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ABSTRACT First, note onset candidates are extracted from the mugic si

The extraction of local tempo and beat information from auals by exploiting the fact tr?at note onsets typically cauge
dio recordings constitutes a challenging task, partitpkar ~ d€n changes of the signal's energy and spectrum. Based on
music that reveals significant tempo variations. Furtheemo thiS property so-calledovelty curveare derived, the peaks of

the existence of various pulse levels such as measurestacti/Nich yield good indicators for note onset candidates [8, 9]

and tatum often makes the determination of absolute tempbl€N: Using autocorrelation [5], Fourier [6, 7], or comb fil-
problematic. In this paper, we present a robust mid-levefe” methods [4], the novelty curves are analyzed for locally
representation that encodes local tempo information. Igimi Periodic patterns, from which the local tempo and beat infor

to the well-known concept of cyclic chroma features, wherehation can be estimated. , o
pitches differing by octaves are identified, we introduce th !N the case that the music recording reveals significant
concept of cyclic tempograms, where tempi differing by atempo changes, t_he detection of locally periodic patteEns_b
power of two are identified. Furthermore, we describe howfomMes a challenging problem. Furthermore, there are \@riou

to derive cyclic tempograms from music signals using twaPulse levels that contribute to the human perception of temp
different methods for periodicity analysis and finally siket SUCh as the measure, tactus, and tatum levels [10]. As an anal

some applications to tempo-based audio segmentation. ogy, these different levels may be compared to the existence
of harmonics in the pitch context. Inspired by the concept of

Index Terms— tempo, tempogram, chroma, music sig- chroma features, in this paper, we introduce the concept of

nals, audio segmentation cyclic tempogramswhere the idea is to form tempo equiv-
alence classes by identifying tempi that differ by a power
1. INTRODUCTION of two. This concept has first been suggested in [11] and

will be formalized and expanded in this paper. The resulting
For the processing of music signals, various feature repres cyclic tempo features constitute a robust mid-level regmes-
tations have been proposed that account for musical dimefion that reveals local tempo characteristics of musicalign
sions such as pitch, harmony, rhythm, or tempo. For examwhile being invariant to changes in the pulse level. Being
ple, exploiting the fact that most Western music is based othe tempo-based counterpart of the harmony-based chroma-
the equal-tempered scale, music signals can be decomposg@ms, cyclic tempograms are suitable for music analysis an
into logarithmically spaced frequency bands that corredpo retrieval tasks, where harmony-based criteria are notaate
to the pitch scale [1]. From the resulting pitch representa- The remainder of this paper is organized as follows. In
tion one obtains the well-knowohroma representatioby  Sect. 2, we introduce the novel concept of cyclic tempograms
pooling pitches that correspond to the same chroma. Herghen, in Sect. 3, we discuss two methods on how to extract
the chromas correspond to the twelve pitch spelling atiebu these features from music signals. Finally, in Sect. 4, we
C,C* D,...,B of the equal-tempered scale [2]. Chroma fea-sketch various applications and discuss future work.
tures closely correlate to harmonic aspects and have turned
out to be a powerful mid-level representation for various mu 2 CYCLIC TEMPOGRAM
sic analysis and retrieval tasks such as chord transaniptio

audio matching, or music segmentation. We now introduce the concept of cyclic tempograms in an
Besides pitch and harmony, the aspects of rhythm angpstract form using, for the sake of clarity, a continuous fo
tempo constitute further important dimensions of music. INmyation. In the next section, we then discuss how this con-
this context, various representations have been propbsed t cept can be realized in practice by using discrete parameter
reveal local tempo and beat information [4, 5, 6, 7]. To acgjmilar to a spectrogram, we definetempogramto be a
complish this task, most approaches proceed in two stepgme-tempo representation for a given time-dependentsign

*The authors are funded by tfuster of Excellence on Multimodal Com- Mathematica_llly, a tem_p09ram is mappidg: R x R>_0 —
puting and InteractiofMMCI) at Saarland University. R, depending on a time parametee R measured in sec-




onds and a tempo parametere R., measured in beats (a) ‘ ‘ ‘ M
per minute (BPM). Intuitively, the valu& (¢, 7) indicates to PP S o2 = > > .
which extend a pulse of tempois present at time. For )
example, let us suppose that a music signal has a dominal
tempo of120 BMP around positiont = 20 seconds. Then
the resulting tempograrf should have a large valug(t, )

for 7 = 120 andt = 20. Because of the above mentioned (¢ 7
ambiguity concerning the pulse levels, one typically alae h
large values off for integer multiplesr, 27, 3, . .. (referred £ L 2

