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The development of methods and tools for the generation of visually appeal-
ing motion sequences using pre-recorded motion capture data has become
an important research area in computer animation. In particular, data-driven
approaches have been used for reconstructing high-dimensional motion se-
quences from low-dimensional control signals. In this paper, we contribute
to this strand of research by introducing a novel framework for generating
full-body animations controlled by only four 3D accelerometers that are at-
tached to the extremities of a human actor. Our approach relies on a knowl-
edge base that consists of a large number of motion clips obtained from
marker-based motion capturing. Based on the sparse accelerometer input a
cross-domain retrieval procedure is applied to build up a lazy neighborhood
graph in an online fashion. This graph structure points to suitable motion
fragments in the knowledge base, which are then used in the reconstruction
step. Supported by a kd-tree index structure, our procedure scales to even
large datasets consisting of millions of frames. Our combined approach al-
lows for reconstructing visually plausible continuous motion streams even
in the presence of moderate tempo variations which may not be directly
reflected by the given knowledge base.
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1. INTRODUCTION

The increasing availability and demand of high-quality motion cap-
ture (mocap) data has become a driving force for the development
of data-driven methods in computer animation. One major strand
of research deals with the generation of plausible and visually ap-
pealing motion sequences by suitably modifying and combining
already existing mocap material. In the synthesis step, task- and
application-specific constraints are to be considered. Such con-
straints may be specified by textual descriptions [Arikan et al.
2003] or by low-dimensional control signals as supplied by recent
game consoles [Nintendo 2010]. In [Chai and Hodgins 2005], a
data-driven scenario is described where a sparse set of video-based
control signals is used for creating believable character animations.
In their seminal work, Chai and Hodgins present a complete on-
line animation system, where control data obtained by tracking 6–
9 retro-reflective markers is used to construct a local model of the
user’s motion from a pre-recorded set of mocap data. From this
model, a high-dimensional naturally looking animation is synthe-
sized that approximates the controller-specified constraints. One
drawback of this approach is that the usage of retro-reflective mark-
ers and calibrated cameras to generate the control input imposes
various constraints on the recording environment (e. g., illumina-
tion, volume, indoor). Furthermore, such systems are inconvenient
with respect to setup and calibration, while being comparatively
costly. In recent years, inexpensive inertial-based sensors have been
used for controlling animated avatars in video games. Slyper and
Hodgins [2008] describe a first system for retrieving upper-body
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mocap sequences using a small number of low-cost accelerometers
as control input.

The work described in this paper builds upon, combines, and ex-
tends the approaches by Hodgins et al. discussed above. We intro-
duce a complete data-driven system for generating plausible full-
body motion streams, see Figure 1 for an overview. As control in-
put, we employ four 3D accelerometers that are fixed next to the
wrists and ankles of a user’s body in a predefined way. Further-
more, motion priors are given in form of a knowledge base con-
sisting of a large number of motion sequences, which have been
recorded using marker-based mocap systems. In our approach, the
knowledge base may be heterogenous containing motions of differ-
ent types and styles performed by various actors. In a preprocessing
step, we derive suitably simulated acceleration readings from the
stored motion sequences making them comparable with the sen-
sor input. Furthermore, for later usage, the knowledge base is in-
dexed using a kd-tree structure. At runtime, the sensor input is pro-
cessed frame-wise triggering a pose-wise nearest neighbor search.
For the current input frame, the retrieved poses are used to update
a data structure that points to entire motion subsequences in the
knowledge base best explaining the controller input over the past
frames. This data structure, which is an online-capable extension
of the lazy neighborhood graph introduced in [Krüger et al. 2010],
is then used in the reconstruction step to compute the current frame
of the outputted animation. For the reconstruction, we introduce an
optimization procedure that depends not only on the retrieved in-
formation, but also considers the temporal context as well as the
forward-integrated control signals.

1.1 Main contributions

First, we introduce a novel online framework for reconstructing
full-body motion streams based on very sparse accelerometer in-
put. Slyper and Hodgins [2008] aim to reconstruct the upper body
motion using five accelerometers, whereas our method allows for
full body motion reconstruction with only four sensors that are
fixed next to the wrists and ankles. The suitability of the number
and placement of sensors is backed up by our experiments. In con-
trast to all existing methods for motion reconstruction from sparse
accelerometer data, our method is the first that allows for synthe-
sizing new motions from a given knowledge base. Our approach
can flexibly deal with temporal and spatial variations—opposed
to previous methods that reconstruct a motion by choosing a pre-
recorded clip from a database [Slyper and Hodgins 2008]. Further-
more, the database used in Slyper and Hodgins [2008] is small and
contains only a restricted number of different motion clips. In con-
trast, our knowledge base is orders of magnitude larger and con-
tains many different motions performed by different individuals in
various styles. Because of the increased complexity and ambigu-
ity, more sophisticated approaches regarding retrieval and motion
synthesis are required. Opposed to Slyper and Hodgins, our re-
construction is frame accurate where an optimal pose hypothesis
is computed for each frame of the control input.

As second contribution, we present an online variant of a lazy-
neighborhood graph previously introduced in [Krüger et al. 2010].
Opposed to the original graph, our novel variant allows for a very
efficient analysis of continuous motion streams having a speedup of
more than one order of magnitude for the application presented in
this work. Based on our novel approach, NN-based motion retrieval
does not constitute a computational bottleneck any longer.

As a third main contribution, we elaborate on a novel prior model
that minimizes reconstruction ambiguities for data-driven motion
synthesis even in challenging cases and simultaneously accounts

Fig. 1: Overview of the animation system.

for temporal and spatial variations on the controller side and knowl-
edge base side. Our proposed kernel regression-based pose prior is
quite different from other approaches previously presented in the
context of position-based reconstruction (e. g. [Chai and Hodgins
2005]) and synthesis ( [Shin and Lee 2006; Sok et al. 2007; Lee
et al. 2010]). The main advantage of our approach lies in its gen-
erality: our algorithm even produces reasonable results if the poses
retrieved by the NN-search belong to various logically distinct mo-
tions. This property is essential to our application as similar ac-
celerometer (controller input) readings may be associated to very
different motion classes and thus different hypotheses. Novel mo-
tion and smoothness priors used in our paper effectively guide the
synthesis process towards a relatively smooth and plausible recon-
struction. Please note that in previous work in the field of motion
synthesis [Chai and Hodgins 2005] ad-hoc temporal priors that en-
force smoothness by minimizing accelerations have been applied.
In contrast, our approach is fully data driven and adapts to varia-
tions that occur in particular when the directionality of a motion
changes (e.g. at turning points of a locomotion).

