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ABSTRACT

In this paper, we present automated methods for estimating note in-

tensities in music recordings. Given a MIDI file (representing the

score) and an audio recording (representing an interpretation) of a

piece of music, our idea is to parametrize the spectrogram of the

audio recording by exploiting the MIDI information and then to es-

timate the note intensities from the resulting model. The model is

based on the idea of note-event spectrograms describing the part of

a spectrogram that can be attributed to a given note event. After ini-

tializing our model with note events provided by the MIDI, we adapt

all model parameters such that our model spectrogram approximates

the audio spectrogram as accurately as possible. While note-wise

intensity estimation is a very challenging task for general music, our

experiments indicate promising results on polyphonic piano music.

Index Terms— note intensities, audio parametrization, music

synchronization, performance analysis.

1. INTRODUCTION

The score of a piece of music basically specifies note parameters

such as the pitch, the onset position and the duration. Musical nu-

ances beyond the score are subject to the interpretation by a musi-

cian. For example, timings and dynamics (intensities) are not taken

as fixed constants and offer a musician the artistic freedom to form

a piece of music in his or her own way. Also parameters referring to

the timbre are often strongly influenced by the musician. Capturing

these musical nuances is important for many different fields in music

signal processing. For example, it allows for an automated analysis

of differences between several interpretations of a piece of music, as

done in the field of performance analysis [1, 2]. A compact descrip-

tion of the nuances might also lead to more efficient compression

approaches or higher quality in applications of source separation.

In this contribution, we focus on the estimation of note inten-

sities in recordings of polyphonic piano music. For this task, tech-

niques related to source separation are necessary to distinguish indi-

vidual note events in an audio recording. In our scenario, we employ

a score-informed strategy, where note-event information is given by

an additional score-like MIDI file. Similar approaches have been pre-

viously applied mainly for source separation. For example, in [3] the

authors describe a score-informed source separation system that can

be used to separate audio recordings into instrument tracks, where

the score is only used to replace a multiple pitch estimation step. In

[4], MIDI files are employed to synthesize audio files that are sub-

sequently used to initialize a probabilistic source separation frame-

work. Finally, the system presented in [5] allows for removing solo

instruments from a polyphonic recording. However, none of these

approaches estimates properties related to individual note events.

Given a MIDI file and an audio recording of a piece of music, our

idea is to employ a parametric model that describes a spectrogram as

a sum of note-event spectrograms. Here, each note-event spectro-

gram describes the part of a spectrogram that can be attributed to

a specific note event. Our approach starts by initializing the pitch,

onset and duration parameters in our model using the note events

provided by the MIDI file. In the second step, we adapt the onset

and duration parameters by aligning the note events with their cor-

responding occurrences in the audio using a high-resolution music

synchronization approach [6]. In the third step, we iteratively mod-

ify parameters in our model related to the acoustic representation of

a note event such that our model spectrogram approximates the audio

spectrogram as accurately as possible. In a final step, the individual

note intensities are estimated using the adapted note-event spectro-

grams described by the model. An example of the final estimation

result is given in Fig. 1.

Because of a lack of annotated ground truth data, evaluating the

quality of estimated note intensities is a challenging task itself. In

our experiments, we use audio recordings obtained by a Yamaha

Disklavier. Equipped with optical sensors and electromechanical de-

vices, such pianos allow for recording the key movements along with

the acoustic audio data. On the one hand, the key movement data can

be used to derive expected note intensities as described below. On

the other hand, we can use our procedure to estimate the note intensi-

ties using the audio data. Comparing the expected with the estimated

note intensities allows for a first assessment of the estimation quality.

The remainder of the paper is organized as follows. In Sect. 2,

we introduce our novel procedure for estimating note intensities in

audio recordings. Our experiments on piano music are described in

Sect. 3, and conclusions and prospects on future work are given in

Sect. 4. Further related work is discussed in the respective sections.

