION we use a feature resolution © Hz with each feature vec-

tor corresponding tB0 milliseconds of MIDI or audio. For
The largest part of Western music is based on the equal-details, we refer to [12].

tempered scale and can be represented in the form of musi-
cal scores, which contain high-level note information such
as onset time, pitch, and duration. In the following, we as-
sume that a score is given in the form of a “neutral” MIDI  The feeling of pulse and rhythm is one of the central com-
file, where the notes are played with a constant tempo inponents of music and closely relates to what one gener-
a purely mechanical way. We refer to this MIDI file as ally refers to as tempo. In order to define some notion of
reference representation of the underlying piece of mu-  tempo, one requires a proper reference to measure against.
sic. On the other hand, we assume that the performanceFor example, Western music is often structured in terms of
to be analyzed is given in the form of an audio recording. measures and beats, which allows for organizing and sec-
In a first step, we use conventiomalisic synchronization tioning musical events over time. Based on a fixed time
technigues to temporally align the note events with their signature, one can then define the tempo as the number of
corresponding physical occurrences in the audio record-peats per minute (BPM). Obviously, this definition requires
ing [10, 11]. The synchronization result can be regarded a regular and steady musical beat or pulse over a certain
as an automated annotation of the audio recording with theperiod in time. Also, the very process of measurement is
note events given by the MIDlI file, see Fig. 1. not as well-defined as one may think. Which musical enti-
Most synchronization algorithms rely on some variant ties (e. g., note onsets) characterize a pulse? How precisel
of dynamic time warping (DTW) and can be summarized can these entities be measured before getting drowned in
as follows. First, the MIDI file and the audio recording noise? How many pulses or beats are needed to obtain a

3. COMPUTATION OF TEMPO CURVES



meaningful tempo estimation? With these questions, we® 1
want to indicate that the notion of tempo is far from be- ~ °” °;ZW
ing well-defined. Different representations of timing and oz 08

tempo are presented in [7]. 08 -
In this paper, we assume that we have a reference repre,

sentation of a piece of music in the form of a MIDI file gen- oo o
erated from a score using a fixed global tempo (measured  os o8
in BPM). Assuming that the time signature of the piece is  °,, 0ss

08 0.8

known, one can recover measure and beat positions from 0 0 20 P 0 S 6 0 0 10 20 N 40 0 6 7
MIDI time positions. Gi.ven a specific performance in the Figure 3. Ground truth tempo curve (step function) and various
fo_rm ofan audio recordln_g, W(_e firstcompute a MIDI-audlo computed tempo curvega) 7., using a fixed window size with
alignment path as described in Sect. 2. From this path wesmall » (left) and largew (right). (b) 72" using an adaptive
derive atempo curve that describes for each time position window size with smalb (left) and largev (right).

within the MIDI reference (given in seconds or measures)

the tempo of the performance (given as a multiplicative _ _
factor of the reference tempo or in BPM). Fig. 4 and Fig. 5 cedure for the case that the neighborhoods are of a fixed

show some tempo curves for various performances. window (FV\Q\;,lzew € N. The resulting tempo curve is
Intuitively, the value of the tempo curve at a certain ref- 9€noted by, ™ : [1: N] — Rxo. For a given alignment

erence position corresponds to the slope of the alignmentpathp and anindex: € [1 : N], we define

path at that position. However, due to discretization and n=n— |21 and ny=n+ [251]. (1)

alignment errors, one needs numerically robust procedures 2 2

to extract the tempo information by using average values Theny = n, —ny + 1 and the tempo at reference position

over suitable time windows. In the following, we describe 4, js defined by

three different approaches for computing tempo curves us-

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

ing a fixed window size (Sect. 3.1), an adaptive window Tgw(n) — w ) )
size (Sect. 3.2), and a combined approach (Sect. 3.3). ep(n2) —pp(n1) +1
3.1 Fixed Window Size The tempo curvertW crucially depends on the window
. sizew. Using a small window allows for capturing sudden
Recall from Sect. 2 that the alignment path = tempo changes. However, in this case the tempo curve be-