1.2 Paper organization

The remainder of this paper is organized as follows. In Section 2,
we discuss previous work related to our approach. In Section 3, we
describe the involved data types (control input, knowledge base)
and discuss indexing issues. The online lazy neighborhood graph is
introduced in Section 4. The optimization procedure underlying the
motion reconstruction step is then explained in detail in Section 5.
Finally, experiments and evaluation are described in Section 6, and
we conclude by discussing limitations and future work in Section 7.

2. RELATED WORK

There are many ways for capturing and recording human motions
including mechanical, magnetic, optical, and inertial devices. Each
motion capturing (mocap) technology has its own strengths and
weaknesses with regard to accuracy, expressiveness, and operating
expenses, see [Maiocchi 1996; Moeslund et al. 2006; Wikipedia
2010] for an overview. For example, optical marker-based mocap
systems typically provide high-quality motion data such as posi-
tional information as joint coordinates or rotational information as
joint angles [PhaseSpace 2010; Vicon 2010]. However, requiring an
array of calibrated high-resolution cameras as well as special gar-
ment equipment, such systems are not only cost intensive but also
impose limiting constraints on the actor and the recording environ-
ment. In recent years, low-cost inertial sensors, which can be easily
attached to an actor’s body or even fit in a shoe, have become popu-
lar in computer game and sports applications [Nike 2010; Nintendo
2010; Slyper and Hodgins 2008]. However, the inertial information
obtained from such sensors, such as joint accelerations, angular ve-
locities, or limb orientations, is often of low expressive power and
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affected by noise. To avoid drifts that often occur when using iner-
tial sensors, various approaches based on sensor fusion have been
proposed to improve and stabilize motion tracking. For example,
in the Xsens system rotational drifts are avoided by incorporating
magnet field sensors [Schepers et al. 2010]. In [Vlasic et al. 2007],
the authors combine inertial sensors with ultrasonic distance sen-
sors to compensate for relative positional drifts. Another strategy
for improving motion capturing is to include prior knowledge on
kinematics or dynamics of the motion to be expected. Here, data-
driven methods, as also employed in this paper, have turned out to
be a powerful approach generating such additional constraints.

The (real-time) control of virtual characters using mocap data—
also known as computer puppetry [Shin et al. 2001]—is one key
challenge in the field of computer animation. Besides the use of
high-dimensional optical systems, various controller-based systems
have been described that allow for generating and reconstructing vi-
sually appealing motion sequences on the basis of low-dimensional
sensor input. In its easiest form, as is also often done in commer-
cial computer game applications, controller data may trigger cer-
tain actions. Low-dimensional sensor input is often used for spec-
ifying free parameters in model-based computer animation, see,
e. g., [Badler et al. 1993; Cooper et al. 2007; Dontcheva et al. 2003;
Oore et al. 2002]. In [Shiratori and Hodgins 2008], inertial-based
control data is used to specify a small number of free parameters in
physically-based character animation. When high-dimension data
has to be generated using only low-dimensional control data, es-
pecially data-driven approaches show promising results. For exam-
ple Feng et al. [2008] use sparse control points and an example-
based model to deform complex geometries. Another approach is
to use the low-dimensional sensor input to retrieve suitable motion
sequences from a database containing high-dimensional mocap se-
quences. For example, Slyper and Hodgins [2008] describe a sys-
tem, where a small number of low-cost accelerometers are used
to identify and playback pre-recorded human upper-body motions.
An extension to this work is sketched in [Kelly et al. 2010], where
a motion database consisting solely of tennis motions is used to
reconstruct the actions of a tennis player wearing six accelerom-
eters. Such reuse of pre-recoded human mocap data requires ef-
ficient retrieval of similar motions from databases [Keogh et al.
2004; Müller et al. 2005], as well as a good understanding of how
motions have to be parametrized in order to yield smooth transi-
tions between several retrieved motion clips [Kovar and Gleicher
2003].

Our approach is inspired by the animation system presented by
Chai and Hodgins [2005], outlined earlier. Opposed to using op-
tical markers and calibrated cameras, we use a sparse set of four
3D accelerometers to generate the control data. Also, we don’t use
a static graph-structure quadratic in memory size, but instead em-
ploy a memory-efficient data structure that much better scales to
larger datasets. Finally, opposed to [Slyper and Hodgins 2008], our
approach allows for handling moderate temporal and other varia-
tions that are not reflected well by the given database motions.

3. CONTROL INPUT AND KNOWLEDGE BASE

In this paper we use four Xsens MTx devices [Xsens 2010] which
provide the control input to our reconstruction framework. The sen-
sors are attached to the lower arms and lower legs next to the wrists
and ankles respectively. Despite the fact that these kind of sensors
provide a lot of different information, including rate of turn, mag-
netic field and orientation, we only use the calibrated readings from
the devices’ accelerometers. Thus our findings can be applied to
much smaller—and cheaper—sensors using accelerometers only.

Fig. 2: The four accelerometers are attached to the lower arms and lower
legs using simple straps.

These calibrated readings are given in the unit m/s2 and are ex-
pressed with respect to the sensors’ local coordinate systems.

In order to make the data originating from these sensors compa-
rable with data originating from the knowledge base, the sensors
have to be carefully aligned with the respective limbs they are fixed
to. Figure 2 shows the placement of the sensors, where the X-axis
of the sensors coincides with the direction of the underlying bone,
pointing away from the body’s center. In case of the arms, we align
the sensors such that their Z-axes are pointing upwards when the
arms are stretched out and the palms are pointing downwards. The
sensors at the legs are placed in a way that the Z-axes are pointing
forward while being orthogonal to their related X-axis as well as
to the rotation axis of the corresponding knee. Finally, the Y-axes
are chosen to form right handed coordinate systems with respect to
the X- and Z-axes. Note that also sensor calibration procedures as
proposed by [Slyper and Hodgins 2008] may be applied. However,
carefully fitting the sensorshas turned out to suffice in the context
of our application.

