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ABSTRACT
Performance analysis of recorded music material has become
increasingly important in musicological research and music
psychology. In this paper, we present various techniques for
extracting performance aspects from field recordings of folk
songs. Main challenges arise from the fact that the recorded
songs are performed by non-professional singers, who devi-
ate significantly from the expected pitches and timings even
within a single recording of a song. Based on a multimodal
approach, we exploit the existence of a symbolic transcrip-
tion of an idealized stanza in order to analyze a given audio
recording of the song that comprises a large number of stan-
zas. As the main contribution of this paper, we introduce
the concept of chroma templates by which consistent and
inconsistent aspects across the various stanzas of a recorded
song are captured in the form of an explicit and semanti-
cally interpretable matrix representation. Altogether, our
framework allows for capturing differences in various musi-
cal dimension such as tempo, key, tuning, and melody.

Categories and Subject Descriptors
H.5.5 [Information Interfaces and Presentation]:
Sound and Music Computing—Signal analysis, synthesis,
and processing ; J.5 [Arts and Humanities]: Music

General Terms
Human Factors

Keywords
Folk songs, music information retrieval, chroma feature, mu-
sic synchronization, performance analysis

1. INTRODUCTION
Folk music is closely related to the musical culture of a

specific nation or region. Even though folk songs have been
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passed down mainly by oral tradition, most of the folk song
research is conducted on the basis of notated music mate-
rial, which is obtained by transcribing recorded tunes into
symbolic, score-based music representations. These tran-
scriptions are often idealized and tend to represent the pre-
sumed intention of the singer rather than the actual per-
formance. After the transcription, the audio recordings are
often no longer used in the actual folk song research. This
seems somewhat surprising, since one of the most impor-
tant characteristics of folk songs is that they are part of oral
culture. Therefore, one may conjecture that performance
aspects enclosed in the recorded audio material are likely to
bear valuable information, which is no longer contained in
the transcriptions.

In this paper, we present various techniques for analyzing
the variations within the recorded folk song material, where
each song consists of a large number of different stanzas.
Main challenges arise from the fact that the recorded songs
are performed by elderly non-professional singers under poor
recording conditions. The singers often deviate significantly
from the expected pitches and have serious problems with
the intonation. Even worse, from a technical point of view,
their voices often fluctuate by several semitones downwards
or upwards across the various stanzas of the same recording.
Finally, there are also significant temporal and melodic vari-
ations between the stanzas belonging to the same folk song
recording. It is important to realize that variabilities and
inconsistencies may be, to a significant extent, properties of
the repertoire and not necessarily errors of the singers. To
measure such deviations and variations within the acoustic
audio material, we use a multimodal approach by exploit-
ing the existence of a symbolically given transcription of an
idealized stanza.

As the main contribution of this paper, we propose a novel
method for capturing temporal and melodic characteristics
of the various stanzas of a recorded song in a compact matrix
representation, which we refer to as chroma template (CT).
The computation of such a chroma template involves several
steps. First, we convert the symbolic transcription as well as
each stanza of a recorded song into a suitable chroma repre-
sentation. On the basis of this feature representation, we de-
termine and compensate for the tuning differences between
the recorded stanzas using the transcription as reference. To
account for temporal variations, we use time warping tech-
niques to balance out the timing differences between the
stanzas. Finally, we derive a chroma template by averaging
the suitably transposed and warped chroma representations



of all recorded stanzas and the reference. The key property
of a chroma template is that it reveals consistent and in-
consistent melodic performance aspects across the various
stanzas. Here, one advantage of our concept is its simplic-
ity, where the information is given in form of an explicit and
semantically interpretable matrix representation. We show
how our framework can be used to automatically measure
variabilities in various musical dimensions including tempo,
pitch, and melody. Extracting such information constitutes
an important step for making the audio material accessible
to performance analysis and to folk song research.

The remainder of this paper is structured as follows. First,
in Sect. 2, we outline current directions in folk song research
and in Sect. 3 we describe the Dutch folk song collection used
in our experiments. In Sect. 4, we summarize the concept of
chroma features, which are used as common mid-level repre-
sentation for comparing the symbolic transcriptions and the
audio material. In particular, we present various strategies
that capture and compensate for variations in intonation
and tuning. In Sect. 5, we introduce and discuss in detail
our concept of chroma templates. Finally, in Sect. 6, we
describe various experiments on performance analysis while
discussing our concept by means of a number of representa-
tive examples. Conclusions and prospects on future work are
given in Sect. 7. Related work is discussed in the respective
sections.

