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ABSTRACT

The extraction of local tempo and beat information from au-
dio recordings constitutes a challenging task, particularly for
music that reveals significant tempo variations. Furthermore,
the existence of various pulse levels such as measure, tactus,
and tatum often makes the determination of absolute tempo
problematic. In this paper, we present a robust mid-level
representation that encodes local tempo information. Similar
to the well-known concept of cyclic chroma features, where
pitches differing by octaves are identified, we introduce the
concept of cyclic tempograms, where tempi differing by a
power of two are identified. Furthermore, we describe how
to derive cyclic tempograms from music signals using two
different methods for periodicity analysis and finally sketch
some applications to tempo-based audio segmentation.

Index Terms— tempo, tempogram, chroma, music sig-
nals, audio segmentation

1. INTRODUCTION

For the processing of music signals, various feature represen-
tations have been proposed that account for musical dimen-
sions such as pitch, harmony, rhythm, or tempo. For exam-
ple, exploiting the fact that most Western music is based on
the equal-tempered scale, music signals can be decomposed
into logarithmically spaced frequency bands that correspond
to the pitch scale [1]. From the resulting pitch representa-
tion one obtains the well-knownchroma representationby
pooling pitches that correspond to the same chroma. Here,
the chromas correspond to the twelve pitch spelling attributes
C,C♯,D, . . . ,B of the equal-tempered scale [2]. Chroma fea-
tures closely correlate to harmonic aspects and have turned
out to be a powerful mid-level representation for various mu-
sic analysis and retrieval tasks such as chord transcription,
audio matching, or music segmentation.

Besides pitch and harmony, the aspects of rhythm and
tempo constitute further important dimensions of music. In
this context, various representations have been proposed that
reveal local tempo and beat information [4, 5, 6, 7]. To ac-
complish this task, most approaches proceed in two steps.
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First, note onset candidates are extracted from the music sig-
nals by exploiting the fact that note onsets typically causesud-
den changes of the signal’s energy and spectrum. Based on
this property so-callednovelty curvesare derived, the peaks of
which yield good indicators for note onset candidates [8, 9].
Then, using autocorrelation [5], Fourier [6, 7], or comb fil-
ter methods [4], the novelty curves are analyzed for locally
periodic patterns, from which the local tempo and beat infor-
mation can be estimated.

In the case that the music recording reveals significant
tempo changes, the detection of locally periodic patterns be-
comes a challenging problem. Furthermore, there are various
pulse levels that contribute to the human perception of tempo
such as the measure, tactus, and tatum levels [10]. As an anal-
ogy, these different levels may be compared to the existence
of harmonics in the pitch context. Inspired by the concept of
chroma features, in this paper, we introduce the concept of
cyclic tempograms, where the idea is to form tempo equiv-
alence classes by identifying tempi that differ by a power
of two. This concept has first been suggested in [11] and
will be formalized and expanded in this paper. The resulting
cyclic tempo features constitute a robust mid-level representa-
tion that reveals local tempo characteristics of music signals
while being invariant to changes in the pulse level. Being
the tempo-based counterpart of the harmony-based chroma-
grams, cyclic tempograms are suitable for music analysis and
retrieval tasks, where harmony-based criteria are not relevant.

The remainder of this paper is organized as follows. In
Sect. 2, we introduce the novel concept of cyclic tempograms.
Then, in Sect. 3, we discuss two methods on how to extract
these features from music signals. Finally, in Sect. 4, we
sketch various applications and discuss future work.

2. CYCLIC TEMPOGRAM

We now introduce the concept of cyclic tempograms in an
abstract form using, for the sake of clarity, a continuous for-
mulation. In the next section, we then discuss how this con-
cept can be realized in practice by using discrete parameters.
Similar to a spectrogram, we define atempogramto be a
time-tempo representation for a given time-dependent signal.
Mathematically, a tempogram is mappingT : R × R>0 →
R≥0 depending on a time parametert ∈ R measured in sec-



onds and a tempo parameterτ ∈ R>0 measured in beats
per minute (BPM). Intuitively, the valueT (t, τ) indicates to
which extend a pulse of tempoτ is present at timet. For
example, let us suppose that a music signal has a dominant
tempo of120 BMP around positiont = 20 seconds. Then
the resulting tempogramT should have a large valueT (t, τ)
for τ = 120 and t = 20. Because of the above mentioned
ambiguity concerning the pulse levels, one typically also has
large values ofT for integer multiplesτ, 2τ, 3τ, . . . (referred
to asharmonicsof τ ) and integer fractionsτ, τ/2, τ/3, . . .
(referred to assubharmonicsof τ ), see Fig. 1.