2. PARAMETRIC SPECTROGRAM MODEL AND NOTE

INTENSITY ESTIMATION

To describe an audio recording of a piece of music parametrically,

many different musical and acoustical aspects have to be considered

[7, 8]. Here, one requires parameters to encode the pitch as well

as the onset position and duration of note events. Other parameters

reflect tuning and timbre of specific instruments or encode amplitude

and activity progressions. In this section, we start with a description

of our model and its parameters (Sect. 2.1). Then, in Sect. 2.2 and

2.3, we describe how we exploit the information provided by a MIDI

file to find parameters such that our model accurately approximates

a given audio recording. Finally, in Sect. 2.4, we describe how note

intensities are derived from the model parameters.

2.1. Parametric Spectrogram Model

Let Y ∈ R
K×N
≥0 denote the magnitude spectrogram of a given audio

recording. Our strategy is to approximate Y by means of a model

spectrogram Yλ, where λ denotes the free model parameters. The
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Fig. 1. Illustration of our note intensity estimation procedure using

three measures of Burgmüller, Op. 100, Etude No. 2 as an example.

The color encodes the note intensity. Left: Note events taken from a

MIDI generated from score data. The note intensities are constant for

all notes. Right: Note events derived from our model approximating

an audio recording.

first element of λ is a set M := {µm | m ∈ [1 : M ]} with note

events µm = (pm, tm, dm). Here, pm describes the MIDI pitch, tm
the onset position and dm the duration of the note event. Using the

index set [1 : M ] we define Yλ as a sum of note-event spectrograms

Ym,λ. More precisely, we define Yλ at frequency bin k ∈ [1 : K]
and time frame n ∈ [1 : N ] as

Yλ(k, n) :=
∑

m∈[1:M ]

Ym,λ(k, n),

where each Ym,λ denotes the part of Yλ that is attributed to µm.

Each Ym,λ consists of a component describing the amplitude or ac-

tivity over time and a component describing the spectral envelope of

a note event. We define

Ym,λ(k, n) := αm(n) · ϕpm,τ,γ(ωk),

where ωk denotes the frequency in Hertz associated with the k-th

frequency bin. Here, αm ∈ R
N
≥0 denotes the activity of the m-th

note event in the N time frames. We set αm(n) := 0, if the time po-

sition associated with frame n lies in R\ [tm, tm+dm]. The spectral

envelope associated with a note event is described using a function

ϕ : R → R≥0. More precisely, to describe the frequency and energy

distribution of the first L partials of a specific note event, ϕ depends

on a pitch p ∈ [1 : 127], a parameter τ ∈ [−1, 1]127 related to the

tuning and a parameter γ ∈ [0, 1]L related to the energy distribution

over the L partials. We define for a frequency ω in Hertz

ϕp,τ,γ(ω) :=
∑

ℓ∈[1:L]

γℓ · κ(ω − ℓ · f(p+ τp)).

The function κ : R → R≥0 is used to describe the shape of a partial

in frequency direction. Here, we use a Gaussian centered around

zero with a suitably chosen, fixed variance. Furthermore, f : R →
R≥0 defined by f(p) := 2(p−69)/12 · 440 denotes the mapping of

the pitch to the frequency scale. To account for non-standard tunings,

we express the fundamental frequency associated with pitch p by the

term f(p + τp). This completes our model and λ := (M, α, τ, γ)
denotes the set of all free parameters, where α := {αm | m ∈ [1 :
M ]}.

Note, that the number of free parameters is kept low by sharing

the parameters τ and γ between all note events. Here, a low number
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Fig. 2. Illustration of the first iteration of our parameter estimation

procedure continuing the example shown in Fig. 1. (a): Audio spec-

trogram Y to be approximated. (b)-(e) show the model spectrogram

Yλ after certain parameters are estimated. (b): Parameter M is ini-

tialized with MIDI note events generated from score data. (c): Note

events in M are synchronized with the audio recording. (d): Ac-

tivity α and tuning parameter τ are estimated. (e): Overtone energy

distribution parameter γ is estimated.

allows for an efficient parameter estimation process as described be-

low. Furthermore, sharing the parameters prevents model overfitting,

which we observed when using a higher number of parameters.