(p1,--.,pL) between the MIDI reference and the perfor- comes sensible to inaccuracies in the alignment path and
mance is computed on the basis of the feature sequencesynchronization errors. In contrast, using a larger window
X = (z1,...,oy) andY = (y1,...,yn). Note thatone  smooths out possible inaccuracies, while limiting the-abil
can recover beat and measure positions from the indicesty to accurately pick up local phenomena. This effect is
n € [1 : N] of the reference feature sequence, since the also illustrated by Fig. 3 (a), where the performance is syn-
MIDI representation has constant tempo and the featurethesized from a temporally warped MIDI reference. We

rate is assumed to be constant. continue this discussion in Sect. 4.
To compute the tempo of the performance at a specific

reference positiom € [1 : N], we basically proceed as 3.2 Adaptive Window Size
follows. First, we choose a neighborhoodrofgiven by
indicesn; andny with ny < n < ns. Using the alignment
path, we compute the indices; andms aligned withn,
andng, respectively. Then, the tempo atis defined as

Using a window of fixed size does not account for specific
musical properties of the piece of music. We now intro-
duce an approach using an adaptive window size, which
quotient22=1+L  The main parameter to be chosen in is based on the_assumptio_n that n_ote onse_:t_s are_the main
this procygaﬁTéJirsl the size of the neighborhood. Further- source for inducing tempo mfor_matl(_)n. Intumvel_y, N pas
more, there are some technical details to be dealt with, S89€s where notes are playeq n gmck succession one may
Firstly, the boundary cases at the beginning and end of theObtaln an accu_rate tempo est|mat|_cm even when using only
reference need special care. To avoid boundary problemsa small time window. In contrast, in passages Wh‘?re only
we extend the alignment paghto the left and right by set- few hOteS are _played one nee_ds a much larger window to
ting pe := (¢, ¢) for £ < 1andpy = (N+(—L, M+(—L) obtain a meanlngf_ultem_p(_) estimation.

for ¢ > L. Secondly, the indices, andms are in general We now formalize this idea. We assume that the note

o uniel determinea. Generaly an agnment patn 7% 1 0 [0 eterence re gven o of e
may assign more than one index  [1 : M} to a given set osition.we only list on,e of these indices. l&t=
indexn € [1 : N]. To enforce uniqueness, we chose the P y : -

minimal index over all possible indices. More precisely, ‘1{01<’ o}k € [1: N]be tZe;et_(r); or:js_ett pOSIt't?ntij'th
we define a functiorp,, : Z — [1 : M] by setting S 01« 02 < ..o < 0K = V. TNE distance between

two neighboring onset positions is referred to as inter on-

op(n) :==min{m e [1: M] |3 € Z: p; = (n,m)}. set interval (101). Now, when computing the tempo curve
at positionn € [1 : N], the neighborhood of is specified

We now give the technical details of the sketched pro- not in terms of a fixed number of feature indices but in



terms of a fixed number € N of 10Is. This defines an
onset-dependent adaptive window (AW). More precisely,
let 7AW : [1 : N] — Rs, denote the tempo function to

be computed. To avoid boundary problems, we extended (b)

the setO to the left and right by setting, := 01 + £ — 1
fork < 1ando, := ox + k — K for k > K. First,
we compute-*W for all indicesn that correspond to onset
positions. To this end, let = ox. Then we define

k1 Z:k—tv—glJ and ko := k—i—(vTilw
Settingn; := o, andny = o,, the tempo at reference
positionn = oy, is defined as

ng —ny + 1
op(nz) — pp(n1) +1°

AW () =

3)

Note that, opposed to (2), the window size — n; + 1 is

Time in measures

Figure 4. Tempo curves of four different interpretations played
by different pianists of the first ten measures (slow intaidry

no longer fixed but depends on the sizes of the neighbor-theme markedrave) of Beethoven's Pathétique Sonata Op. 13.

ing 10Is around the position = o. Finally, 7AW (n) is
defined by a simple linear interpolation for the remaining
indicesn € [1 : N]\ O. Similar to the case of a fixed
window size, the tempo curve®V crucially depends on
the numbew of I0Is, see Fig. 3 (b). The properties of the
various tempo curves are discussed in detail in Sect. 4.