To reduce the impact of such kind of tempo confusions,
we apply a similar strategy as in the computation of chroma
features [2]. Recall that two pitches having fundamental fre-
quenciesf1 and f2 are considered as octave equivalent, if
they are related byf1 = 2kf2 for somek ∈ Z. Similarly,
we say that two tempiτ1 and τ2 are octave equivalent, if
they are related byτ1 = 2kτ2 for somek ∈ Z. Then, for
a given tempo parameterτ , the resulting tempo equivalence
class is denoted by[τ ]. For example, forτ = 120 one has
[τ ] = {. . . , 30, 60, 120, 240, 480 . . .}. Now, thecyclic tem-
pogramC induced byT is defined by

C(t, [τ ]) :=
∑

λ∈[τ ] T (t, λ). (1)

Note that the tempo equivalence classes topologically corre-
spond to a circle. Fixing a reference tempoρ (e. g.,ρ = 60
BPM), the cyclic tempogram can be represented by a mapping
Cρ : R × R>0 → R≥0 defined by

Cρ(t, s) := C(t, [s · ρ]), (2)

for t ∈ R and s ∈ R>0. Note thatCρ(t, s) = Cρ(t, 2
ks)

for k ∈ Z and Cρ is completely determined by its values
s ∈ [1, 2). As illustration, Fig. 1 shows various tempograms
for a click track of increasing tempo. Fig. 1b shows a tem-
pogram with harmonics and Fig. 1c the resulting cyclic tem-
pogram. As in the pitch context, the tempo class[3τ ] is re-
ferred to as thetempo dominant. In Fig. 1c, the tempo domi-
nant is visible as the increasing line in the middle. Similarly,
Fig. 1d shows a tempogram with subharmonics and Fig. 1e
the resulting cyclic tempogram. Here, the tempo class[τ/3]
is referred to as thetempo subdominantsee the increasing line
in the middle of Fig. 1e.

3. COMPUTING CYCLIC TEMPOGRAMS

We now describe how discrete cyclic tempograms can be
computed in practice for digital music signals. In a first step,
a novelty curve is extracted (Sect. 3.1). In a second step, local
periodic patterns are derived from the novelty curve. Here,
we discuss two different methods that yield tempograms with
harmonics (Fourier tempogram, Sect. 3.2) and with subhar-
monics (autocorrelation tempogram, Sect. 3.3), respectively.
Finally, we show how cyclic versions are obtained from these
tempograms (Sect. 3.4).
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Fig. 1. (a) Novelty curve of click track of increasing tempo (110 to
130 BPM). (b) Fourier tempogram (showing harmonics).(c) Cyclic
tempogramC60 induced by (b). (d) Autocorrelation tempogram
(showing subharmonics).(e) Cyclic tempogramC60 induced by (d).

3.1. Novelty Curve

Most methods for deriving novelty curves from audio sig-
nals are based on the fact that note onsets typically cause a
sudden change of the signal’s energy and spectrum, see [8,
9]. Here, we exemplarily discuss one such basic approach.
Given a music signal, a short-time Fourier transform is used
to obtain a spectrogramX = (X(t, k))t,k, k ∈ [1 : K] :=
{1, 2, . . . ,K}, t ∈ Z, whereK is the number of Fourier co-
efficients andX(k, t) is thekth Fourier coefficient for time
frame t. In our implementation, each time parametert cor-
responds to a step size ofr = 0.023 seconds. Next, we ap-
ply a logarithm to the magnitude spectrogram|X| yielding
Y := log(1 + C · |X|) for a constantC > 1, see [10]. To ob-
tain a novelty curve, we basically compute the discrete deriva-
tive of the compressed spectrumY . More precisely, we sum
up only positive intensity changes to emphasize onsets while
discarding offsets to obtain the novelty curve∆ : Z → R≥0:

∆(t) :=
∑K

k=1 |Y (t + 1, k) − Y (t, k)|≥0 (3)

for t ∈ Z, where|x|≥0 := x for a non-negative and|x|≥0 :=
0 for a negative real numberx. To obtain our final novelty
curve, again denoted by∆, we subtract the local average and
only keep the positive part, see Fig. 2a for an example. For
refinements and variants of this procedure, we refer to [8, 9].