2. FOLK SONG RESEARCH
Folk songs are typically performed by common people of

a region or culture during work or recreation. These songs
are generally not fixed by written scores but are learned
and transmitted by listening to and participating in perfor-
mance. Systematic research on folk song traditions started
in the 19th century. At first researchers wrote down folk
songs in music notation at performance time, but from an
early date onwards performances were recorded using avail-
able technologies. Over more than a century of research,
enormous amounts of folk song data have been assembled.
Since the late 1990s, digitization of folk song holdings has
become a matter of course. An overview of European col-
lections is given in [2]. Digitized folk songs offer interesting
challenges for computational research, and the availability
of extensive folk song material requires computational meth-
ods for large-scale musicological investigation of this data.
Much interdisciplinary research into such methods has been
has been carried out within the context of music informa-
tion retrieval (MIR). An important challenge is to create
computational methods that contribute to a better musical
understanding of the repertoire [21].

Folk songs can be studied from a number of viewpoints:
text, music, performance and social context. The musi-
cal viewpoint is often concerned with the identification of
relationships between folk song melodies at various levels.
For example, using computational methods, motivic rela-
tionships between different folk song repertoires are studied
in [10]. Within individual traditions, the notion of tune fam-
ily is important. Tune families consist of melodies that are
considered to be historically related through the process of
oral transmission. In the WITCHCRAFT project, compu-
tational models for tune families are investigated in order to
create a melody search engine for Dutch folk songs [22, 26].
In the creation of such models aspects from music cognition
play an important role. The representation of a song in hu-

man memory is not literal. During performance, the actual
appearance of the song is recreated. Melodies thus tend to
change over time and between performers. But even within
a single performance of a strophic song interesting variations
of the melody may be found.

Even though folk songs are typically orally transmitted in
performance, much of the research is conducted on the basis
of notated musical material and leaves potentially valuable
performance aspects enclosed in the recorded audio mate-
rial out of consideration. Performance analysis has become
increasingly important in musicological research and in mu-
sic psychology. In folk song research (or more widely, in
ethnomusicological research) computational methods are be-
ginning to be applied to audio recordings as well. Exam-
ples are the study of African tone scales [12] and Turkish
rhythms [8]. In [14], the availability of MIDI transcriptions
has been exploited to automatically segment audio record-
ings of strophic folk songs into constituent stanzas. The
present paper continues this research by comparing the var-
ious stanzas to study performance and melodic variation
within a single performance of a folk song.

3. OGL FOLK SONG COLLECTION
In the Netherlands, folk song ballads (strophic, narra-

tive songs) have been extensively collected and studied. A
long-term effort to record these songs was started by Will
Scheepers in the early 1950s, and it was continued by Ate
Doornbosch until the 1990s [7]. Their field recordings were
usually broadcasted in the radio program Onder de groene
linde (Under the green lime tree). Listeners were encouraged
to contact Doornbosch if they knew more about the songs.
Doornbosch would then record their version and broadcast
it. In this manner a collection, in the following referred to as
OGL collection, was created that not only represents part of
the Dutch cultural heritage but also documents the textual
and melodic variation resulting from oral transmission.

At the time of the recording, ballad singing had already
largely disappeared from popular culture. Ballads were
widely sung during manual work until the first decades of
the 20th century. The tradition came to an end as a conse-
quence of two innovations: the radio and the mechanization
of manual labor. Decades later, when the recordings were
made, the mostly female, elderly singers often had to delve
deeply in their memories to retrieve the melodies. The ef-
fect is often audible in the recordings: there are numerous
false starts, and it is evident that singers regularly began
to feel comfortable about their performance only after a few
strophes.