In the following, we assume that our knowledge base consists of
a sequence of poses indexed by the set [1 : N ] := {1, . . . ,N} with
N denoting the total number of frames. Furthermore, we assume
that each pose is given in joint angle representation denoted by qn,
n ∈ [1 : N ]. To obtain joint positions of a pose, forward kine-
matics need to be applied based on a given skeleton model, which
contains information about the topology, the actor’s bone lengths
as well as the degrees of freedom of each joint. In the following,
we assume that all skeletons underlying the data of our knowledge
base have the same topology. One key mechanism in our approach
is the identification of suitable high-dimensional joint angle data
by using low-dimensional accelerometer readings as query. In this
cross-modal retrieval scenario, we need to compare two different
motion data representations of different dimensionalities. To bridge
this gap, we use virtual sensors for motions of the knowledge base
to simulate accelerometer readings obtained from controller input.
These virtual sensors are placed on the limbs in the same way as the
real sensors. After calculating the positions of these virtual sensors
using forward kinematics, we compute their second time deriva-
tives and obtain their accelerations relative to the global frame.
Then, we simply add the acceleration component corresponding to
gravity, and transform the resulting quantity to the local coordinate
systems of the virtual sensors. In addition to simulated sensor data,
we pre-compute quantities that we later use in the synthesis step of
our method, including the positions xn, velocities vn, and acceler-
ations an of all joints. For normalization purposes, these quantities
are given in the root coordinate system. Note that instead of us-
ing the original skeletons, forward kinematics for all motions (as
well as synthesis) is performed on a standard skeleton, whose bone
lengths are averaged across all skeletons represented in the knowl-
edge base. For all our tests, we neglected the skeleton’s foot and
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(a) (b) (c) (d)

Fig. 3: Online Lazy Neighborhood Graph (OLNG) with M = 4 and K = 8. Each vertical column corresponds to the K nearest neighbors
(each neighbor indicated by a circle) of a sensor reading αt−m+1, m ∈ [1 : M ]. The edges encode temporal coherence between the nearest
neighbors. The figure illustrates the implementation of the OLNG.

hand joints, resulting in a representation with 21 joints and a total
of 43 rotational degrees of freedom.

The simulated sensor accelerations are denoted by αn and in-
dexed using a kd-tree of dimension 4 ·3 = 12. At those low dimen-
sions, Andoni and Indyk [2008] state that kd-trees are well suited
for fast nearest neighbor searches. In our case, such fast nearest
neighbor searches are used to identify all poses in the knowledge
base that are most similar to a given sensor reading, see Section 4.

4. ONLINE LAZY NEIGHBORHOOD GRAPH

In our scenario, controller input is compared with mocap sequences
of the knowledge base using 3D accelerations. However, note that a
comparison on the acceleration level is much less descriptive than,
e. g., on the joint angle or 3D positional level as used in [Chai and
Hodgins 2005]. This may result in a large number of false pos-
itives, in particular when using a framewise retrieval procedure.
Therefore, Slyper and Hodgins [2008] use the temporal coherence
of motions by querying fixed-length sequences of accelerometer
readings. However, temporal variations (e. g. motions performed at
different speeds) are not handled in their approach.

In our approach, we incorporate temporal coherence by using
a data structure referred to as online lazy neighborhood graph
(OLNG). The OLNG structure used in this work is similar to
the lazy neighborhood graph (LNG) introduced in [Krüger et al.
2010], but there are some significant improvements over the origi-
nal method. In particular, we show how the LNG can be built up
incrementally making its construction efficient and online capa-
ble. We assume that the control input consists of a (sampled) con-
tinuous stream of sensor accelerations (. . . ,αt−2,αt−1,αt, . . .),
where αt denotes the current frame at time t ∈ Z. Fixing a num-
ber K of nearest neighbors, let St ⊂ [1 : N ] be the set of size K
consisting of the frame indices of the K nearest neighbors of αt.
Note that St can be computed efficiently using the kd-tree men-
tioned in Section 3. We now consider the last M sensor readings
(αt−M+1, . . . ,αt) for a fixed number M ∈ N. Then, the nodes
of the OLNG can be represented by an M × K array, where the
mth column, m ∈ [1 : M ], corresponds to the sorted set St−m+1,
see Figure 3 (a) for an illustration. Now, the directed edges of the
OLNG, which are strictly monotonous with respect to the column
index, encode temporal coherence between the retrieved indices
stored in the columns. In particular, each edge enforces monotonic-
ity while respecting a maximum bound between connected indices.
The edges allow for constructing paths within the M × K array.
Each such path yields an index sequence, which in turn corresponds
to a motion subsequence within the knowledge base. The main ob-
servation is that each such subsequence is similar to the sensor in-
put (αt−M+1, . . . ,αt). The construction of the paths is based on

the following principles. First, by imposing suitable step size and
index conditions1 for the edges, temporal variations can be mod-
eled by the paths. Second, for a given path, a cost is associated that
depends on the frame similarities (between retrieved subsequence
frames and query frames), the step sizes of the edges (skipped
columns are penalized), and the length of the path (longer paths
are preferred). Third, only K paths are stored. More precisely, for
each node in the last column corresponding to St, a path of min-
imal cost ending in this node is stored. For further details on the
original LNG, we refer to [Krüger et al. 2010].

Since we want to reconstruct motions from a continuous stream
of sensor readings, we have to identify optimal subsequences inside
the knowledge base for every point in time. Rebuilding the LNG for
every new sensor reading would be costly and unnecessary, since
most of the data inside the graph structure can be reused. We now
introduce a novel procedure that allows for efficiently updating the
OLNG. Suppose that the OLNG has been constructed for the read-
ings (αt−M+1, . . . ,αt) and that a new readingαt+1 arrives. First,
for αt+1, the K nearest neighbors are retrieved (using the kd-tree)
and stored in St+1. The OLNG is extended by adding nodes cor-
responding to these indices (forming a new last column). Further-
more, novel edges that end in the added nodes are introduced, see
Figure 3 (b). These edges are chosen in such a way that they fulfill
the step size and index conditions while extending previously con-
structed paths of minimal cost. Finally, the nodes corresponding to
αt−M+1 as well as the involved edges are removed to obtain the
updated OLNG, see Figure 3 (d).

As the graph structure is built incrementally and not as a whole
as in [Krüger et al. 2010], our implementation is suitable for online
applications. There is no latency introduced by our OLNG, even
at the beginning of a data stream. Moreover, the original “static”
approach completely ignores all paths (motion segments) that start
to evolve within the boundaries of a given frame window, regard-
less of their global performance. Due to its incremental nature our
approach detects and considers such paths directly as they appear.
Hence, in contrast to [Krüger et al. 2010], the window size M in our
case only gives an upper bound on the length of retrieved motion
segments without limiting them to that length. Thus, in cases where
no full-length matches can be found, shorter motion fragments are
considered by our method.