3.2. Fourier Tempogram

In the next step, we analyze the novelty curve∆ with respect
to local periodic patterns using a short-time Fourier trans-
form similar to [6, 7]. To this end, we fix a window function
W : Z → R centered att = 0 In our experiments, we use a
Hann window of a width corresponding to six seconds. Then,
for a frequency parameterω ∈ R≥0, the complex Fourier co-
efficientF(t, ω) is defined by

F(t, ω) =
∑

n∈Z
∆(n) · W (n − t) · e−2πiωn . (4)
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Fig. 2. (a) Novelty curve∆ of an audio recording of a Waltz by
Shostakovich.(b) Fourier tempogramT F

. (c) Cyclic tempogram
C

F
60. (d) Autocorrelation tempogramT A

. (e)Cyclic tempogramCA
60.

In the musical context, we rather think of tempo measured in
beats per minutes (BPM) than of frequency measured in Hertz
(Hz). Therefore, we use a tempo parameterτ satisfying the
equationτ = 60 · ω. Furthermore, we compute the tempi
only for a finite setΘ ⊂ R>0. In our implementation, we
cover four tempo octaves ranging fromτ = 30 to τ = 480.
Furthermore, we sample this interval in a logarithmic fashion
covering each tempo octave byM samples, where the inte-
ger M determines the tempo resolution. Then, the discrete
Fourier tempogramT F : Z × Θ → R≥0 is defined by

T F(t, τ) = |F(t, τ/60)|. (5)

As an example, Fig. 2b shows the tempogramT F of a record-
ing of a Waltz by Shostakovich. InT F, the tempo on the beat
level (roughlyτ = 216 BPM) and the second harmonics of
this tempo are dominant. However, the tempo on the measure
level of the three-quarter Waltz (roughly72 BPM, third sub-
harmonics ofτ = 216) is hardly noticeable. Actually, since
the novelty curve∆ locally behaves like a track of positive
clicks, it is not hard to see that Fourier analysis responds to
harmonics but suppresses subharmonics, see also [6].

3.3. Autocorrelation Tempogram

In the context of tempo estimation, also autocorrelation-based
methods are widely used to estimate local periodicities [5].
Since these methods, as it turns out, respond to subharmon-
ics while suppressing harmonics, they ideally complement
Fourier-based methods, see [6]. To obtain a discreteauto-
correlation tempogram, we proceed as follows. Again, we fix
a window functionW : Z → R centered att = 0 with sup-
port [−N : N ], N ∈ N. This time, we use a box window of a
width corresponding to six seconds. The local autocorrelation
is then computed by comparing the windowed novelty curve
with time shifted copies of itself. More precisely, we use the

unbiased local autocorrelation

A(t, ℓ) =

∑
n∈Z

∆(n)∆(n + ℓ) · W (n − t)

2N + 1 − ℓ
, (6)

for time t ∈ Z and time lagℓ ∈ [0 : N ]. Recall from Sect. 3.1
that each time parametert ∈ Z corresponds tor seconds (in
our implementation we usedr = 0.023). Then, the lagℓ
corresponds to the tempoτ = 60/(r · ℓ) BPM. We therefore
define theautocorrelation tempogramT A by

T A(t, τ) = A(t, ℓ). (7)

for each tempoτ = 60/(r · ℓ), ℓ ∈ [1 : N ]. Finally, using
standard resampling and interpolation techniques appliedto
the tempo domain, we derive an autocorrelation tempogram
T A : Z × Θ → R≥0 that is defined on the same tempo setΘ
as the Fourier tempogramT F, see Sect. 3.2. The tempogram
T A for our Shostakovich example is shown in Fig. 2d, which
clearly indicates the subharmonics.