The OGL collection, which is currently hosted at the
Meertens Institute in Amsterdam, is available through the
Nederlandse Liederenbank (NLB)1. The database also gives
access to very rich metadata, including date and location of
recording, information about the singer, and classification
by tune family and (textual) topic. The OGL collection
contains 7277 audio recordings, which have been digitized
as MP3 files (stereo, 160 kbit/s, 44.1 kHz). Nearly all of
the field recordings are monophonic and comprise a large
number of stanzas (often more than 10 stanzas). When the
collection was assembled, melodies were transcribed on pa-
per by experts. Usually only one stanza is given in music
notation, but variants from other stanzas are regularly in-

1Dutch Song Database, http://www.liederenbank.nl



cluded. The transcriptions are often idealized and tend to
represent the presumed intention of the singer rather than
the actual performance. For a large number of melodies,
transcribed stanzas are available in various symbolic for-
mats including LilyPond2 and Humdrum [19], from which
MIDI representations have been generated (with a tempo
set at 120 BPM for the quarter note). At this date (Novem-
ber 2009) around 2500 folk songs from OGL have been en-
coded. In addition, the encoded corpus contains 1400 folk
songs from written sources, and 1900 instrumental melodies
from written, historical sources, bringing the total number
of encoded melodies at approximately 5800. A detailed de-
scription of the encoded corpus is provided in [23].

4. CHROMA REPRESENTATION
In the following, we assume that, for a given folk song,

we have an audio recording consisting of a various stanzas
as well as a transcription of a representative stanza in form
of a MIDI file, which will act as a reference. Recall from
Sect. 3 that this is exactly the situation we have with the
songs of the OGL collection. In order to compare the MIDI
reference with the stanzas of the audio recording, we use
the well-known chroma features as a common mid-level rep-
resentation, see [1, 9, 13, 20]. Here, the chroma refer to
the 12 traditional pitch classes of the equal-tempered scale
encoded by the attributes C,C], D, . . ., B. Representing the
short-time energy content of the signal in each of the 12
pitch classes, chroma features do not only account for the
close octave relationship in both melody and harmony as it
is prominent in Western music, but also introduce a high
degree of robustness to variations in timbre and articula-
tion [1]. Furthermore, normalizing the features makes them
invariant to dynamic variations.

It is straightforward to transform a MIDI representation
into a chroma representation or chromagram. Using the ex-
plicit MIDI pitch and timing information one basically iden-
tifies pitches that belong to the same chroma class within a
sliding window of a fixed size, see [9]. Disregarding infor-
mation on dynamics, we derive a binary chromagram as-
suming only the values 0 and 1. Furthermore, dealing with
monophonic tunes, one has for each frame at most one non-
zero chroma entry that is equal to 1. Fig. 1 (b) shows a
chromagram of a MIDI reference corresponding to the score
shown in Fig. 1 (a). In the following, the chromagram of the
transcription is referred to as reference chromagram. For
transforming an audio recording into a chromagram, one
has to revert to signal processing techniques. Here, various
techniques have been proposed either based on short-time
Fourier transforms in combination with binning strategies [1]
or based on suitable multirate filter banks [13]. Fig. 1 (c)
shows a chromagram of a field recording of a single stanza.
In the following, we refer to the chromagram of an audio
recording as audio chromagram. In our implementation, all
chromagrams are computed at a feature resolution of 10 Hz
(10 features per second). For technical details, we refer to
the cited literature.

As mentioned above, most singers have significant prob-
lems with the intonation. Their voices often fluctuate by
several semitones downwards or upwards across the various
stanzas of the same recording. To account for poor recording
conditions, intonation problems, and pitch fluctuations we
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Figure 1: Multimodal representation of a stanza of
the folk song NLB72246. (a) Idealized transcription
given in form of a score. (b) Reference chroma-
gram of transcription. (c) Audio chromagram of a
field recording of a single stanza. (d) F0-enhanced
audio chromagram. (e) Transposed F0-enhanced au-
dio chromagram cyclically shifted by eight semitones
upwards (ι = 8).