In summary, the novel OLNG allows for extremely efficient re-
trieval of motion subsequences which is of central importance for

1As for the mentioned stepsize conditions, however, it should be noted,
that we differ from the original paper: We found that steps enforcing strict
monotonicity in time while simultaneously avoiding temporal warpings by
a factor greater than two perform better than the proposed steps under the
given conditions.
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our online application. More precisely, by using the proposed im-
plementation a speedup of more than one order of magnitude can
be achieved for the examples presented in this work compared to
tests with an implementation based on the static method. Generally
speaking, this speedup is linear in the size of the sliding window M .
Our retrieval procedure can handle moderate temporal variations
and is extremely memory efficient: only the kd-tree of size O(N)
is stored and one OLNG of size O(KM). Furthermore, each up-
date step requires only O(K logN) operations, where the nearest
neighborhood search determines the complexity. Opposed to previ-
ously introduced data structures which are of quadratic complexity,
our approach scales well to large datasets consisting of millions of
frames.

5. MOTION RECONSTRUCTION

The goal of our reconstruction approach is to closely approxi-
mate a performed motion. As our system is driven by a very low-
dimensional control input, there is no way to directly infer complete
high-dimensional motions. Thus, to eventually estimate plausible
full-body results, the missing degrees of freedom need to be syn-
thesized by using the knowledge embedded in the database. While
there exist many methods for synthesizing motions, the method of
choice in most data driven scenarios is to build a new motion based
on similar (“neighboring”) pre-recorded motion clips or poses. We
adopt this basic idea by using the online algorithm described in
Section 4 which provides for each time step t a set of K paths
together with associated costs. In practice, most of the resulting
paths are rather short and have high costs. In the following, we
only consider those I � K paths having the least costs. We de-
note Ct = {ct1, . . . , ctI} to be the costs of these I paths. Further-
more, let Qt = {qt1, . . . ,qtI} be the set of joint angle configu-
rations given by the last frames of all these paths. Analogously
let Xt = {xt

1, . . . ,x
t
I} be the positions, V t = {vt

1, . . . ,v
t
I} be

the velocities, and At = {at
1, . . . ,a

t
I} be the accelerations of the

joints with respect to the root coordinate system. As these quanti-
ties were already computed in the preprocessing step, see Section 3,
they can be easily obtained from the knowledge base at runtime.
Finally, based on the costs Ct = {ct1, . . . , ctI}, we introduce nor-
malized weights denoted by W t = {wt

1, . . . , w
t
I}, where the value

of each weight wt
i is given by

wt
i =

max(Ct)− cti∑I
j=1(max(Ct)− ctj)

. (1)

Now, we formulate the motion reconstruction as an energy min-
imization problem. For each time step we aim to find a pose
qbest that optimally satisfies constraints imposed by the observa-
tion (measured acceleration data) while also being consistent with
similar motion clips retrieved from the database. More precisely,
our energy function to be minimized is based on two components
where a data prior term enforces plausible reconstruction results
and a control term is driven by the measured accelerometer data:

qbest = argmin
q

(wprior ·Eprior(q) + wcontr ·Econtr(q)). (2)

Here, the two weights wprior and wcontr are user-defined constants.
In the following, we will take a closer look on the terms of this en-
ergy function. To this end, we assume that we have already recon-
structed the motion up to time t. Now, at t+ 1, a new control input
αt+1 arrives from the sensors, which is used to update the OLNG.
The most recent information we get from the OLNG are Qt+1 and
W t+1.

In the following sections, joint positions are predicted using short
time integration. At this point we emphasize that despite this fact
our method is not prone to error accumulation because of the fol-
lowing two reasons. First, we only predict the joint positions for
one frame into the future. Second, Qt is continuously updated by
the lazy neighborhood graph, which is based on the pre-recored
database motions.

5.1 The Prior Term

For human motions similarity in a (low dimensional) acceleration
space does not automatically induce similarity on pose or joint ve-
locity level. Thus, for large heterogeneous databases, motions with
similar control signals tend to be scattered in both pose and veloc-
ity space. As our approach relies on such neighborhoods, using the
control signal alone as objective function may yield artifacts such
as jittering or degenerated poses. To avoid implausible results, a
data-driven prior model that measures the a-priori likelihood of a
motion based on the motions given by the knowledge base is used.
Our prior model consists of three different components: First, a
pose prior characterizes the probability of a pose with respect to
the distribution in pose space determined by database samples. Sec-
ond, a motion prior measures the likelihood of a pose regarding
the temporal evolution of a motion. Third, a smoothness prior re-
duces jerkiness. Based on this model a three-term energy function
Eprior with user-defined weights wpose, wmotion and wsmooth is
computed:

Eprior(q) = wpose ·Epose(q)

+ wmotion ·Emotion(q) (3)
+ wsmooth ·Esmooth(q)

In contrast to existing approaches used in the context of motion
synthesis [Chai and Hodgins 2005], the term Eprior is effective
also in cases where the retrieved poses Qt+1 belong to very differ-
ent types of motion. Moreover, ad-hoc smoothness heuristics are
avoided by taking a data-driven approach.

5.1.1 Pose prior. The set of poses Qt+1 with corresponding
weights W t+1 provided by the online algorithm are used to locally
characterize the probability density in pose space. Instead of using
a multivariate normal distribution model as was used by Chai and
Hodgins [2005], we propose a kernel based approach to approxi-
mate the likelihood ppose of a synthesized pose candidate q:

ppose(q) ∝
I∑

i=1

wt+1
i · K(|qt+1

i − q|). (4)

Here, K is a symmetric kernel function. Note that such a kernel-
based representation is well suited to approximate arbitrary shaped
probability density functions including multiple peaks, which is a
desirable property not only for our application but also for data-
driven motion synthesis in general. As for conventional unit in-
tegral kernel functions (e. g. Gaussians), ppose is maximized for
poses that are likely according to the samples included in the
database. To this end, the prior needs to be re-formulated as an
expression suitable for energy minimization. In practice, a square
root kernel is used to compute the energy term Epose:

Epose(q) =

I∑
i=1

wt+1
i ·

√
|qt+1

i − q|. (5)

The above expression yields results (regarding optimality) compa-
rable to ppose (see Figure 4) while—due to the choice of K—not
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Fig. 4: A simple example illustrating the effect of our kernel based approach
in case of clustered data samples. Here, the green dashed lines indicate the
kernel functions centered at the sample positions and the solid blue line
represents our energy term Epose. The dotted purple line symbolizes the
energy function proposed by Chai and Hodgins [2005]. Please note how
the local sample density is determining the likelihood of a pose candidate in
contrast to Chai and Hodgins [2005]: Clusters of samples induce distinctive
local minima of Epose.

being prone to numerically vanishing gradients if ppose ≈ 0, which
is desirable for gradient-based energy minimization techniques.

