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ABSTRACT

The automated extraction of chord labels from audio

recordings constitutes a major task in music information

retrieval. To evaluate computer-based chord labeling pro-

cedures, one requires ground truth annotations for the un-

derlying audio material. However, the manual generation

of such annotations on the basis of audio recordings is te-

dious and time-consuming. On the other hand, trained mu-

sicians can easily derive chord labels from symbolic score

data. In this paper, we bridge this gap by describing a pro-

cedure that allows for transferring annotations and chord

labels from the score domain to the audio domain and vice

versa. Using music synchronization techniques, the gen-

eral idea is to locally warp the annotations of all given data

streams onto a common time axis, which then allows for

a cross-domain evaluation of the various types of chord

labels. As a further contribution of this paper, we extend

this principle by introducing a multi-perspective evaluation

framework for simultaneously comparing chord recogni-

tion results over multiple performances of the same piece

of music. The revealed inconsistencies in the results do not

only indicate limitations of the employed chord labeling

strategies but also deepen the understanding of the under-

lying music material.

1. INTRODUCTION

In recent years automated chord recognition, which deals

with the computer-based harmonic analysis of audio

recordings, has been of increasing interest in the field of

music information retrieval (MIR), see e. g. [1, 4, 5, 7, 12,

14]. The principle of harmony is a central attribute of

Western tonal music, where the succession of chords over

time often forms the basis of a piece of music. Such har-

monic chord progressions are not only of musical impor-

tance, but also constitute a powerful mid-level representa-

tion for the underlying musical signal and can be applied

for various tasks such as music segmentation, cover song

identification, or audio matching [10, 13].

The evaluation of chord labeling procedures itself,
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which is typically done by comparing the computed chord

labels with manually generated ground truth annotations,

is far from being an easy task. Firstly, the assignment of

chord labels to specific musical sections is often ambigu-

ous due to musical reasons. Secondly, dealing with perfor-

mances given as audio recording, the ground truth annota-

tions have to be specified in terms of physical units such

as seconds. Thus, specifying musical segments becomes

a cumbersome task, which, in addition, has to be done for

each performance separately. On the other hand, musicians

trained in harmonics are familiar with assigning chord la-

bels to musical sections. However, the analysis is typically

done on the basis of musical scores, where the sections are

given in terms of musical units such as beats or measures.

When dealing with performed audio recordings, such an-

notations are only of limited use.

As one main contribution of this paper, we introduce

an automated procedure for transferring annotations and

chord labels from the score domain to the audio domain

and vice versa, thus bridging the above mentioned gap be-

tween MIR researchers and musicians. Given the score of

a piece of music, we assume that musical sections spec-

ified in terms of beats or measures are labeled using the

conventions introduced by Harte [4]. In case the score

is given in some computer-readable format such as Mu-

sicXML or LilyPond [6], recent software allows for ex-

porting the score into an uninterpreted MIDI file, where

the tempo is set to a known constant value. This allows for

directly transferring the score-based ground truth annota-

tions to a MIDI-based ground truth annotation. We then

use music synchronization techniques [9] to temporally

align the MIDI file to a given audio recording. Finally,

the resulting alignment information can be used to tempo-

rally warp the audio annotations onto a commonmusically

meaningful time axis, thus allowing a direct comparison to

the ground truth annotations.

As a second contribution, we extend this principle by

suggesting a novel multi-perspective evaluation frame-

work, where we simultaneously compare chord recogni-

tion results over multiple performances of the same piece

of music. In this way, consistencies and inconsistencies in

the chord recognition results over the various performances

are revealed. This not only indicates the capability of the

employed chord labeling strategy but also lies the basis for

a more detailed analysis of the underlying music material.

As a final contribution, we indicate the potential of our

framework by giving such detailed harmonic analyses by



means of three representative examples.

The remainder of this paper is organized as follows.

First, in Sect. 2 we give an overview about music synchro-

nization. Then, in Sect. 3 we present the multi-perspective

evaluation framework. In Sect. 4 we demonstrate our frame-

work giving an in-depth analysis of typical chord recogni-

tion errors. Conclusions and prospects on future work are

given in Sect. 5.