apply various enhancement strategies similar to [14]. First,
we enhance the audio chromagram by exploiting the fact
that we are dealing with monophonic music. To this end,
we use a modified autocorrelation method as suggested in [3]
to estimate the fundamental frequency (F0) for each audio
frame. Then, we determine the MIDI pitch p ∈ [1 : 120]
having center frequency

f(p) = 2
p−69
12 · 440 Hz (1)

that is closest to the estimated fundamental frequency. Fi-
nally, for each frame, we compute a binary chroma vector
having exactly one non-zero entry that corresponds to the
determined MIDI pitch projected onto the chroma scale.
The resulting binary chromagram is referred to F0-enhanced
audio chromagram, see Fig. 1 (d). By using an F0-based
pitch quantization, most of the noise resulting from poor
recording conditions is suppressed. Also local pitch devi-
ations caused by the singers’ intonation problems as well
as vibrato are compensated to a substantial degree. Fur-
thermore, octave errors as typical in F0 estimations become
irrelevant when using chroma representations.
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Figure 2: Tuned audio chromagrams of a recorded
stanza of the folk song NLB72246. (a) Audio chro-
magram with respect to tuning parameter τ = 6. (b)
Audio chromagram with respect to tuning parame-
ter τ = 6.5.

To account for global differences in key between the MIDI
reference and the recorded stanzas, we revert to the ob-
servation by Goto [6] that the twelve cyclic shifts of a
12-dimensional chroma vector naturally correspond to the
twelve possible transpositions. Therefore, it suffices to de-
termine the cyclic shift index ι ∈ [0 : 11] (where shifts are
considered upwards in the direction of increasing pitch) that
minimizes the distance between a stanza’s audio and ref-
erence chromagram and then to cyclically shift the audio
chromagram according to this index, see Fig. 1. Here, the
distance measure between the reference chromagram and the
audio chromagram is based on dynamic time warping as de-
scribed in Sect. 5.

So far, we have accounted for transpositions that corre-
spond to integer semitones of the equal-tempered pitch scale.
However, the above mentioned voice fluctuations are fluent
in frequency and do not stick to a strict pitch grid. To cope
with pitch deviations that are fractions of a semitone, we
consider different shifts σ ∈ [0, 1] in the assignment of MIDI
pitches and center frequencies as given by (1). More pre-
cisely, for a MIDI pitch p, the σ-shifted center frequency
fσ(p) is given by

fσ(p) = 2
p−69−σ

12 · 440 Hz. (2)

Now, in the F0-based pitch quantization as described above,
one can use σ-shifted center frequencies for different values
σ to account for tuning nuances. In our context, we use
four different values σ ∈

{

0, 1
4
, 1

2
, 3

4

}

in combination with
the 12 cyclic chroma shifts to obtain 48 different audio chro-
magrams. Actually, a similar strategy is suggested in [5, 20]
where generalized chroma representations with 24 or 36 bins
(instead of the usual 12 bins) are derived from a short-time
Fourier transform. We then determine the cyclic shift index
ι and the shift σ that minimize the distance between the
reference chromagram and the resulting audio chromagram.
These two minimizing numbers can be expressed by a single
rational number

τ := ι + σ ∈ [0, 12), (3)

which we refer to as tuning parameter. The audio chro-
magram obtained by applying a tuning parameter is also
referred to as tuned audio chromagram. Fig. 2 illustrates
the importance of introducing the additional rational shift

parameter σ. Here, slight fluctuations around a frequency
that lies between the center frequencies of two neighboring
pitches leads to oscillations between the two correspond-
ing chroma bands in the resulting audio chromagram, see
Fig. 2 (a). By applying an additional half-semitone shift
(σ = 0.5) in the pitch quantization step, these oscillations
are removed, see Fig. 2 (b).

5. CHROMA TEMPLATES
In the last section, we have shown how to handle differ-

ences in intonation and tuning by comparing F0-enhanced
boolean audio chromagrams with corresponding reference
chromagrams. We now show how one can account for tem-
poral and melodic differences by introducing the concept of
chroma templates, which reveal consistent and inconsistent
performance aspects across the various stanzas. Our concept
of chroma templates is similar to the concept of motion tem-
plates proposed in [16], which were applied in the context of
content-based retrieval of motion capture data.