5.1.2 Motion prior. Besides being plausible on a pose level,
the temporal evolution of a reconstructed motion should be consis-
tent with motions observed in reality. More specifically, the move-
ment of the joints should be directed in a believable way. The latter
objective is achieved by employing a motion prior accounting for
the joint velocities V t+1 and the joint accelerations At+1 of the
neighboring database poses included in Qt+1. To be more precise,
we estimate a probability density distribution for xt+1 (the true
joint positions at time t+ 1) by computing the second order Taylor
expansion at the joint positions xt (associated to qt) using V t+1

and At+1. For the i-th sample (i ∈ {1, .., n}) the estimated posi-
tions x′t+1

i are then given by:

x′t+1
i = xt + vt+1

i ·∆t +
1

2
at+1
i ·∆t2. (6)

To approximate the probability density based on the set {x′t+1
i |i ∈

[1 : I]} we take a kernel-based approach very similar to ppose.
Hence, for the resulting energy term, with x denoting the joint po-
sitions of a pose candidate q, one gets:

Emotion(x) =

I∑
i=1

wt+1
i ·

√
|x′t+1

i − x|. (7)

5.1.3 Smoothness prior. Using prior and control terms for en-
ergy minimization already yields plausible results in many cases.
However, as these two terms at most account for the last synthe-
sized pose, high frequency jitter may occur. In contrast to most
existing approaches which attempt to enforce smoothness by min-
imizing joint accelerations, we make direct use of the a-priori
knowledge provided by the database. A pose q (with joint positions
x) is assumed to be plausible, if the induced joint accelerations are
consistent with the joint accelerations of neighboring database sam-
ples. Again, as for pose and motion priors, the likelihood of a pose
candidate is measured by kernel based density estimation:

Esmooth(a) =

I∑
i=1

wt+1
i ·∆t ·

√
|at+1

i − a| (8)

with

a = ∆t−2 ·
(
x− 2xt + xt−1) . (9)

5.2 The Control Term

Accelerations have already been used to retrieve motion sub-
sequences (and thereby also poses) that are likely to be similar to
the actual performed ones. As the subsequent motion synthesis is
based on these poses, this step already provides a certain degree of
implicit control and effectively restricts the space of possible out-
comes. However, a direct use of these accelerations as control sig-
nal is not a viable choice as it provides not enough discriminatory
power to guarantee a similarity in pose space, which is essential
for a stable motion reconstruction. For exactly that reason, the con-
trol term is computed based on extremal joint positions that closely
match the actual sensor positions.

Let 〈y〉 be the projection of a vector y to the subspace formed by
the components related to those joints which are next to the virtual
sensors. Assuming proper positions xt at frame t the probability
density distribution of the next joint positions at t + 1 is estimated
by numerical integration of the equation of motion using V t:

x̃t+1
i =

〈
xt + vt

i ·∆t
〉

+
1

2
α̂t ·∆t2. (10)

Here, accelerations α̂t are computed by transforming control signal
readings αt to root frame coordinates by using the local frames in-
duced by the previously synthesized pose qt and subtracting grav-
ity. Assuming that the database includes motions similar to the one
performed, we use {x̃t+1

i |i ∈ [1 : I]} to derive an energy term to
be minimized:

Econtr(x) =

I∑
i=1

wt+1
i ·

√
|x̃t+1

i − 〈x〉 |. (11)

Using velocities from the database effectively avoids overshoot-
ing effects that would otherwise occur if for example no smooth
transition between different poses can be synthesized.

Naturally, our approach is only approximate as no direct con-
trol in pose space is available and the quality of results depends
on estimated properties (such as the current pose) and the motion
clips included in the database. Moreover, root accelerations have
not been explicitly considered which make the method less accu-
rate in case of high dynamic root movement. However, despite all
these theoretical deficiencies, the proposed method works well in
practice. The main reason is, that, if a class of motions is included
in the database, the reconstructed motion is mainly driven by this
data and only adjusted by measured joint accelerations.

5.3 Energy Minimization

We employ a gradient descent based method2 to minimize the ob-
jective function (2) with respect to a pose that optimally satis-
fies our statistical and control constraints. Initializing energy mini-
mization with the previously synthesized pose, the method usually
quickly converges after few iterations. During optimization the dif-
ferent user defined weights included in Equation 2 were kept fixed
at the following values: wcontr = 1, wprior = 5, wpose = 0.6,
wmotion = 0.2, wsmooth = 0.2. According to our experience
slightly changing these values does not substantially affect the over-
all quality of reconstruction results.

2The lsqnonlin function (large scale) of MATLAB was used.
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To decrease optimization costs and to improve robustness of
the approach, this minimization is not performed in the high-
dimensional pose domain. As originally proposed by Chai and
Hodgins [2005] a local linear model approximation of the pose
space is applied instead. Using a weighted PCA for dimensionality
reduction we take full advantage of the pose weights W t computed
at each frame. Generally, there is a trade-off between accuracy and
optimization speed. If a fast synthesis is essential, a lower order
PCA approximation will, while being less accurate, yield faster re-
sults. Preserving 99% of the original variance, the dimension of a
pose reduced from 43 for the full pose representation to as few as
14 components on average while still producing visually satisfying
results. Note that the nature of our control signal, in contrast to a
position-based one, may cause scattered and in particular clustered
neighborhoods in pose space and thus suppress strong dimension-
ality reduction.

6. RESULTS

We have tested the effectiveness of our system with simulated as
well as real sensor readings. As relating human perception to nu-
merical distance measures is inherently difficult [Tournier et al.
2009], the widely accepted average RMS error of joint positions
(relative to the skeleton root frame) is used in the following for all
numerical comparisons.

6.1 Tests Based on Real Sensor Readings

In a first test, we reconstructed motions of two different actors
performed in an outdoor setting. As we do not have ground truth
data to quantify the reconstruction accuracy in this case, the results
shown in the video—reconstruction alongside a video recording of
the original performance—only provide a qualitative comparison.
However, the main challenges are illustrated by the given exam-
ples. In addition, the outdoor setting clearly shows that, opposed to
optical systems, the inertial-based devices as used in our scenario
impose only very little constraints on the actor or the recording en-
vironment with regard to lighting conditions, recording volume or
setup.