3.3 Combined Strategy

So far, we have introduced two different approaches us-

(a) Score of measuresand5. (b) Tempo curvest ™V for w o
3 seconds(c) Tempo curves ¥ for v = 10 IOls.

the window sizew in terms of seconds instead of sam-
ples. For example, by writingg « 3 seconds, we mean
thatw € N is a window size with respect to the feature
rate corresponding t® seconds of the underlying audio.

In our first example, we consider Beethoven’s
Pathétique Sonata Op. 13. The first ten measures corre-

ing on the one hand a fixed window size and on the otherspond to the slow introductory theme mark@chve. For
hand an onset-dependent adaptive window size for com-these measure, Fig. 4 (b) shows the tempo curjes?

puting average slopes of the alignment path. Combining for four different performances using the combined strat-
ideas from both approaches, we now present a third strat-egy with a window sizev « 3 seconds. From these curves,
egy, where we first rectify the alignment path using onset one can read off global and local tempo characteristics. For
information and then apply the FW-approach on the recti- example, the curves reveal the various tempi chosen by the
fied path for computing the tempo curve. As in Sect. 3.2, pianists, ranging from roughig0 to 30 BPM. One of the

let O {o1,...,0x} C [1 : N] be the set of on- pianists (red curve) significantly speeds up after measure
sets. By possibly extending this set, we may assume thats, whereas the other pianists use a more balanced tempo

o1 = 1 andog N. Now, within each IOl given
by two neighboring onsets; := o andns = o041,

k € [1 : K—1], we modify the alignment pathas follows.
Let?y, ¢y € [1: L] be the indices withy,, = (n1, vp(n1))
andpy, = (ng, pp(n2)), respectively. While keeping the
cellsp,, andpy,, we replace the cells,, +1,...,ps, — 1

by cells obtained from a suitably sampled linear function
having the slope”2)$?“1)+1 Here, in the sampling,
we ensure that the step size condition givendbys ful-
filled, see Sect. 2. The resulting rectification is illustcht

throughout the introduction. It is striking that all four-pi
anists significantly slow down in measwethen acceler-
ate in measur®, before slowing down again in measure
10. Musically, the last slow-down corresponds to the fer-
mata at the end of measur@, which concludes th&rave.
Similarly, the curves indicate a ritardando in all four per-
formances towards the end of measdrén this passages,
there is a run o64*™" notes with a closing nonuplet, see
Fig. 4 (a). Using a fixed window size, the ritardando effect
is smoothed out to a large extent, see Fig. 4 (b). How-

by Fig. 2 (right). Using the rectified alignment path, we €ver, having many consecutive note onsets within a short
then compute the tempo curve using a fixed window size passage, the ritardando becomes much more visible when
w € N as described in Sect. 3.1. The resulting tempo using tempo curves with an onset-dependent adaptive win-
curve is denoted byEWR_ This third approach, as our ex- dow size. This is illustrated by Fig. 4 (c), which shows the
periments show, generally yields more robust and accuratfour tempo curves "V with v = 10 10ls.

tempo estimations than the other two approaches. As a second example, we consider the Schubert Lied
Der Lindenbaum (D. 911 No. 5). The first seven measures
(piano introduction) are shown in Fig. 5 (a). Using the
combined strategy with a window size « 3 seconds,