For a fixed folk song, let Y ∈ {0, 1}d×L denote the boolean
reference chromagram of dimension d = 12 and of length
(number of columns) L ∈ N. Furthermore, we assume that
for a given field recording of the song we know the segmen-
tation boundaries of its constituent stanzas. Such a seg-
mentation may be derived manually or, with some minor
degradation, automatically as described in [14]. We will
comment on this in more detail at the end of this section.
In the following, let N be the number of stanzas and let
Xn ∈ {0, 1}d×Kn , n ∈ [1 : N ], be the F0-enhanced and suit-
ably tuned boolean audio chromagrams, where Kn ∈ N de-
notes the length of Xn. To account for temporal differences,
we temporally warp the audio chromagrams to correspond
to the reference chromagram Y . Let X = Xn be one of the
audio chromagrams of length K = Kn. To align X and Y ,
we employ classical dynamic time warping (DTW) using the
Euclidean distance as local cost measure c : R

12 × R
12 → R

to compare two chroma vectors. (Note that when dealing
with binary chroma vectors that have at most one non-zero
entry, the Euclidean distance equals the Hamming distance.)
Recall that a warping path is a sequence p = (p1, . . . , pM )
with pm = (km, `m) ∈ [1 : K] × [1 : L] for m ∈ [1 : M ]
satisfying the boundary condition

p1 = (1, 1) and pM = (K, L)

as well as the step size condition

pm+1 − pm ∈ {(1, 0), (0, 1), (1, 1)}

for m ∈ [1 : M − 1]. The total cost of p is defined as
∑M

m=1 c(X(km), Y (`m)). Now, let p∗ denote a warping path
having minimal total cost among all possible warping paths.
Then, the DTW distance DTW(X, Y ) between X and Y
is defined to be the total cost of p∗. It is well-known that
p∗ and DTW(X, Y ) can be computed in O(KL) using dy-
namic programming, see [13, 17] for details. Next, we locally
stretch and contract the audio chromagram X according to
the warping information supplied by p∗. Here, we have to
consider two cases. In the first case, p∗ contains a subse-
quence of the form

(k, `), (k, ` + 1), . . . , (k, ` + n − 1)

for some n ∈ N, i. e., the column X(k) is aligned to the n
columns Y (`), . . . , Y (`+n−1) of the reference. In this case,
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Figure 3: Chroma template computation for the folk
song NLB72246. (a) Reference chromagram. (b)
Three audio chromagrams. (c) Tuned audio chro-
magrams. (d) Warped audio chromagrams. (e) Av-
erage chromagram obtained by averaging the three
audio chromagrams of (d) and the reference of (a).
(f) Chroma template.

we duplicate the column X(k) by taking n copies of it. In
the second case, p∗ contains a subsequence of the form

(k, `), (k + 1, `), . . . , (k + n − 1, `)

for some n ∈ N, i. e., the n columns X(k), . . . , X(k+n−1) are
aligned to the single column Y (`). In this case, we replace
the n columns by a single column by taking the component-
wise AND-conjunction X(k)∧. . .∧X(k+n−1). For example,
one obtains
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The resulting warped chromagram is denoted by X̄. Note
that X̄ is still a boolean chromagram and the length of X̄
equals the length L of the reference Y , see Fig. 3 (d) for an
example.

After the temporal warping we obtain an optimally tuned
and warped audio chromagram for each stanza. Now, we
simply average the reference chromagram Y with the warped

audio chromagrams X̄1, . . . , X̄N to yield an average chroma-
gram

Z :=
1

N + 1

(

Y +
∑

n∈[1:N ] X̄n

)

. (4)

Note that the average chromagram Z has real-valued entries
between zero and one and has the same length L as the
reference chromagram. Fig. 3 (e) shows such an average
chromagram obtained from three audio chromagrams and
the reference chromagram.

The important observation is that black/white regions of
Z indicate periods in time (horizontal axis) where certain
chroma bands (vertical axis) consistently assume the same
values zero/one in all chromagrams, respectively. By con-
trast, colored regions indicate inconsistencies mainly result-
ing from variations in the audio chromagrams (and partly
from inappropriate alignments). In other words, the black
and white regions encode characteristic aspects that are
shared by all chromagrams, whereas the colored regions rep-
resent the variations coming from different performances. To
make inconsistent aspects more explicit, we further quantize
the matrix Z by replacing each entry of Z that is below a
threshold δ by zero, each entry that is above 1 − δ by one,
and all remaining entries by a wildcard character ∗ indicating
that the corresponding value is left unspecified, see Fig. 3 (f).
The resulting quantized matrix is referred to as chroma tem-
plate for the audio chromagrams X1, . . . , XN with respect to
the reference chromagram Y . In the following section, we
discuss the properties of such chroma templates in detail by
means of several representative examples.