Due to the time warping capabilities of the OLNG employed for
finding close matches to a given query, our approach is not sen-
sitive to moderate temporal variations. As a consequence, we are
able to synthesize motions at speeds not explicitly covered by the
knowledge base. As it is inherently complicated to create tempo-
ral variation for arbitrary motions, we restricted our analysis to a
sequence of localized jumping jack motions performed at differ-
ent speeds. The results—the reconstruction errors with respect to
ground truth data, given for our method as well as a variant that
avoided to time warp motions in order to match them—are summa-
rized in Figure 13. Here, the lower errors obtained with our method
clearly show the general advantage of the OLNG over a conven-
tional linear search algorithm that does not account for time warped
motions in the retrieval step.

In order to quantify differences between real and simulated sen-
sor readings (computed from given MoCap data) we simultane-
ously captured a set of 41 motions (of one actor) by using Xsens’
MTx sensors and an optical motion capture system (a 12-camera
Vicon system). Then, we reconstructed all these motions on the ba-
sis of the actual sensor readings as well as of simulated ones. The
average reconstruction errors for both scenarios are given in Fig-
ure 6. Although almost all reconstructions on the basis of simulated
data numerically perform slightly better, the differences of the re-
construction errors are much smaller than the reconstruction error
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Fig. 6: Reconstruction error for motions with recorded ground truth. Blue:
reconstruction errors using sensor data (MTx accelerations). Green: re-
construction errors using simulated accelerations. Red: relative difference
between both.
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Fig. 7: Comparison of simulated sensor data (red) and real accelerometer
readings (blue) obtained from an MTx device attached to a user’s left wrist.

of our method per se. Also, both error curves are highly consistent
in their overall course. As demonstrated by the numerical ground
truth comparison simulated sensors yield comparable results to real
readings. This high similarity is furthermore underlined by Figure 7
where real sensor readings are compared directly to simulated ones.
These observations enable us to use the large body of systemati-
cally recorded motions of the HDM05 database [Müller et al. 2007]
for systematic evaluations of our method.

6.2 Tests Based on Simulated Sensor Readings

In this section, we report on a series of tests to evaluate how our
proposed reconstruction behaves under the variation of several im-
portant aspects. To this end, we first take a closer look on how
our reconstruction is affected by the size and diversity of the used
knowledge base. Second, we elaborate on the influence of the win-
dow length M used in the OLNG. Third, we test how the size of
the actor influences the reconstruction process, in particular when
the actor to be reconstructed is much smaller or much larger than
all the actors included in the knowledge base. Finally, we evaluate
how the number and the placing of the sensors affects the quality
of our reconstruction.

6.2.1 General scenarios used for testing. In the following ex-
periments the knowledge base consists of motion clips taken from
the publicly available motion database HDM05, see [Müller et al.
2007]. The database consists of various parts and sections in which
different motion classes including locomotion, grabbing and de-
positing, and sports motions are performed. The motions inside
the database were performed by five different actors, referred to by
their initials (bd, bk, dg, mm, tr). In the following, we denote dif-
ferent knowledge bases by the same naming pattern that was used
in the documentation of the HDM05 data base to describe single
motion files:

HDM {actor} {part}-{scene} {take} {framerate}.
ACM Transactions on Graphics, Vol. PREPRINT, No. PREPRINT, Article PREPRINT, Publication date: April 2011.
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Fig. 5: Using accelerations obtained by four 3D accelerometers attached to a human actor as control input, a full-body animation is
reconstructed using motion fragments retrieved from a knowledge base consisting of motion capture data.

Scenario Knowledge base

1 Contains also motions of actor to be reconstructed
2 Contains only motions of actor to be reconstructed
3 Contains no motions of actor to be reconstructed

Table I. : Summary of the three scenarios used for our evaluations.

In our case, we use asterisks serving as wildcards to represent any
possible value of that field. Furthermore, if an “M” was added to the
name, also copies that have been mirrored at the natural symmetry
axis of the skeleton (inverting “left” and “right”) were added. Anal-
ogously, a suffix “R” means that also the time-reversed counterparts
of the motions were added to the knowledge base. For example, the
knowledge base HDM bd 01-** ** 25M represents all motion clips
from Part 1 of the HDM05 database performed by the actor bd,
together with their mirrored copies.

In all of the following experiments, the used control data was ob-
tained by simulating virtual sensors as described in Section 3 using
a set of test motions also obtained from the HDM05 database. The
actual test motion itself was never included in the knowledge base.
Furthermore, we defined three different reconstruction scenarios,
where the type of the scenario was determined by whether the ac-
tor of the considered test motion was included in the knowledge
base or not, see Table I for an overview.

For some of the following experiments, we additionally defined
three special types of knowledge bases matching the scenarios
shown in Table I.

—DB1: All motion clips of all five actors contained in the HDM05
database together with mirrored copies. In total this knowledge
base comprises about 0.56 million frames (370 minutes of Mo-
Cap at 25 fps). Again, despite the fact that the actor to be recon-
structed is always included in this knowledge base, the corre-
sponding test motions are never included in the knowledge base.

—DBi
2: A subset of DB1 including only motion samples of the ith

(i ∈ [1 : 5]) subject, whose motion is reconstructed.
—DBi

3: DB1 without samples of the subject, whose motion is re-
constructed (DBi

3 := DB1\DBi
2).

6.2.2 Size and diversity of the knowledge base.. In a first ex-
periment, we analyzed how the size and diversity of the knowledge
base influences the quality of the reconstructed test motions. To this
end, we created five sets of test motions (one for every actor), each
containing six motion clips from Part 1 (locomotion) of the HDM05
database, deliberately chosen in such a way that every motion class
described in Part 1 was covered. Additionally we composed a set of

20 different knowledge bases, largely differing in size and diversity
and reflecting all previously described scenarios, and used them to
reconstruct all test motions of all actors.

The reconstructed motions were then compared to the original
test motions using the RMS error of joint positions. The results of
this experiment are shown in Figure 8. The columns give the name
of the knowledge base, the scenarios resulting from combining this
knowledge base with the respective test motions, the size of the
knowledge base (with average numbers of frames for scenario 3,
where all motions of a certain actor had to be removed), and—for
each actor separately—the color-coded averaged RMS errors of the
reconstructed motions.