2. MUSIC SYNCHRONIZATION

For the methods presented in the following sections the

concept of music synchronization is of particular impor-

tance. In general, the goal of music synchronization is to

determine for a given position in one version of a piece

of music, the corresponding position within another ver-

sion. Most synchronization algorithms rely on some vari-

ant of dynamic time warping (DTW) and can be summa-

rized as follows. First, two given versions of a piece of

music are converted into feature sequences, say X :=
(X1, X2, . . . , XN ) and Y := (Y1, Y2, . . . , YM ), respec-
tively. In this context, chroma features have turned out

to yield robust alignment results even in the presence of

significant artistic variations. In the following we em-

ploy CENS (Chroma Energy Normalized Statistics) fea-

tures, a variant of chroma features making use of short-

time statistics over energy distributions within the chroma

bands, for a detailed description see [9]. Additionally,

we consider non-standard tunings similar to Gómez [3].

Then, an N × M cost matrix C is built up by evaluat-

ing a local cost measure c for each pair of features, i. e.,

C(n, m) = c(xn, ym) for n ∈ [1 : N ] := {1, 2, . . . , N}
and m ∈ [1 : M ]. Each tuple p = (n, m) is called a
cell of the matrix. A (global) alignment path is a sequence

(p1, . . . , pL) of length L with pℓ ∈ [1 : N ] × [1 : M ]
for ℓ ∈ [1 : L] satisfying p1 = (1, 1), pL = (N, M)
and pℓ+1 − pℓ ∈ Σ for ℓ ∈ [1 : L − 1]. Here,
Σ = {(1, 0), (0, 1), (1, 1)} denotes the set of admissible
step sizes. The cost of a path (p1, . . . , pL) is defined as
∑L

ℓ=1
C(pℓ). A cost-minimizing alignment path, which

constitutes the final synchronization result, can be com-

puted via dynamic programming fromC. For a detailed ac-

count on DTW and music synchronization we refer to [9].

Based on this general strategy, we employ a synchro-

nization algorithm based on high-resolution audio features

as described in [2]. This approach, which combines the

high temporal accuracy of onset features with the robust-

ness of chroma features, generally yields robust music

alignments of high temporal accuracy.

3. MULTI-PERSPECTIVE VISUALIZATION

A score in a computer readable format such as LilyPond or

MusicXML is available for many classical pieces of music

[11]. For a trained musician it is muchmore intuitive to an-

notate the chords of a piece on the basis of the underlying

score than on the basis of an audio recording. However,

such an annotation is not directly transferable to an audio

recording of the same piece, as both use very different no-

tions of time. Furthermore, this also implies that this an-

notation cannot be used directly to evaluate the results of

an audio-based automatic chord labeling method. In this

section, we present a method integrating music synchro-

nization techniques, which allows for a direct comparison

of chord labels derived from different versions of a piece

of music. This approach has several advantages. Firstly,

the manual annotation becomes much more intuitive. Sec-

ondly, the position of a chord recognition error in an audio

recording can be easily traced back to the corresponding

position in the score. This allows for a very efficient in-

depth error analysis as we will show in Sect. 4. Thirdly, a

single score-based annotation can be transfered to an arbi-

trary number of audio recordings for the underlying piece.

In the following, we assume that an audio recording and

a score in computer readable format are given for a piece

of music. Additionally, chord labels manually annotated

by a trained musician on the basis of a score are given as

well as labels automatically derived from the audio record-

ing via some computer-based method. In a first step, we

export the score to a MIDI representation. This can be

done automatically using existing software. Beat and mea-

sure positions are preserved during the export, such that

the score-based annotations are still valid for the MIDI

file. In a next step, we derive CENS features from the

MIDI as well as from the audio as mentioned in Sect. 2,

say X := (X1, X2, . . . , XN ) and Y := (Y1, Y2, . . . , YM ),
respectively. Since each CENS feature corresponds to a

time frame, we can also create two binary chord vector se-

quences, A := (A1, . . . , AN ) and B := (B1, . . . , BM ),
which encode the given chord labels in a framewise fash-

ion. Here, An, Bm ∈ {0, 1}d for n ∈ [1 : N ] and
m ∈ [1 : M ]. The constant d equates the number of con-
sidered chords. A value of one in a vector component en-

codes the chord prevalent in the corresponding time frame.

