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ABSTRACT

We propose a new type of audio feature (HFCC-ENS) as well
as an unsupervised method for detecting short sequences of
spoken words (key-phrases) within long speech recordings.
Our technical contributions are threefold: Firstly, we pro-
pose to use bandwidth-adapted filterbanks instead of classical
MFCC-style filters in the feature extraction step. Secondly,
the time resolution of the resulting features is adapted to ac-
count for the temporal characteristics of the spoken phrases.
Thirdly, the key-phrase detection step is performed by match-
ing sequences of the resulting HFCC-ENS features with fea-
tures extracted from a target speech recording. We evalu-
ate the proposed method using the German Kiel Corpus and
furthermore investigate speech-related properties of the pro-
posed feature.

Index Terms— Speech features, HFCC, key-phrase de-
tection, key-phrase spotting

1. INTRODUCTION

In this paper we propose a novel type of audio feature for
the application of detecting short sequences of spoken words
(key-phrases) within long speech recordings. The phrases to
be detected, also refered to as queries, typically consist of 4–
8 words and have a duration of about 1–3 seconds. Classical
approaches to key-word and key-phrase spotting [1] as well
as to utterance verification [2] employ a supervised approach
where models such as HMMs or SVMs are trained in a pre-
processing step. However, in several applications such kind
of training is not possible as no training material is avaliable
a priori. Recent speech processing approaches therefore pro-
pose to use unsupervised techniques, for example to detect
repeating speech patterns [3]. In this paper we follow these
lines by adopting an unsupervised matching technique that
has succesfully been used in the area of music information
retrieval [4] to the key-phrase spotting task.

A major ingredient to the matching process are suitable
speech features. It has been noted previously that classical
MFCC-features may be outperformed in robust phoneme- and

∗The author is funded by the Cluster of Excellence on Multimodal Com-
puting and Interaction (MMCI) at Saarland University.

(a)

(b)

Fig. 1. Magnitude spectrum of the first 16 bands for both
MFCCs (a) and HFCCs (b). While the center frequencies co-
incide for both representations, the bandwidths differ and are
(a) dependent on the center frequency, and (b) choosen ac-
cording to an ERB-based scale of critical bands.

speech recognition by making the bandwidth of the underly-
ing mel filterbank a free design parameter [5]. We apply this
idea to obtain features which are less speaker dependent than
MFCCs and more robustly describe the phoneme progression
in a sequence of spoken words. Besides the spectral proper-
ties of the speech signals, the temporal evolution of the spo-
ken phrases has to be considered. Classical approaches such
as HMMs encode short-time properties of the target signal
within their model parameters. In our unsupervised setting,
we include temporal properties in the extracted features by
calculating certain short-time statistics. This strategy has re-
cently sucessfully been adopted to unsupervised audio seg-
mentation [6].

After introducing our novel features, refered to as HFCC-
ENS (Sect. 2), we describe the matching procedure for key-
phrase detection (Sect. 3). In Sect. 4, we present evaluation
results and discuss speech-related properties of HFCC-ENS.

2. HFCC-ENS FEATURES

To compute classical mel frequency cepstral coefficients
(MFCCs), an input signal is processed by a short time Fourier
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Fig. 2. (a) MFCC-ENS- and (b) HFCC-ENS-based similarity matrices for the German phrase “Heute ist schönes
Frühlingswetter” sequentially spoken by six male speakers. Regions with column label Spk a and row label Spk b contain
the pairwise comparison of the utterances of speakers a and b, see Fig. 4 for a magnified example.

transform (STFT) with a block length of 20 ms and step size
of 10 ms. Then, center frequencies f1, . . . , f40 are choosen
according to the mel scale of human pitch perception. For a
fixed frame and 1 ≤ j ≤ J , let X(j) denote the j-th STFT-
coefficient. Using triangular windows ∆k centered at the
(fk)k, spectral smoothing is performed yielding 40 mel-scale
components M(k) =

∑J
j=1 ∆k(j) · |X(j)|, 1 ≤ k ≤ 40.

To decorrelate the vector (M(1), . . . ,M(40)) approximately,
a discrete cosine transform (DCT) is applied yielding m =
DCT·M . Depending on the application, only the K-most sig-
nificant coefficients mK = (m(1), . . . ,m(K)) are retained
for further processing (classically K = 12). For MFCCs,
the bandwidths of the triangular filters are determined by
the spacing of the center frequencies fk, see Fig. 1 (a). As
this choice does not follow human perception, the concept
of human factor spectral coefficients (HFCCs) [5] considers
the filter bandwidths as parameters which are independent
of the filterbank spacing. Here, we adopt the particular
choice of using perceptually motivated (bark-scale) critical
bandwidths, where the width of the bark-filter at frequency
f , measured in equivalent rectangular bandwidth (ERB), is
given by E(f) = 6.23f2+93.39f +28.52 Hz [5]. Magnitude
spectra of the resulting triangular filters are shown in Fig. 1
(b).