As mentioned above, the necessary segmentation of the
field recording into its stanzas may be computed automat-
ically. Using a combination of robust audio features along
with various cleaning and audio matching strategies, the au-
tomated approach as described in [14] yields a segmentation
accuracy of over 90 percent for the OGL field recordings,
even in the presence of strong deviations. Small segmen-
tation deviations, as our experiments show, do not have a
significant impact on the final chroma templates. However,
severe segmentation errors that are mainly caused by struc-
tural differences between the various stanzas may distort the
final results, as is also illustrated by Fig. 6 (c).

6. PERFORMANCE ANALYSIS
The analysis of different interpretations, also referred to as

performance analysis, has become an active research field [4,
11, 18, 24, 25]. Here, one objective is to extract expressive
performance aspects such as tempo, dynamics, and articula-
tion from audio recordings. To this end, one needs accurate
annotations of the audio material by means of suitable mu-
sical parameters including onset times, note duration, sound
intensity, or fundamental frequency. To ensure such a high
accuracy, annotation is often done manually, which is infea-
sible in view of analyzing large audio collections. For the
folk song scenario discussed in this paper, we now sketch
how various performance aspects can be derived in a fully
automated fashion by using the techniques discussed in the
previous sections. In particular, we discuss how one can
capture performance aspects and variations regarding tun-
ing, tempo, as well as melody across the various stanzas of
a field recording.

For the sake of concreteness, we explain these concepts
by means of our running example NLB72246 shown in
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Figure 4: Various performance aspects for a field
recording of NLB72246 comprising 25 stanzas. (a)
Reference chromagram. (b) Tuning parameter τ for
each stanza. (c) - (f) Tempo curves for the stanzas 1,
7, 19, and 25. (g) Average chromagram. (h) Chroma
template.

Fig. 1 (a). As discussed in Sect. 4, we first compensate
for difference in key and tuning by estimating a tuning pa-
rameter τ for each individual stanza of the field recording.
This parameter indicates to which extend the stanza’s au-
dio chromagram needs to be shifted upwards to optimally
agree with the reference chromagram. Fig. 4 (b) shows the
tuning parameter τ for each of the 25 stanzas of the field
recording. As can be seen, the tuning parameter almost
constantly decreases from stanza to stanza, thus indicating
a constant rise of the singer’s voice. The singer starts the
performance by singing the first stanza roughly τ = 7.75
semitones lower than indicated by the reference transcrip-
tion. Continuously going up with the voice, the singer fin-
ishes the song with the last stanza only τ = 4.5 semitones
below the transcription, thus differing by more than three
semitones from the beginning. Note that in our processing
pipeline, we compute tuning parameters on the stanza level.
In other words, significant shifts in tuning within a stanza
cannot yet be captured by our methods. This may be one
unwanted reason when obtaining many inconsistencies in our
chroma templates. For the future, we think of methods on
how to handle such detuning artifacts within stanzas.

After compensating for tuning differences, we apply
DTW-based warping techniques in order to compensate
for temporal differences between the recorded stanzas, see
Sect. 5. Actually, an optimal warping path p∗ encodes the
relative tempo difference between the two sequences to be
aligned. In our case, one sequence corresponds to one of
the performed stanzas of the field recording and the other
sequence corresponds to the idealized transcription, which
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Figure 5: Various performance aspects for a field
recording of NLB73626 comprising 5 stanzas. (a)
Reference chromagram. (b) Tuning parameter τ for
each stanza. (c) - (f) Tempo curves for the first
4 stanzas. (g) Average chromagram. (h) Chroma
template.