As we consider in the following only the 24 major and mi-

nor chords (d = 24), we have to map the given chord labels
in a meaningful way to one of these. To this end, we em-

ploy the interval comparison of the dyad, which was used

for MIREX 2009 [8] and takes into account only the first

two intervals of each chord. Thus, augmented and dimin-

ished chords are mapped to major and minor respectively,

as well as any other label having a major or minor third as

its first interval. Using the first four measures of Chopin’s

Mazurka Op. 68 No. 3 as an example, we illustrate the

sequences A for the score and B for the audio in Fig.1(b)

and 1(c), respectively. Note that in Fig.1(b) the time is ex-

pressed in terms of measures, while in Fig.1(c) the time is

given in seconds. This different notion of time prevents a

comparison of A and B at this point.

The next step consists of synchronizing the two CENS

features sequences X and Y as mentioned in Sect. 2. The

resulting alignment path p = (p1, . . . , pL) encodes tempo-
ral correspondences between elements of X and Y . Fol-

lowing the same time frame division, the alignment path

also encodes correspondences between the sequences A

and B. Using this linking information, we locally stretch

and contract the audio chord vector sequence B according

to the warping information supplied by p. Here, we have

to consider two cases. In the first case, p contains a subse-
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Figure 1. Various chord annotations visualized for the Chopin
Mazurka Op. 68 No. 3 (F major), mm. 1-4. (a) Score. (b) Score-
based ground truth chord labels. (c) Computed audio chord labels
(physical time axis). (d)Warped audio chord labels (musical time
axis). (e) Overlayed score and audio chord labels. (f) Multi-
perspective overlay of score and audio chord labels.

quence of the form

(n, m), (n + 1, m), . . . , (n + ℓ − 1, m)

for some ℓ ∈ N, i. e., the ℓ score-related vectors

An, . . . , An+ℓ−1 are aligned to the single audio-related

vector Bm. In this case, we duplicate the vector Bm by

taking ℓ copies of it. In the second case, p contains a sub-

sequence of the form

(n, m), (n, m + 1), . . . , (n, m + ℓ − 1)

for some ℓ ∈ N, i. e., the score-related vectorAn is aligned

to ℓ audio-related vectors Bm, . . . , Bm+ℓ−1. In this case,

we replace the ℓ vectors by the vector Bm+⌊ℓ/2⌋. The re-

sulting warped version of B is denoted by B̄. Note that

the length of B̄ equals the length N of A, see Fig. 1(d).

For the visualization we set all vectors in B̄ to 0, where no
groundtruth chord label is available, as for example in the

middle of measure (abbreviated mm.) 4, see Fig. 1(d).

Overall, we have now converted the physical time axis

of the audio chord vector sequence B to the musically

meaningful measure axis, as used for A. Finally, we

can visualize the differences between the score-based and

the audio-based chord labels by overlaying A and B̄, see

Fig. 1(e). Here, the vertical axis represents the 24 ma-

jor/minor chords, starting with the 12 major chords and

continuing with the 12 minor chords. Blue entries now in-

dicate areas, where the ground truth labels and the audio

chord labels coincide. On the contrary, green and red en-

code the differences between the chord labels. Here, green

entries correspond to the ground truth chord labels derived

from the score, whereas red entries correspond to the au-

dio chord labels. For example, at the beginning of mm. 2

the score as well as the audio chord labels indicate a C

major chord. On the contrary, at the end of mm. 2 there

is a C major chord specified in the score, while the chord

labels derived from the audio incorrectly specify an A mi-

nor chord. Using the measure-based time information, we

can look directly at the corresponding position in the score

and analyze the underlying reason for this error. We will

demonstrate this principle extensively in Sect. 4, where we

present an in-depth analysis of typical errors produced by

automatic chord labeling methods.

Next, we extend the just developed concept by introduc-

ing a multi-perspective visualization, see Fig. 1(f). Here,

we make use of the fact that for classical pieces usually

many different interpretations and recordings are available.

Visualizing the chord recognition results simultaneously

for multiple audio recordings of the same piece, we can an-

alyze the consistency of errors across these recordings. On

the one hand, if an error is not consistent, then this might

indicate a chord ambiguity at the corresponding position.