The first important observation of this experiment is that the re-
construction quality is noticeably better when motions of the actor
to be reconstructed are contained in the used knowledge base (sce-
nario 1 and 2), one however still obtains satisfying results if this is
not the case (scenario 3). This can directly be seen by comparing
subsequent rows in subfigures 8 (b) and 8 (d), as well as by the
prominent blue diagonals in subfigures 8 (a) and 8 (c) represent-
ing scenario 2. As our method is very robust towards variations in
actor sizes (see 6.2.4) and relatively robust towards moderate vari-
ations in speed (see 6.1), this is mainly due to the variations in style
that exist between different actors. When examining the underly-
ing motion data from the HDM05 database it becomes clear that
this is especially true for actor mm, where one can observe large
performance variations even within the same actor category. The
second important observation is that the reconstruction quality only
slightly decreases when knowledge bases become bigger and less
homogeneous. This can be seen by comparing rows correspond-
ing to same scenarios in subfigures 8 (b) and 8 (d), as well as by
comparing the overall appearances of subfigures 8 (a) and 8 (c).
Strictly speaking one should distinguish between a mere increase
of the size of the knowledge base (e.g. obtained by including mir-
rored motions), and the apparent increase of the diversity by in-
cluding new motion classes. This is however quite difficult, as both
attributes are strongly related in most practical scenarios. In par-
ticular the results for actor mm however support our intuition that
increasing the diversity has a higher influence on the results than a
mere inflation of the knowledge base.

Since the averaged RMS error over all frames gives only a lim-
ited insight, we conducted another experiment, in which we an-
alyzed the distribution of the RMS error. To this end, we recon-
structed all motions of the HDM05 database, using the knowledge
bases DB1, DBi

2, i ∈ [1 : 5], and DBi
3, i ∈ [1 : 5], reflecting the

scenarios 1, 2, and 3. While in case of DB1 all motions were re-
constructed using the same knowledge base (except for the absence
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Fig. 8: Average reconstruction error for a given knowledge base and a given
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Fig. 9: (a) Histogram of the average RMS error for the different scenarios,
(b) Influence of the window size M of the OLNG.

of the currently regarded test motion), in case of DBi
2 and DBi

3

only motions performed by the ith actor were reconstructed, and
the results were unified and summarized as DB2 and DB3 respec-
tively. Here, for each scenario, the resulting per frame RMS errors
of all reconstructed motions were accumulated and plotted as his-
togram with a binning of 0.5 cm, see Figure 9 (a). As indicated by
the narrow peaks at relatively low error levels, reconstructed poses
are very likely to be consistent with the original ones. Moreover,
DB1 and DB2 give higher quality results than DB3, as has been
expected.
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Fig. 10: Dependency of the average reconstruction error on the size and
proportions of actors: (a) Comparing the use of original proportions (blue)
in the underlying knowledge base with our standard approach of using
skeletons with averaged bone lengths (green). (b) Uniformly scaling the
actor to be reconstructed, while using averaged skeletons in the underlying
knowledge base. The scaling factor is indicated, ranging from 0.5 to 1.5.

6.2.3 Window size. As our motion synthesis highly depends
on the quality of the local models identified by the OLNG, the size
M of the window used to retrieve paths might be a critical param-
eter. However, as M only defines an upper bound to the lengths
of paths rather than constraining them to a specific length as in
[Krüger et al. 2010], its assignment is far less critical than in the
original approach. Figure 9 (b) shows the reconstruction results us-
ing different window sizes.

6.2.4 Size and proportions of actors. To investigate how dif-
ferent sizes and proportions of actors affect the reconstruction re-
sults, we performed two tests. In a first experiment we built the
knowledge bases (containing simulated sensor readings) using the
original skeleton information of the five different individuals—with
body heights ranging from roughly 170 cm to about 200 cm—
included in HDM05. As can be seen from Figure 10 (a), the recon-
struction error is virtually unaffected by naturally occurring varia-
tions in actor sizes. Also, these numerical findings are supported by
visually comparing the quality of reconstructed motions.

For a second, more synthetic test, we got back to our standard
practice, using knowledge bases built upon skeletons whose bone
lengths were averaged across the different actors. Now, however,
we systematically scaled the bone lengths of the actor to be re-
constructed in the range [0.5, 1.5]—hence modified the simulated
sensor readings—while keeping the knowledge bases unchanged.
To account for the fact that the used point cloud distance measure
linearly depends on the scaling factor, the scaled bone lengths were
transformed to their original size after reconstruction for the sake of
comparison. Figure 10 (b) shows the average reconstruction errors
in the three described scenarios plotted against the scaling factor.
Again, this test indicates that the reconstruction is relatively robust
regarding diversity in body height.

6.2.5 The prior model. As discussed in Section 5.1 the novel
priors substantially improve the reconstruction quality compared
to existing models previously presented in the context of motion
synthesis. In order to validate this claim we made comparisons to
methods that attempt to adapt existing prior models to our frame-
work:

—Using a prior along the lines of Chai and Hodgins [2005]: A lo-
cal multivariate normal distribution was used to approximate the
distribution of local neighbors in pose space and the distance of
a synthesized pose was measured by its Mahalanobis distance to
compute Econtr. Moreover an ad-hoc smoothness prior replacing
the original energy term Esmooth was employed that minimizes
joint accelerations.
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Fig. 11: Comparing the average reconstruction error obtained with the new
prior model (a) to approaches that attempt to adapt existing ones to our
framework: (b) Replacing kernel regression in Econtr, Epose, Emotion

and Esmooth by Mahalanobis distance; (c) Using multivariate normal dis-
tribution prior model for Econtr together with an ad-hoc smoothness as-
sumption.

—Employing the Mahalanobis distance—instead of using the pro-
posed kernel regression method—for each term of the prior
Econtr, Emotion and Esmooth.

The results, the average reconstruction error for each of our
database scenarios summarized in Table 11 clearly evidence the
benefit of using our motion priors together with kernel regression:
The average reconstruction error decreases by about 30% for the
new model.