was converted into a MIDI representation using a constant
tempo of 120 BPM. Now, by aligning the performed stanza
with the reference stanza (on the level of chromagram rep-
resentations), one can derive the relative tempo deviations
between these two versions [15]. These tempo deviations
can be described through a tempo curve that, for each posi-
tion of the reference, indicates the relative tempo difference
between the performance and the reference. In Fig. 4 (c)
to (f), the tempo curves for the first four recorded stanzas
of NLB72246 are shown. The horizontal axis encodes the
time axis of the MIDI reference (rendered at 120 BPM),
whereas the vertical encodes the relative tempo difference
in form of a factor. For example, a value of 1 indicates
that the performance has the same tempo as the reference
(in our case 120 BPM). Furthermore, the value 1/2 indi-
cates half the tempo (in our case 60 BPM) and the value 2
indicates twice the tempo relative to the reference (in our
case 240 BPM). As can be seen from Fig. 4 (c), the singer
performs the first stanza at an average tempo of roughly
85 BPM (factor 0.7). However, the tempo is not constant
throughout the stanza. Actually, the singer starts with a
fast tempo, then slows down significantly, and accelerates
again towards the end of the stanza. Similar tendencies can
be observed in the performances of the other stanzas. As
an interesting observation, the average tempo of the stanzas
continuously increases throughout the performance. Start-
ing with an average tempo of roughly 85 BPM in the first
stanza, the tempo averages to 99 BPM in stanza 7, 120 BPM
in stanza 19, and reaches 124 BPM in stanza 25. Also, in
contrast to stanzas at the beginning of the performance, the
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Figure 6: Reference chromagram (top), average chromagram (middle) and chroma template (bottom) for
3 folk song recordings: (a) NLB74437 comprising 8 stanzas. (b) NLB73287 comprising 11 stanzas. (c)
NLB72395 comprising 12 stanzas.

tempo is nearly constant for the stanzas towards the end
of the recording. This may be an indicator that the singer
becomes more confident in her singing capabilities as well as
in her capabilities of remembering the song.

Finally, after tuning and temporally warping the audio
chromagrams, we compute an average chromagram and a
chroma template, see Sect. 5. In the quantization step, we
use a threshold δ. In our experiments, we set δ = 0.1, thus
disregarding inconsistencies that occur in less than 10% of
the stanzas. This introduces some robustness towards out-
liers. The average chromagram and a chroma template for
NLB72246 are shown (g) and (h) of Fig. 4, respectively.
Here, in contrast to Fig. 3, all 25 stanzas of the field record-
ing were considered in the averaging process. As explained
above, the wildcard character ∗ (gray color) of a chroma
template indicates inconsistent performance aspects across
the various stanzas of the field recording. Since we already
compensated for tuning and tempo differences before averag-
ing, the inconsistencies indicated by the chroma templates
tend to reflect local melodic inconsistencies and inaccura-
cies. We illustrate this by our running example, where the
inconsistencies particularly occur in the third phrase of the
stanza (starting with the fifth second of the MIDI reference).
One possible explanation for these inconsistencies may be as
follows. In the first two phrases of the stanza, the melody
is relatively simple in the sense that neighboring notes dif-
fer only either by a unison interval or by a second interval.
Also the repeating note A4 plays the role of a stabilizing an-
chor within the melody. In contrast, the third phrase of the
stanza is more involved. Here, the melody contains several
larger intervals as well as a meter change. Therefore, because
of the higher complexity, the singer may have problems in
accurately and consistently performing the third phrase of
the stanza.

As a second example, we consider the folk song NLB73626,
see Fig. 5. The corresponding field recording comprises 5
stanzas, which are sung in a relatively clean and consis-
tent way. Firstly, the singer keeps the pitch more or less
on the same level throughout the performance. This is also

indicated by Fig. 5 (b), where one has a tuning parameter
of τ = 4 for all, except for the first stanza where one has
τ = 3.75. Secondly, as shown by (c)-(f) of Fig. 5, the average
tempo is consistent over all stanzas. Also, the shapes of all
the tempo curves are highly correlated. This temporal con-
sistency may be an indicator that the local tempo deviations
are a sign of artistic intention rather than a random and un-
wanted imprecision. Thirdly, the chroma template shown in
Fig. 5 (h) exhibits many white regions, thus indicating that
many notes of the melody have been performed in a con-
sistent way. The gray areas, in turn, which correspond to
the inconsistencies, appear mostly in transition periods be-
tween consecutive notes. Furthermore, they tend to have an
ascending or descending course while smoothly combining
the pitches of consecutive notes. Here, one reason is that
the singer tends to slide between two consecutive pitches,
which has the effect of some kind of portamento. All of
these performance aspects indicate that the singer seems to
be quite familiar with the song and confident in her singing
capabilities.