The resulting HFCCs have a temporal resolution of 100
Hz. Hence they typically show a heavily fluctuating be-
havior and do not appropriately summarize the short-time
characteristics of the speech signal. We therefore adopt a
technique form audio segmentation, where MFCC-features
were modified by calculating short-time statistics [6]. For
this, the vector M is further processed prior to the DCT-
step. Particularly, M is replaced by a normalized version
M/

∑40
k=1 |M(k)| in order to achieve invariance w.r.t dynam-

ics. If
∑40

k=1 |M(k)| is below a threshold, M is replaced
by the uniform distibution. To account for human loudness
sensation, each component of the resulting vector is quan-
tized using a discrete quantizer Q : [0, 1] → {0, 1, 2, 3, 4}
which is approximately logarithmic. To introduce time-based
statistics, the resulting sequence of quantized 40-dimensional
vectors is smoothed by filtering each of the 40 components
using a Hann-window of length ` ms. As a last step, the vec-
tor sequence is downsampled by an integer factor resulting
in a vector sequence of sampling rate f Hz. Each vector is
then decorrelated using a DCT as described above. After
restriction to K coefficients, one obtains a vector sequence
HFCC-ENS`

f of smoothed HFCCs with a smoothing range
of ` ms and sampling rate of f Hz, where ENS stands for
energy normalized statistics. For key-phrase detection, we
found K = 40 (i.e., retaining all coefficients), f = 33.3 Hz
and ` = 400 ms to be appropriate choices. In our evaluation
we also considered likewise constructed MFCC-ENS as a
comparison.

3. UNSUPERVISED KEY-PHRASE DETECTION

In a baseline experiment, we compared the feature-based
similarity of different versions of the same phrase spoken
by different speakers, all taken from the German Kiel Cor-
pus [7]. Particularly, for two feature sequences v1, . . . , vn

and w1, . . . , wm, the similarity 0 ≤ Si,j ≤ 1 between fea-
ture vectors i and j is given by the inner product Si,j :=
〈vi, wj〉/‖vi‖2‖wj‖2. For the case v = w, Fig. 2 shows the
resulting (self-) similarity matrices for both MFCC-ENS and
HFCC-ENS for a fixed phrase sequentially spoken by six
male speakers. Clearly, diagonal-like paths indicating similar
phrases are visible for the HFCC-ENS features, while the



Fig. 3. Top: Diagonal score for matching phrase 1 by the
fourth speaker w.r.t. a database containing all 10 utterances
of the first 4 speakers. Bottom: Median-normalized curve.

MFCC-ENS show only very few of such structures.
Motivated by those observations, we adopt the strategy

of diagonal matching [4] to perform key-phrase detection.
As a preprocessing step, feature sequences v1, . . . , vn and
w1, . . . , wm are extracted from a query phrase v and a speech
recording w, respectively. In this we assume m > n; in ap-
plications, generally m � n holds. Based on the similariy
matrix Si,j , a diagonal score D(i) := 1

n

∑n−1
k=0 S1+k,i+k, 0 ≤

D(i) ≤ 1, is calculated. The graph of D is shown in Fig. 3
(top) for a query phrase v w.r.t. a speech recording w contain-
ing 10 phrases subsequently spoken by each of four female
speakers. Maxima of D indicate similar phrases. To better
isolate such maxima, D is postprocessed by subtracting a me-
dian filtered version followed by renormalization (bottom of
Fig. 3).

Candidate matches are extracted from D by iteratively de-
tecting maximum positions and choosing corresponding re-
gions of w. After having extracted a match at position p, val-
ues of D in the interval [p− n, p + n] are set to zero in order
to avoid overlapping matches. The r-th best match is hence
given by a triplet (r, D(p), [p, p + n− 1]) with p denoting the
maximum position of D in the r-th iteration and [p, p+n−1]
specifying the detected region. In Fig. 3, the first four match-
ing regions, which indeed correspond to the positions of the
query phrase spoken by each of the four speakers, are indi-
cated by boxes.

4. EVALUATION

Our test data was chosen as part of the German Kiel Cor-
pus [7]. It consists 10 different phrases each spoken by 12
different speakers (6 female, f1-f6, and 6 male, m1-m6),
totaling in 120 phrases. The shortest phrase consists of three
words (5 in the mean), the longest of six words; the num-
ber of syllables lies between 4 and 10 (8.4 in the mean).