£
to asharmonicsof 7) and integer fractions, r/2,7/3,... §1§ N
(referred to asubharmonicef 7), see Fig. 1. u L
To reduce the impact of such kind of tempo confusions, 0 s sed) e B
we apply a similar strategy as n the Computatlon of Chrom‘i"iig. 1. (a) Novelty curve of click track of increasing tempbl( to
feature_:s [2]. Recall that two _pltches having fundamentaJ fr_ 130 BPM). (b) Fourier tempogram (showing harmonic) Cyclic
quenciesf, and f, are considered as octave equivalent, ifempogramcs, induced by (b). (d) Autocorrelation tempogram

they are related by, = 2" f, for somek € Z. Similarly,  (showing subharmonicsje) Cyclic tempograntso induced by (d).
we say that two tempi; and r, are octave equivalentif

they are related by, = 2*r, for somek € Z. Then, for
a given tempo parameter, the resulting tempo equivalence 3.1. Novelty Curve

class is denoted bjr]. For example, forr = 120 one has M hods for derivi | f dio si
(7] = {...,30,60,120,240,480...}. Now, thecyclic tem- ost methods for deriving novelty curves from audio sig-

nals are based on the fact that note onsets typically cause a
sudden change of the signal’s energy and spectrum, see [8,
Ct,[1]) = 2em Tt A). (1)  9]. Here, we exemplarily discuss one such basic approach.

Note that the t val | tonologicall Given a music signal, a short-time Fourier transform is used
ote that the tempo equivalence classes topologicallyeeorr ). a spectrogram = (X (£, k))em k € [1 : K] :=

spond to a circle. Fixing a reference temp¢e.g.,p = 60 " ~ K}, t € Z, whereK is the number of Fourier co-
BPM), the cyclic tempogram can be represented by a mappi éﬁicients andX (k, t) is the k*® Fourier coefficient for time

Cp: R x R0 — R defined by framet. In our implementation, each time parameteror-
Co(t,s) :=C(t,[s pl), (2) responds to a step size of= 0.023 seconds. Next, we ap-
ply a logarithm to the magnitude spectrogréf| yielding
fort € Rands € Rso. Note thatC,(t,s) = Cp(t,2"s)  y .= 1og(1+ C - |X]) for a constanC > 1, see [10]. To ob-
for k € Z andC, is completely determined by its values t5in g novelty curve, we basically compute the discreteveeri
s € [1,2). As illustration, Fig. 1 shows various tempogramstiye of the compressed spectri More precisely, we sum
for a click track of increasing tempo. Fig. 1b shows a tem-up only positive intensity changes to emphasize onsetswhil

pogram with harmonics and Fig. 1c the resulting cyclic temyjscarding offsets to obtain the novelty cume: Z — Rs:
pogram. As in the pitch context, the tempo clég is re- -

ferred to as théempo dominantin Fig. 1c, the tempo domi- A) =K [Y(t41,k) = Y(t,E)|s0 (3)
nant is visible as the increasing line in the middle. Sinhjlar )

Fig. 1d shows a tempogram with subharmonics and Fig. 1fF ¢ € Z, where|z|>, := z for a non-negative ang|>¢ :=
the resulting cyclic tempogram. Here, the tempo clagg] 0 for a negative real number. To obtain our final novelty

is referred to as theempo subdominarsee the increasing line CUrve, again denoted by, we subtract the local average and
in the middle of Fig. 1e. only keep the positive part, see Fig. 2a for an example. For

refinements and variants of this procedure, we refer to [8, 9]

Tempo (|

pogramC induced byT is defined by

3. COMPUTING CYCLIC TEMPOGRAMS )
3.2. Fourier Tempogram

We now describe how discrete cyclic tempograms can Dbg, the next step, we analyze the novelty cutvavith respect
computed in practice for digital music signals. In afirspste 4 5c4| periodic patterns using a short-time Fourier trans

a novelty curve is extracted (Sect. 3.1). In a second stepl 10 ¢4 similar to 6, 7]. To this end, we fix a window function
periodic patterns are derived from the novelty curve. Herey, . » _ p centered at = 0 In our experiments, we use a
we discuss two different methods that yield tempograms withy o window of a width corresponding to six seconds. Then,

harmonics (Fourier tempogram, Sect. 3.2) and with subhag, 5 frequency parameter € R, the complex Fourier co-
monics (autocorrelation tempogram, Sect. 3.3), resp8gtiv  oficient F( -

Finally, we show how cyclic versions are obtained from these
tempograms (Sect. 3.4). Ft,w)=>,cz An)-W(n—1t)-e 2mn  (4)

t,w) is defined by
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Fig. 2. (a) Novelty curveA of an audio recording of a Waltz by
Shostakovich. (b) Fourier tempogran? *. (c) Cyclic tempogram
CE,. (d) Autocorrelation tempogrami® . (e) Cyclic tempogran€s,.

unbiased local autocorrelation

Yonez AN)A(n +0) - W(n —t)
2N +1-¢ ’

fortimet € Z and time lag € [0 : N]. Recall from Sect. 3.1
that each time parameterc Z corresponds te seconds (in
our implementation we used = 0.023). Then, the lagy
corresponds to the tempo= 60/(r - ) BPM. We therefore
define theautocorrelation tempogrard * by

At 0) =

(6)

TA(t, 7) = A(t, 0). (7)

for each tempa = 60/(r - £), £ € [1 : N]. Finally, using
standard resampling and interpolation techniques appdied
the tempo domain, we derive an autocorrelation tempogram
TA 1 Z x © — R that is defined on the same tempo ®et

as the Fourier tempograff’’, see Sect. 3.2. The tempogram
T for our Shostakovich example is shown in Fig. 2d, which