6.2.6 Tests with different sensor setups. The average recon-
struction error was analyzed for different sparse sensor configu-
rations (cf. Table II) including one to six sensors. This was done
by both a histogram based approach, similar to Section I (see Fig-
ure 12 (a)) performed on the complete HDM05 data base, and—for
the sake of easier comparison—an evaluation of the subset of test
motions described earlier in this section (see Figure 12 (b)). Natu-
rally, additional sensors tend to improve the reconstruction quality
as less information needs to be inferred from the knowledge base.
However, as demonstrated by our results, a large variety of motions
can be well approximated with surprisingly few sensors. This is in
particular true for motions that are performed similarly across dif-
ferent individuals (e.g. walking or running motions) where more
than four sensors gave no substantial improvement. Of course, our
reported results are empiric results with respect to the test motion
data base: Although our test data bases taken from HDM05 con-
tain a variety of motions, they contain rather few motions where
there are different movements of the head and torso for the same
motions of the hands and feet (like sitting down a table without
moving feet and hands vs. other static poses, certain “belly dance”
motions, etc). On the other hand even less than four sensors may
produce reasonable results in certain cases, if the control signal is
expressive enough to differentiate between different motion styles
and if joint movement is highly correlated (such as for walking mo-
tions).

6.3 Runtime

The prototypic implementation of our method is computationally
relatively costly, as a motion synthesis is required for motion recon-
struction. Please note, however, that the search for similar motion
segments in large data bases is no longer a bottleneck, opposed
to existing techniques. As can be seen in Table III, optimization
is the most time-consuming step of the whole pipeline. It takes
about 380 milliseconds per frame to reconstruct a motion based
on a given stream of control data in our single threaded MATLAB
implementation. For all tests presented in this work the size of the
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Fig. 12: Dependency of the average reconstruction error on the sensor
setup: (a) Histogram-based evaluation, performed on the complete HDM05
database (b) Evaluation based on a selected set of test motions

Preprocessing kd-tree construction 1 390ms

Online reconstruction
kd-tree-based NN search 51ms

OLNG update 12ms
Energy minimization 380ms

Table III. : Run times for the components of our reconstruction pipeline
(using DB1 with N ≈ 6 · 105, K = 4096, I = 256). The run times were
measured using single-threaded MATLAB-Code on a Core i7 @ 3.07GHz.
While the run time of the preprocessing is as given, the run times of the
online motion reconstruction are averaged over all frames.

neighborhood used for OLNG and priors/control was K = 4096
and I = 256, respectively.

6.4 Synthesizing a Plausible Root Motion

So far all poses were considered to be normalized with respect to
skeleton root position and orientation. However, there are applica-
tions that aim to synthesize characters that freely move in space
over time, which require a world frame representation of poses.
As no information about the actual root movement is given, the
required data needs to be synthesized from database samples. We
found that using the weighted average of root motions of samples
included in Qt with weights W t already yields acceptable results
in cases where similar motion clips are included in the database.
Although more sophisticated approaches are possible in principle,
we believe that a substantially more accurate and robust estimate
would require additional sensors measuring root orientation and
global positions. A simple example indicating that the proposed
method for generating consistent root motions is given in Figure 13.
Here, the estimate of the root velocity of the run-walk-run motion
sequence presented in the video is shown. The different subsequent
phases (continuously accelerating the running speed, turning into
a short walking phase, turning into a running again) are clearly re-

ACM Transactions on Graphics, Vol. PREPRINT, No. PREPRINT, Article PREPRINT, Publication date: April 2011.



Motion Reconstruction Using Sparse Accelerometer Data • 11

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

(a)
Time [frames]

R
oo

tv
el

oc
ity

[m
/
s]

0 20 40 60 80 100 120 1400

2

4

6

8

10

12

14

16
18

0

0.5

1

1.5

2

2.5

(b)
R

ec
on

st
ru

ct
io

n
er

ro
r[
cm

]
Time [frames]

R
el

at
iv

e
sp

ee
d

Fig. 13: (a) Estimated root speed of a run-walk-run motion. (b) Smoothly
varying the relative speed of a jumping jack motion over time. Here, the
dashed red line indicates the relative speed and the red dots the “hand
clapping” frame for six subsequent jumping jacks. Blue: Reconstruction
error using our method. Green: Reconstruction error using a variant of our
method that does not account for time warped motion sequences.

flected by the root velocity. This example does not only show that
our rather simple method for estimating root motions is of practical
use, but does also demonstrate the capability of our approach to ac-
count for temporal variations of motions. In the underlying HDM05
data base no range of running motions at various speeds have been
captured but only the slight variations of a slow running.

6.5 Limitations

Since our framework largely relies on similarities in joint accelera-
tion space, effective motion reconstruction is possible only if sim-
ilar motion sequences induce similar acceleration sequences and
vice versa. In other words, sensor readings need to be discrimina-
tive enough to differentiate between different motion classes across
different subjects while still covering possible variations. If a mo-
tion is violating this assumption a plausible reconstruction is not
possible.
An obvious limitation of our method is that occasionally jumps be-
tween poses may occur. However, please note that this is a poten-
tial issue of any online method that attempts to reconstruct mo-
tions based on ambiguous data streams. Another general restriction
of the method is that—due to missing positional and orientational
information—root motion is only approximate and that acceptable
results are obtained only, if motions very similar to the one to be re-
constructed are included in the database. Finally, all currently pub-
licly available mocap databases have been designed without our
application in mind. As a result no special care was taken in creat-
ing a skeleton representation whose joint frames are consistent with
the actual motion. While this might be no issue for joint positions,
it substantially affects the usability regarding our method.

7. CONCLUSION AND FUTURE WORK

Although acceleration data of motions contains less information
than positional data we have shown that not only action recognition
but also motion reconstruction is possible in many cases using the
data of surprisingly few accelerometers.

As by exploiting pure accelerometer data only the use of very
small and cheap sensors is possible, and as also our chosen sen-
sor positioning is highly practical, we will build such devices in
future work and exploit them for various tasks requiring motion
puppetry. In this context, it will be essential to allow for real-time
reconstructions. Our current implementation that is based on single
threaded MATLAB code is not fast enough (on current standard
PCs) to meet this goal, but also not too far away: We presume that
code optimizations (and porting code to C++) combined with par-

allelizations exploiting the trend to multi-core CPUs will achieve
this goal in the near future.

The novel data-driven prior model for motion synthesis based on
large, heterogeneous databases lays also the foundation for other
animation tasks: Although technically very different from the ap-
proach suggested by Pullen and Bregler [2002] it can be used as
well for synthesizing specified missing degrees of freedom in key-
frame animations, but also for “texturing” key-frame animations
with details of motions extracted from the databases. It will be an-
other topic of future research to extend our techniques in these di-
rections.
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