On the other hand, a consistent error might point to an in-

trinsic weakness of the automatic chord labeler, or an error

in the manual annotations. This way, errors might be auto-

matically classified before they are manually inspected.

In Fig. 1(f) the multi-perspective visualization for the

first four measures of the Chopin Mazurka is represented.

Here, we warped the automatically generated chord labels

for 51 different audio recordings onto the musical time axis



using the steps described above. By overlaying the result-

ing chord vector sequences B̄ for all pieces, we get a vi-

sualization similar to the previous one in Fig. 1(e), so that

the visualization for one audio recording can be seen as a

special case of the multi-perspective visualization. In the

multi-perspective visualization, we distinguish two cases

using two different color scales: one color scale ranges

from dark blue to bright green, and the other color scale

ranges from dark red to yellow. The first color scale from

blue to green serves two purposes. Firstly, it encodes the

score-based ground truth chord labels. Secondly, it shows

the degree of consistency between the automatically gen-

erated audio labels and the score labels. For example, the

dark blue entries at the beginning of mm. 2 show, that a

C major chord is specified in the score labels, and most

audio-based labels coincide with the score label here. At

the end of mm. 2 the bright green shows that the score spec-

ifies a C major, but most audio-based results differ here

from the score label. Analogously, the second color scale

from dark red to yellow also fulfills two purposes. Firstly,

it encodes the audio-based chord labels that differ from the

score labels. Secondly, it shows how consistent an error

actually is. For example, at the beginning of mm. 2 there

are no red or yellow entries, since the score labels and the

audio labels coincide here. However, at the end of mm. 2,

most audio-based chord labels differ from the score labels.

Here most chord labels either specify an F major or an A

minor chord.

4. EVALUATION

None of the currently available automatic chord labeling

approaches works flawlessly. Errors can either be caused

by the inherent ambiguity in chord labeling, or by a weak-

ness special to the employed chord labeler. An in-depth

analysis allowing for a distinction between these error

sources is a very hard and time-consuming task. In this

section, we show how this process can be supported and

accelerated using the evaluation and visualization frame-

work presented in Sect. 3. To this end, we manually cre-

ated score-based chord annotations for several pieces of

music. Furthermore, we implemented a very simple base-

line chord labeler to study very common sources of error

in chord labeling.

4.1 Annotations

For the following evaluation, a trained musician (Verena

Konz) manually annotated the chords for three pieces of

Western classical music. Firstly, Mazurka in F major

Op. 68 No. 3 by Chopin. Secondly, Prelude in C ma-

jor BWV 846 by Bach. Thirdly, the first movement of

Beethoven’s Fifth Symphony, Op. 67. Using the under-

lying score, the annotations were created on the beat-level,

and in the case of the Bach Prelude on the measure-level.

The format and naming conventions used for the annota-

tion were proposed by Harte [4]. The annotator paid much

attention to capture even slight differences between adja-

cent chords. Hence, the bass tone as well as missing or

added tones in chords are marked explicitly using the cor-

responding shorthands.

4.2 Baseline-method for chord recognition

A baseline chord labeler can be implemented using only a

few simple operations. Given an audio recording, we first

extract CENS features (see Sect. 2) resulting in a feature

sequence Y := (Y1, Y2, . . . , YM ). We derive ten features
per second, with each feature considering roughly 1100ms

of the original audio signal. Non-standard tunings are con-

sidered as described in Sect. 2. Then, we define a total of

24 chord templates, 12 templates for the major chords and

12 for the minor chords. The considered templates are 12-

dimensional vectors, in which the respective three tones of

the corresponding major(minor) chord (the root note, the

major(minor) third and the fifth) are set to 1 and the rest to

0. Thus, we obtain e. g. for C major the template

(1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0)

and for C minor the template

(1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0).

Let T in the following denote the set of all 24 chord tem-
plates. In a next step, we choose a distance function d,

which measures the distance of the i-th feature vector Yi to

a template t ∈ T .

d : [0, 1]12 × [0, 1]12 7→ [0, 1]

d(t, Yi) = 1 −
〈t, Yi〉

‖t‖ · ‖Yi‖
,

where 〈·, ·〉 denotes the inner product and ‖·‖ the Euclidean
norm. By minimizing over t ∈ T we can find the best

matching chord template t∗ for the i-th feature vector.

t∗ = argmin
t∈T

d(t, yi)

The chord label associated with t∗ constitutes the final re-

sult for the i-th frame.