We close our discussion on performance analysis by having
a look at the chroma templates of another three representa-
tive examples. Fig. 6 (a) shows the chroma template of the
folk song NLB74437, the field recording of which comprises
8 stanzas. The template shows that the performance is very
consistent, with almost all notes remaining unmasked. Ac-
tually, this is rather surprising since NLB74437 is one of the
few recordings, where several singers perform together. Even
though, in comparison to other recordings, the performers
do not seem to be particularly good singers and even differ in
tuning and melody, singing together seems to mutually sta-
bilize the singers thus resulting in a rather consistent overall
performance. Also the chroma template shown in Fig. 6 (b)
is relatively consistent. Similarly to the example shown in
Fig. 5, there are inconsistencies that are caused by porta-
mento effects. As a last example, we consider the chroma
template of the folk song NLB72395, where nearly all notes
have been marked as inconsistent, see Fig. 6 (c). This is
a kind of negative result, which indicates the limitations of



our concept. A manual inspection showed that some of the
stanzas of the field recording exhibit significant structural
differences, which are neither reflected by the transcription
nor in accordance with most of the other stanzas. For ex-
ample, in at least two recorded stanzas one entire phrase is
omitted by the singer. In such cases, using a global DTW-
based approach for aligning the stanzas inevitably leads to
poor and semantically meaningless alignments that cause
many inconsistencies. The handling of such structural dif-
ferences constitutes an interesting research problem, which
we plan to approach in our future work.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a multimodal approach for ex-

tracting performance parameters from folk song recordings
by comparing the audio material with symbolically given
reference transcriptions. As the main contribution, we in-
troduced the concept of chroma templates that reveal the
consistent and inconsistent melodic aspects across the vari-
ous stanzas of a given recording. In computing these tem-
plates, we used tuning and time warping strategies to deal
with local variation in melody, tuning and tempo.

The variabilities revealed and observed in this research
may have various causes, which need to be further explored
in future research. Often these causes are related to ques-
tions in the area of music cognition. A first hypothesis is
that stable notes are structurally more important than vari-
able notes. The stable notes may be the ones that form
part of the singer’s mental model of the song, whereas the
variable ones are added to the model at performance time.
Variations may also be caused by problems in remembering
the song. It has been observed that often melodies stabilize
after a few iterations. Such variation may offer insight in the
working of the musical memory. If the aim is to approach an
accurate version of the melody, it may be better to discard
initial variations. Furthermore, melodic variabilities caused
by ornamentations can also be interpreted as a creative as-
pect of performance. Such variations may be motivated by
musical reasons, but also by the lyrics of a song. Sometimes
song lines have an irregular length, necessitating the inser-
tion or deletion of notes. Variations may also be made to
emphasize key words in the text or, more general, to express
the meaning of the song. One would expect such variations
to be more or less evenly distributed over the song and not
be concentrated at the beginning. Finally one may study
details on tempo, timing, pitch, and loudness in relation to
performance, as a way of characterizing performance styles
of individuals or regions.

As can be seen from these issues, the techniques intro-
duced in this paper constitute only a first step towards mak-
ing field recordings more accessible to performance analysis
and folk song research. Only by using automated methods,
one can deal with vast amounts of audio material, which
would be infeasible otherwise. Here, our techniques can
be considered as a kind of preprocessing to automatically
screen a large number of field recordings in order to detect
and locate interesting and surprising features worth being
examined in more detail by domain experts. This may open
up new challenging and interdisciplinary research directions
not only for folk song research but also for music cognition.
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[3] A. de Cheveigné and H. Kawahara. YIN, a
fundamental frequency estimator for speech and
music. The Journal of the Acoustical Society of
America, 111(4):1917–1930, 2002.

[4] S. Dixon. Automatic extraction of tempo and beat
from expressive performances. Journal of New Music
Research, 30:39–58, 2001.
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