In this section, we first discuss some representative exam-we computed tempo curves fo3 different interpretations,
ples and then report on a systematic evaluation based orsee Fig. 5 (b). As shown by the curves, all interpretations
temporally warped music. In the following, we specify exhibit an accelerando in the first few measures followed

4. EXPERIMENTS
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FW AW FWR

RWC ID (Comp./Int., Instr.) o p u . P p
C025 (Bach, piano) 329 7.30 260 5.051.59 2.86
C028 (Beethoven, piano) 3.24 6.98 6.36 21.14 2.66 6.72
€031 (Chopin, piano) 332 7.72| 277 4.76/1.75 3.42
€032 (Chopin, piano) 254 4.17| 3.05 4.671.56 2.34
Ti . C029 (Schumann, piano) 452 8.86/ 4.18 597 2.44 513
Ime In measures €003 (Beethoven, orchestra) | 4.20 5.39/ 10.58 22.97 3.56 4.79
: . €015 (Borodin, strings) 244 285 468 9.85 225 271
Figure 5. Tempo curves ofi3 different performances of the C022 (Brahms, orchestra) | 1.70 1.95 2.41 2.96 1.31 166
beginning of the Schubert soriger Lindenbaum. (a) Score of C044 (Rimski-K., flute/piano) | 1.62 2.59 2.47 4.27|1.61 2.58
measured to 7. (b) Tempo curves:; V¥ for w o 3 seconds. €048 (Schubert, voice/piano) | 2.61 3.27 3.95 7.76 2.07 2.98
JO001 (Nakamura, piano) 144 1.87) 144 2.431.03 159
J038 (HH Band, big band) 224 296/ 3.20 5.411.91 274
JO041 (Umitsuki, sax/bass/perc|)1.88 2.40, 3.75 4.69 1.72 2.34
by a ritardando towards the end of the introduction. Inter- ~ P031(Nagayama, electronic) | 2.01 2.42 8.35 14.89 1.94 2.39
y. .. . . . P093 (Burke, voice/guitar) 250 3.26) 6.21 14.74 2.34 3.13
estingly, some of the pianists start with the ritardando in Average over all 564 427 440 877 198 3.16

measurel already, whereas most of the other pianists play
a less pronounced ritardando in meastureThese exam-  Table 1. Tempo curve evaluation using the approaches FW and
ples indicate that our automatically extracted tempo cairve FWR (withw o 4 seconds) and AW (witlh = 10 10Is). The ta-

are accurate enough for revealing interesting performancePle shows for each of the5 pieces the mean errprand standard
characteristics deviationo (given in percent) of the computed tempo curves and

; o . the ground truth tempo curve. For generating the grourtti-tru
In view of a more quantitative evaluation, we Computed tempo curves, MIDI segments 6 seconds were used.

tempo curves using different approaches and parameters

on a corpus of harmony-based Western music of variousas distance function, we use the average multiplicative dif

genres. To allow for a reproduction of our experiments, ference and standard deviation (both measured in percent)

we used pieces from the RWC music database [13]. Inof r and7ST. More precisely, we define

the following, we considet5 representative pieces, which

are listed in Table 1. These pieces include five classical pi- aT - . ) /GT(,

ano pieces, five classical pieces of various instrumemtstio (r,77) =100 & Z (2oestrm/r il — 1),

(full orchestra, strings, flute, voice) as well as five jazz

pieces and pop songs. To automatically determine the ac-Similarly, we define the standard deviatier, 7%T). For

curacy of our tempo extraction procedures, we temporally example, one obtaing(r,7¢T) = 100% in the case

modified MIDI files for each of the5 pieces. Tothisend, + = 2. 7GT (double tempo) and in the case= % . 7GT

we generated continuous piecewise linear tempo curveghalf tempo). Similarly, a computed tempo ifo BPM or

7GT | referred to agground-truth tempo curves. These 90.9 BPM would imply a mean error gf = 10% assum-

curves have a constant slope on segments of roughly ing a ground-truth tempo afo0 BPM.