4.3 Experiments

We start our evaluation by looking again at our running

example, Chopin Mazurka Op. 68 No. 3. Our proposed

visualization method clearly reveals various chord recog-

nition errors, see Fig. 1(e). Making use of the musical

time axis, these errors can now easily be traced back to the

corresponding position in the score and analyzed further.

For example, at the beginning of the piece, the score-based

ground truth annotation corresponds to F major, whereas

the computed audio-based annotation corresponds to F mi-

nor. A mix-up of major and minor often appears in the

chord recognition task. The next misclassification occurs

at the end of mm. 1, where the ground truth still corre-

sponds to F major, but the computed annotation specifies

a C major, which is actually the subsequent chord in the

ground truth. This may be a boundary problem or an error

in the synchronization.



In the middle of mm. 2, we note that the ground truth

chord is B minor, whereas the computed chord is C major.

Having a look at the score, one can see that the chord in

question is actually a B diminished chord. Due to the re-

duction of the manual annotation to major/minor chords,

this chord is mapped to a B minor chord in the ground

truth. Causing a misclassification here, this is often a prob-

lem in themajor/minor evaluation based on the comparison

of the dyad.

The next misclassifications are due to the musical am-

biguity of chords. At the end of mm. 2 we observe in the

score a C major chord, where the fifth is missing. Compar-

ing on the dyad level, this chord is mapped to a C major

chord in the ground truth. However, all the notes of the

chord (C,E) are also part of an A minor chord, which is ac-

tually computed at this position. A similar problem occurs

at the beginning and at the end of mm. 3, where the ground

truth annotation corresponds to D minor, whereas the com-

puted annotation corresponds to F major. The same phe-

nomenon appears a last time at the end of mm. 4, where F

major is recognized instead of A minor. This phenomenon

is caused by ambiguities inherent to the chord labeling task

and constitutes a very common problem. The chords in

classical music rarely are pure major or minor chords, be-

cause tones are often missing or added. Hence, the recog-

nition as well as the manual annotation process become a

hard task.

Next, we illustrate what kind of additional information

our multi-perspective visualization can provide compared

to the just discussed visualization that only makes use of

a single audio recording. Here, we consider again the first

four measures of the Chopin Mazurka. Instead of using

only one audio recording we overlay the chord recogni-

tion results for 51 different audio recordings in our multi-

perspective visualization, see Fig. 1(f). Looking for con-

sistencies and inconsistencies, it is possible to classify and

investigate single errors even further. For example, the

misclassified F minor chord in the beginning of mm. 1 (see

Fig. 1(e)) seems to be an exception for the specific record-

ing. This can be clearly seen from the multi-perspective

visualization where only for a few of the 51 audio record-

ings F minor is computed instead of F major. Also, the

misclassification at the end of mm. 4 (F major instead of A

minor) is not consistent across all considered audio record-

ings. On the contrary, some of the misclassifications which

we observed in the case of one audio recording (Fig. 1(e)),

are consistently misclassified for most of the other audio

recordings. For example, the diminished chord in the mid-

dle of mm. 2, the chord ambiguity problem occuring at

the end of mm. 2 (A minor instead of C major), the be-

ginning of mm. 3 (F major instead of D minor) and the

end of mm. 4 (F major instead of A minor). Overall, the

multi-perspective chord recognition allows for a classifica-

tion of recognition errors into those specific to a recording

and those independent of a recording.

As a further example we now consider the famous Bach

Prelude in C major, BWV 846. The multi-perspective vi-

sualization for 5 different audio recordings for mm. 19-24

(see Fig. 2) again reflects the chord recognition problems
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Figure 2. Bach BWV 846, mm. 19-24. (a) Score, (b) Multi-
perspective overlay of score and audio chord labels.

related to diminished chords. At the beginning of the ex-

cerpt (mm. 19-21) and at the end (mm. 24) the chord recog-

nition result for all audio recordings consistently agrees

more or less with the ground truth. However, one can

observe two passages with green entries in mm. 22-23.