3.4. Cyclic Tempogram

Recall that the tempo parameter setΘ comprises four tempo
octaves ranging fromτ = 30 to τ = 480, where each oc-
tave is covered byM logarithmically spaced samples. There-
fore, one obtains a discrete cyclic tempogramCF (resp.CA)
from the tempogramT F (resp. T A) simply by adding up
the corresponding values of the four octaves as described in
Eq. (1). Using a reference tempo ofρ = 60 BPM, we ob-
tain the cyclic tempogramCF

60 (resp. CA
60). Note that these

discrete cyclic tempograms areM -dimensional, where the
cylic tempo axis is sampled atM positions. As an illustra-
tion, Fig. 2c (resp. Fig. 2e) shows the discrete cyclic tem-
pogramCF

60 (resp.CA
60), where we used a tempo resolution of

M = 120. Note that the subharmonic tempo at measure level
corresponding to roughly72 BPM (s = 1.2) is clearly visible
in CA

60, but not inCF
60.

4. APPLICATIONS AND FUTURE WORK

As mentioned before, the cyclic tempograms are the tempo-
based counterparts of the harmony-based chromagrams.
Compared to usual tempograms, the cyclic versions are more
robust to tempo ambiguities that are caused by the various
pulse levels. Furthermore, one can simulate changes in tempo
simply by cyclically shifting a cyclic tempogram. Note that
this is similar to the property of chromagrams, which can be
cyclically shifted to simulate modulations in pitch. As one
further advantage, even low-dimensional versions of discrete
cyclic tempograms still bear valuable local tempo information
of the underlying musical signal.

To illustrate the potential of our concept, we sketch how
cyclic tempograms can be used for automated music segmen-
tation, which is a central tasks in the field of music informa-
tion retrieval [1, 3, 12]. Actually, there are many different
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Fig. 3. Cyclic tempogramsCF
60 (top) andCA

60 (middle) withM = 15 as well as tempo-based segmentations (bottom) for three different pieces.
(a) In The Year 2525by Zager and Evans.(b) Piano Sonata Op. 13 (Pathétique) by Beethoven.(c) Hungarian Dance No. 5 by Brahms.

strategies for segmenting music signals such as novelty-
based, repetition-based, and homogeneity-based strategies.
In the latter, the idea is to partition the music signal into seg-
ments that are homogenous with regard to a specific musical
property [12]. In this context, timbre-related audio features
such as MFCCs or spectral envelopes are frequently used,
resulting in timbre-based segmentations. Similarly, using
chroma-based audio features results in harmony-based seg-
mentations. We now indicate, how our cyclic tempograms
can be applied to obtain tempo-based segmentations (using
a simple two-class clustering procedure for illustration). In
the following examples, we use low-dimensional versions of
CA
60 andCF

60 based onM = 15 different tempo classes. In
our first example, we consider the songIn The Year 2525
by Zager and Evans. This song starts with a slow intro and
contains a slow interlude of the same tempo. The remaining
parts (basically eight repetitions of the chorus section) are
played in a different, much faster tempo. As can be seen
in Fig. 3a, both cyclic tempograms,CF

60 andCA
60, allow for

separating the slow from the fast parts. As second example,
we consider a recording of the first movement of Beethoven’s
Piano Sonata Op. 13 (Pathétique). After a dramaticGrave
introduction, the piece continues withAllegro di molto e con
brio. However, it returns twice toGrave—at the beginning
of the development section as well as in the coda. Using
a purely tempo-based segmentation, the occurrences of the
threeGravesections can be recovered, see Fig. 3b. Here, in
particular the autocorrelation tempogramCA

60 yields a clear
discrimination. Finally, as a third example, we consider a
piano version of Brahms’ Hungarian Dance No. 5, a piece
with many abrupt changes in tempo. This property is well
reflected by the cyclic tempograms shown in Fig. 3c. In par-
ticular, the Fourier tempogramCF

60 separates well the slow
middle part from the other, much faster parts.

In these three example, the cyclic tempograms yield musi-
cally meaningful segmentations purely based on a low dimen-
sional representation of tempo. Actually, these segments can
not be recovered using MFCCs or chroma features, since the
homogeneity assumption does not hold with regard to timbre
or harmony. In practice, various strategies based on differ-
ent musical dimensions are needed to cope with the richness

and diversity of music [3]. For the future, we integrate our
concept of cyclic tempo features into a hierarchical segmen-
tation and structure extraction framework. Furthermore, hav-
ing low-dimensional tempo features (in the order of the12-20
dimensions of chroma and MFCCs), makes it possible to em-
ploy index-based range and nearest neighbor searches, which
is important in view of efficient music retrieval. Finally, we
closer investigate the musical meaning of tempo harmonics
and subharmonics as well as the characteristics and combin-
ability of the various tempograms.
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