In the musical context, we rather think of tempo measured irlearly indicates the subharmonics.
beats per minutes (BPM) than of frequency measured in Hertz

(Hz). Therefore, we use a tempo parametesatisfying the

equationr = 60 - w. Furthermore, we compute the tempi

only for a finite set® C R.(. In our implementation, we
cover four tempo octaves ranging from= 30 to 7 = 480.
Furthermore, we sample this interval in a logarithmic fashi

3.4. Cyclic Tempogram

Recall that the tempo parameter setomprises four tempo
octaves ranging from = 30 to 7 = 480, where each oc-
tave is covered by logarithmically spaced samples. There-

covering each tempo octave By samples, where the inte- fore, one obtains a dichrete cycliitempograﬁw(resp.CA)
ger M determines the tempo resolution. Then, the discret&0m the tempogran?™ (resp. 7+) simply by adding up

Fourier tempogran? ¥ : Z x © — R is defined by
T (t,7) = |F(t,7/60)|. (5)

As an example, Fig. 2b shows the tempografnof a record-
ing of a Waltz by Shostakovich. @™, the tempo on the beat

level (roughlyr = 216 BPM) and the second harmonics of
this tempo are dominant. However, the tempo on the measu%[

level of the three-quarter Waltz (rought2 BPM, third sub-
harmonics ofr = 216) is hardly noticeable. Actually, since

the novelty curveA locally behaves like a track of positive
clicks, it is not hard to see that Fourier analysis responds t

harmonics but suppresses subharmonics, see also [6].

3.3. Autocorrelation Tempogram

In the context of tempo estimation, also autocorrelatianen

the corresponding values of the four octaves as described in
Eqg. (1). Using a reference tempo pf= 60 BPM, we ob-

tain the cyclic tempogranif, (resp. C&). Note that these
discrete cyclic tempograms are -dimensional, where the
cylic tempo axis is sampled &t/ positions. As an illustra-
tion, Fig. 2c (resp. Fig. 2e) shows the discrete cyclic tem-
pogramCy, (resp.Cé;), where we used a tempo resolution of
= 120. Note that the subharmonic tempo at measure level
corresponding to roughly2 BPM (s = 1.2) is clearly visible

in C&, but not inCg,.

4. APPLICATIONS AND FUTURE WORK

As mentioned before, the cyclic tempograms are the tempo-
based counterparts of the harmony-based chromagrams.
Compared to usual tempograms, the cyclic versions are more
robust to tempo ambiguities that are caused by the various
pulse levels. Furthermore, one can simulate changes incdemp

methods are widely used to estimate local periodicities [S]simply by cyclically shifting a cyclic tempogram. Note that
Since these methods, as it turns out, respond to subharmatis is similar to the property of chromagrams, which can be
ics while suppressing harmonics, they ideally complementyclically shifted to simulate modulations in pitch. As one

Fourier-based methods, see [6]. To obtain a discaete-
correlation tempogramwe proceed as follows. Again, we fix
a window functioniV : Z — R centered at = 0 with sup-

port[-N : N], N € N. This time, we use a box window of a

width corresponding to six seconds. The local autocoiitelat

further advantage, even low-dimensional versions of discr
cyclic tempograms still bear valuable local tempo inforiorat
of the underlying musical signal.

To illustrate the potential of our concept, we sketch how
cyclic tempograms can be used for automated music segmen-

is then computed by comparing the windowed novelty curveation, which is a central tasks in the field of music informa-
with time shifted copies of itself. More precisely, we use th tion retrieval [1, 3, 12]. Actually, there are many diffeten
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Fig. 3. Cyclic tempogramég, (top) andC, (middle) with M = 15 as well as tempo-based segmentations (bottom) for three differemspiec
(a) In The Year 252y Zager and Evangb) Piano Sonata Op. 13 (P&tique) by Beethover(c) Hungarian Dance No. 5 by Brahms.

strategies for segmenting music signals such as noveltynd diversity of music [3]. For the future, we integrate our
based, repetition-based, and homogeneity-based stategiconcept of cyclic tempo features into a hierarchical segmen
In the latter, the idea is to partition the music signal irtg-s tation and structure extraction framework. Furthermoas/-h
ments that are homogenous with regard to a specific musicalg low-dimensional tempo features (in the order of1Re0
property [12]. In this context, timbre-related audio feagl dimensions of chroma and MFCCs), makes it possible to em-
such as MFCCs or spectral envelopes are frequently useploy index-based range and nearest neighbor searched) whic
resulting in timbre-based segmentations. Similarly, gisin is important in view of efficient music retrieval. Finally,ew
chroma-based audio features results in harmony-based sedeser investigate the musical meaning of tempo harmonics
mentations. We now indicate, how our cyclic tempogramsand subharmonics as well as the characteristics and combin-
can be applied to obtain tempo-based segmentations (usiadpility of the various tempograms.

a simple two-class clustering procedure for illustratioi)
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