Looking at the corresponding position in the score, we

find two diminished seventh chords, in mm. 22 an F#:dim7

and in mm. 23 an Ab:dim7. Due to the reduction to ma-

jor/minor chords these two chords are mapped to F# minor

and Ab minor in the ground truth annotation, respectively,

see Fig. 2. However, in most audio recordings an A minor

chord is detected instead of F#:dim7, having two tones (A

and C) in common. And instead of the Ab:dim7 chord an

F minor chord is found, for which even all three tones are

present (F, Ab and C) due to the additional passing note C

in the Ab:dim7. While the seventh chord in mm. 20 is rec-

ognized well for all recordings, we see that in mm. 21 the

F major seventh chord was mistaken for an A minor chord,

again due to chord ambiguity reasons.

As a last example we now consider the first move-

ment of Beethoven’s Fifth Symphony in 37 different audio

recordings. Actually, this piece of music is much more

complicated in terms of harmonic aspects than the pre-

viously considered Chopin and Bach examples. In the

Beethoven example, we can often find the musical prin-

ciples of suspension, passing notes or “unisono” passages.

Here, the automatic chord recognition as well as the man-

ual annotation are challenging and ambiguous tasks. One

example for the use of nonharmonic tones in chords can be

found in mm. 470-474, visualized in Fig. 3. Looking at the

score, we observe in the left hand a D major chord with a

missing fifth (mm. 470-473), but in the right hand a G is

added in octaves to this D major chord. Being the fourth

of D, the G can be seen as a nonharmonic tone in D major.

This causes a chord misclassification for about 15 record-

ings, where G major or alternatively G minor is computed.
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Figure 3. Beethoven’s Fifth, mm. 470-474. (a) Score, (b)Multi-
perspective overlay of score and audio chord labels.






     

 

 





   


    



         
    


 





 










 








 



 



 




 

 



  

 

 

484 485 486 487 488 489 490 491

    C
C#/Db

    D
D#/Eb
 E/Fb
 E#/F

F#/Gb
    G

G#/Ab
    A

A#/Bb
 B/Cb

    c
c#/db

    d
d#/eb

 e/fb
 e#/f
f#/gb
    g

g#/ab
    a

a#/bb
 b/cb

−30

−20

−10

0

10

20

30

(b)

(a)

Musical time (measures)

Figure 4. Beethoven’s Fifth mm. 484-490. (a) Score, (b)Multi-
perspective overlay of score and audio chord labels.

On the contrary, the G seventh chord in mm. 474 is recog-

nized very well for all recordings. Note that the first beats

of the measures 470-474 are not manually annotated, since

the octaves do not represent meaningful chords.

Another example of a musical pattern that is found to

be extremely problematic in the chord recognition task, is

the principle of suspension. We illustrate the problems re-

lated to this musical characteristic using another excerpt

(mm. 484-490) of Beethoven’s Fifth, see Fig. 4. In each

of the measures 484-488, one can find a suspension on the

first eighth, which resolves into a major chord on the sec-

ond eighth. This musical characteristic can easily be spot-

ted in the multi-perspective visualization. Here, we see

that at the beginning of each measure the number of au-

dio recordings for which the computed annotation agrees

with the ground truth is very low and gets higher after-

wards. In mm. 490 finally the first complete pure major

chord is reached. Note that the second beats of mm. 485-

487 consist of passing notes to the next suspension. Hence,

a meaningful chord cannot be assigned resulting in several

beats missing a ground truth annotation.

5. CONCLUSIONS

In this paper, we have introduced a multi-perspective eval-

uation framework that allows for comparing chord la-

bel annotations across different domains (e. g., symbolic,

MIDI, audio) and across different performances. This

bridges the gap between MIR researchers, who often work

on audio recordings, and musicologists, who are used to

work with score data. In the future, we plan to apply

our framework for a cross-modal evaluation of several

computer-based chord labeling procedures, some of which

working in the symbolic domain and others working in the

audio domain. Furthermore, in a collaboration with musi-

cologists, we are investigating how recurrent tonal centers

of a certain key can be determined automatically within

large musical works. Here, again, our multi-perspective

visualization based on a musically meaningful time axis

has turned out to be a valuable analysis tool.
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