Fig. 4. HFCC-ENS-based similarity matrices for phrase 1 (a)
by speakers f4 and speaker f6 (second-best diagonal match
to f4), (b) by speakers m5 and f5 with optimal alignment
path obtained by subsequence DTW.

Fig. 5. Mean precision-recall of main detection task com-
prising 36 queries considering the first 20 matches for both
MFCC-ENS (blue) and HCCC-ENS (red) features.

The phrases’ duration lies between 0.7 and 2.25 seconds.
From those phrases, a composite speech recording (called
database for simplicity) is constructed by concatenation, re-
sulting in a total length of 5:41 minutes. All speakers vary
in speaking tempo as well as in their word-level accentua-
tion. For the complete database, both MFCC-ENS400

33.3 and
HFCC-ENS400

33.3 representation were created.
The queries used in our evaluation consist of the first three

phrases of all 12 speakers, a total of 36 individual phrases.
Prior to evaluation, the queries were preprocessed by delet-
ing passages of silence directly before and after the spoken
phrase. This was done automatically by using an endpoint de-
tection algorithm on the basis of zero crossing rate and spec-
tral magnitude.

For each query, we consider the first 20 detected regions.
From those, correct detections were determined manually. In
this, our notion of a correct detection is rather strict, i.e., par-
tially matching phrases were not considered as correct detec-



Fig. 6. Mean precision-recall for the speaker spotting sce-
nario based on the same queries underlying Fig. 5.

tions. As the detection procedure described in Sect. 3 yields
a ranked list of detection results, evaluation was performed
using precision and recall (PR). For each query, this yields
values, (Pr, Rr), 1 ≤ r ≤ 20, with Pr denoting the preci-
sion and Rr denoting the recall up to the r-th match. Fig. 5
shows averaged PR values for all 36 queries for both HFCC-
ENS and MFCC-ENS. Considering the unsupervised setting
and the strict detection criterion, the HFCC-ENS results are
rather convincing.

From the PR values shown in Fig. 5, MFCC-ENS are
clearly not suitable within the proposed key-phrase detection
setting, as they appear to be rather sensitive to varying speak-
ers. Hence, in an additional experiment, we transformed the
key-phrase detection task into a speaker spotting scenario.
More precisely, the same queries were used, but a match was
assumed to be correct only if it corresponded to a phrase spo-
ken by the same speaker. Fig. 6 shows the resulting PR-
diagram, clearly indicating that MFCC-ENS-based matching
retrieves more phrases from the same speaker than HFCC-
ENS matching does. We would like to stress, however, that
the latter experiment was only meant to analyze general fea-
ture properties - the absolute performance in speaker spotting
is only minor.

As our matching procedure makes the implicit assump-
tion that a query and the key-phrases to be detected are of
the same duration, phrases of a significantly differing speak-
ing rate may not be detected. However, our results show
that tempo differences up to 10% are tolerated by diagonal
matching as the standard deviation in tempo of the 10 in-
dividual sentences ranges between 7.2% and 14% (mean of
10%). On the other hand, we may expect another increase
in detection performance when explicitly accounting for such
different tempi. Possible methods to accomplish this are to
allow linear scaling of the tempo by simply changing the fea-
ture’s temporal resolution by adjusting the ENS-parameters `

and f as proposed in [4], or to perform (subsequence-) dy-
namic time warping (DTW) on the similarity matrix D. In
contrast to diagonal matching, classical DTW allows, in a
sense, maximum freedom when aligning a query to a tem-
poral region of the database. Fig. 4 (b) shows an example of
a DTW-based alignment where DTW (correctly) assigned a
query to a matching phrase. However, additional experiments
show that DTW sometimes allows too much freedom in find-
ing an alignment, resulting in too many degenerated matches.
In our future research we will hence investigate suitable types
of restricted DTW to further improve detection results.

5. CONCLUSION

We presented an unsupervised approach for detecting spoken
key-phrases in recorded speech signals. As a fundamental
ingredient we used bandwidth-adapted HFCC features com-
bined with short-time statistics resulting in newly proposed
HFCC-ENS features. Our evaluations show that HFCC-ENS
to a significant extent characterize the speech progression
independently of the speaker, while alternative MFCC-ENS
features are more speaker dependent. For the detection step,
we demonstrated that a diagonal matching-based approach
performs very well, but may yet be improved by using re-
stricted forms of DTW to be robust to significantly differing
speaking tempi. For future work, we see strong potentials
of the proposed HFCC-ENS features in the areas of unsu-
pervised pattern discovery (e.g., [3]), automatic structure
analysis and efficient retrieval of speech content.
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