seconds of duration, where the slopes are randomly gen- |n a first experiment, we computed the curvgs$" and

erated either using a value € [1 : 2] (corresponding  7FWR with w o« 4 seconds as well as®™V with v = 10

to an accelerando) or using a valuec [1/2 : 1] (cor-  |Qls for each of thel5 pieces. Table 1 shows the mean

responding to a ritardando). These values cover a rangeerror ;. and standard deviatiom between the computed

of tempo changes of100% of the reference tempo. In-  tempo curves and the ground truth tempo curves. For ex-

tuitively, the ground-truth tempo curves simulate on each ample, for the Schubert sorier Lindenbaum with iden-

segment a gradual transition between two tempi to mimic tifier C048 the mean error between the computed tempo

ritardandi and accelerandi. For an example, we refer tocurve 75V and the ground-truth tempeST amounts

Fig. 6. We then temporally warped each of the original to 2.61%. This error decreases ®.07% when using

MIDI files with respect to a ground-truth tempo curv/e’ the FWR-approach based on the rectified alignment path.

and generated from the modified MIDI file an audio ver- Looking at the average mean error over all pieces, one

sion using a high-quality synthesizer. Finally, we com- can notice that the error amounts 264% for the FW-

puted tempo curves using the original MIDI files as ref- approach,4.40% for the AW-approach, and.98% for

erence and the warped audio versions as performances. the FWR-approach. For example, assuming a tempo of
To determine the accuracy of a computed tempo curve100 BPM, the last number implies a mean difference of

7, we compared it with the corresponding ground-truth less thar2 BPM between the computed tempo and the ac-

tempo curver®T. Here, the idea is to measure devia- tual tempo.

tions by scale rather than byabsolute value. Therefore, In general, the FWR-approach yields the best tempo es-

n=1



w [sec] MFW , EWR | vnon HAW , tice, it becomes a difficult problem to determine whether
T [ 1062 49.88] 558 1247| 2 | 1450 31.00 a given change in the tempo curve is due to an align-
2 5.37 14.21| 3.58 6.16 4 9.54 2344 o
3 239 690l 322 saal e T34 1734 ment error or whether it is the result qf an actual tempo
4 462 652| 399 b574| 8 6.18 12.99 change in the performance. Here, one idea for future work
5 5.48 7.08| 5.06 6.63 10 5.65 10.66 ; ;
o 679 802 652 774l 12 s a6 948 |s_to use tempp curves a_s a means for_ revealing problem-
7 840 9.19| 822 9.00| 16 554 820 atic passages in the music representations where synchro-
8 10.15 10.51| 10.03 10.38 20 5.98 8.09

nization errors may have occurred with high probability.

Furthermore, it is of crucial importance to further improve

Table 2. Tempo curve evaluation using the approaches FW, AW, e temporal accuracy of synchronization strategies. This
and FWR with various window sizes (given in seconds) and

v (given in 10ls). The table shows the average values over all constltu.tes a challenging research p_roblem in particular
15 pieces, see Table 1. For generating the ground-truth tempofor music with less pronounced onset information, smooth
curves, MIDI segments df seconds were used. note transitions, and rhythmic fluctuation.

timation, whereas the AW-approach often produces pooreracknowledgements: The first three authors are sup-
results. Even though the onset information is of crucial ported by the Cluster of Excellence dfultimodal Com-
importance for estimating local tempo nuances, the AW- pyting and Interaction at Saarland University. The last au-

approach relies on accurate alignment paths that correctlthor is funded by the German Research Foundation (DFG
align the note onsets. Synchronization approaches as dec| 64/6-1).

scribed in [12] can produce highly accurate alignments in
the case pf .music with pronpunced npte attacks. For ex- 6. REFERENCES
ample, this is the case for piano music. In contrast, such
information is often missing in string or general orches- [1] J. Langner and W. Goebl, “Visualizing expressive perfor
tral music. This is the reason why the purely onset-based mance in tempo-loudness spacégmptter Music Journal,
_ . ~onset-bas vol. 27(4), pp. 69-83, 2003.

AW-strategy yields a relatively poor tempo estimation with
a mean error 010.58% for Beethoven’s Fifth Symphony [2] C. S. Sapp, “Comparative analysis of multiple musicatpe
(identifierC003). On the other hand, using a fixed window formances,” i SMIR Proceedings, pp. 497-500, 2007,
size without relying on onset information, local alignment [3] G. Widmer, “Machine discoveries: A few simple, robust lo
errors cancel each other out, which results in better tempo €@l expression principles,Journal of New Music Research,
estimations. E. g., the error drops3té6% for Beethoven'’s vol. 31(1), pp. 37-50, 2002.
Fifth Symphony when using the FWR-approach. [4] G.Widmer, S. Dixon, W. Goebl, E. Pampalk, and A. Tobudic,

Finally, we investigated the dependency of the accuracy " search of the Horowitz factorAl Magazine, vol. 24(3),
of the tempo estimation on the window size. We generated pp. 111-130, 2003.
strongly fluctuating ground-truth tempo curves using MIDI [5] Sonic Visualiser. Retrieved 19.03.200%it t p: // wwu.
segments of onlyj seconds length (instead b6 seconds soni cvi sual i ser. org/.
as in the last experiment). For the corresponding synthe-[6] S. Dixon, “Automatic extraction of tempo and beat from
sized audio files, we computed tempo curves for various  expressive performancesipurnal of New Music Research,
window sizes. The mean errors averaged overaflieces vol. 30, pp. 39-58, 2001.
are shown in Table 2. The numbers show that the mean[7] H. Honing, “From Time to Time: The Representation of
error is minimized when using medium-sized windows. ~ Timing and Tempo,"Computer Music Journal, vol. 25(3),
E.g., in the FWR-approach, the smallest erroiBof2% pp- 50-61, 2001.
is attained for a window size af o< 3 seconds. Actually, [8] E. D. Scheirer, “Tempo and beat analysis of acoustical mu
the window size constitutes a trade-off between robustness  Sical signals,"Journal of the Acoustical Society of America,
and temporal resolution. On the one hand, using a larger ~ VO!- 103, no. 1, pp. 588-601, 1998.
window, possible alignment errors cancel each other out,[9] J. P. Bello, L. Daudet, S. Abdallah, C. Duxbury, M. Davies
thus resulting in a gain of robustness. On the other hand, ~ and M. B. Sandler, A Tutorial on Onset Detection in Music
sudden tempo changes and fine agogic nuances can be re- >'9nals"IEEE Trans. on Speech and Audio Proc., vol. 13,

. . no. 5, pp. 1035-1047, 2005.
covered more accurately when using a smaller window.
[10] N.Hu, R.Dannenberg, and G. Tzanetakis, “Polyphondi@u
matching and alignment for music retrieval,” Rroc. |EEE
5. CONCLUSIONS WASPAA, New Paltz, NY, October 2003.

In this paper, we have introduced automated methods fdA1l M. Mdller, Information Retrieval for Music and Motion.
extracting tempo curves from expressive music recordings ~ >P1nger. 2007.

by comparing the performances with neutral reference repd2] S. Ewert, M. Mller, and P. Grosche, “High resolutiaumiio
resentations. In particular when using a combined strategy fg”scgrfggémggi%% a?fggr?;e?]’;g%tnfzgéuggpmg‘
that incorporates note onset information, we obtain accu- an% Sgnal Processing, (Taipe, Tawan) 2000 » Speech,
rate and robust estimations of the overall tempo progres-

sion. Here, the window size constitutes a delicate tradell3] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, "RWC
off between susceptibility to alignment errors and sehsibi mlfg\ildl:?tggg;e' Popular, classical and jazz music datgbase
ity towards timing nuances of the performance. In prac- ' '