Next, we describe how a set of parameters λ can be found, such

that a given audio spectrogram Y is approximated by Yλ as accu-

rately as allowed by the model. More precisely, we look for a λ∗

with

λ
∗ = argmin

λ
‖Y − Yλ‖F ,

where ‖·‖F denotes the Frobenius norm. In the following, we il-

lustrate the individual steps in our parameter estimation procedure

in Fig. 2, where a given audio spectrogram, shown in Fig. 2(a), is

approximated by our model (Fig. 2(b)-(e)).

2.2. Initialization and Estimation of Note Timing Parameters

To initialize our model, we exploit the available MIDI information

and fill M with the MIDI note events. For the m-th note event, we

then set αm(n) := 1, if the time position associated with frame n

lies in [tm, tm + dm]. Furthermore, we set τ = (0, . . . , 0) and γ =



(1, 0, . . . , 0). An example model spectrogram after the initialization

is given in Fig. 2(b).

Our parameter estimation procedure starts by modifying the on-

set positions and durations of the model note events in M. To this

end, we employ a high-resolution music synchronization approach

described in [6] to align the note events with their corresponding oc-

currences in the audio. The procedure is based on Dynamic Time

Warping (DTW) and chroma features but extends previous synchro-

nization methods by introducing novel onset-based features to yield

a higher alignment accuracy. Using the resulting alignment we deter-

mine for each note event the corresponding position in the audio and

update the onset position and duration of the note event in M accord-

ingly. After the synchronization, the parameter M remains constant

during the estimation of the remaining parameters. Fig. 2(c) shows

an example of a model spectrogram after the estimation of note tim-

ings.

2.3. Estimation of Remaining Model Parameters

To estimate the remaining parameters of λ, we look for (α, τ, γ) that

minimize the function d(α, τ, γ) := ‖Y − Y(M,α,τ,γ)‖F , where d

describes the distance between the audio and the model spectrogram.

Here, we need to consider range constraints for the parameters. For

example, τ is required to be an element of [−1, 1]127. While there

are several choices for a minimization approach, we employ a vari-

ant of the interior points method described in [9]1. To this end, we

fix two parameters and minimize d regarding the third. For exam-

ple, to get a better estimate for α, we fix τ and γ and minimize

g(·, τ, γ). This process is repeated until all three parameters con-

verge. Figs. 2(d) and (e) illustrate the first iteration of our parameter

estimation. Here, Fig. 2(d) shows the spectrogram described by our

model after the estimation of the tuning parameter τ and the activ-

ity parameter α. Fig. 2(e) shows the spectrogram model after the

estimation of the energy distribution parameter γ. Here, one can ob-

serve that our model focuses on the harmonic parts of a spectrogram

while mainly ignoring the noisy percussive elements.

The main ideas behind [9] can be summarized as follows. Let

h : Rd → R be a function to be minimized and x ∈ R
d. Then the

method computes the first and second derivative of h numerically

at x and derives a quadratic approximation of h using the Taylor

series. The Taylor approximation of h is assumed to be meaningful

only in a neighborhood of x, the so called trust region. Instead of

minimizing h, the method then minimizes the Taylor approximation

within the trust region yielding a new value x∗. If h(x∗) > h(x),
then the trust region was too large and the approximation of h was

insufficient. In this case, the trust region is decreased and the process

is repeated for x. If h(x∗) ≤ h(x), then x is set to x∗ and the process

is repeated until x converges. Possible parameter range constraints

are considered in [9] by a barrier approach. Here, the basic idea

is to reformulate the function h by including penalty terms that get

increasingly large when the value for a parameter is invalid.

2.4. Note Intensity Estimation

After the parameter estimation, the audio spectrogram Y is approxi-

mated by Yλ as precisely as allowed by the model. In particular, the

model describes the note-event spectrograms Ym,λ, that can be used

to derive an intensity value for each note event. The energy related

1A popular implementation of this procedure can be found in the Matlab
Optimization Toolbox software package.

to the m-th note event in frame n is given by

Em(n) :=
∑

k∈[1:K]

Ym,λ(k, n)
2
.

To describe the intensity of a note event by a single value, we define

I(m) := max
n∈[1:N ]

Em(n)0.3.

Here, the exponent 0.3 is used so that the note intensity roughly

approximates the perceived loudness of the human auditory system

[10, chapter 8]. The result of our method is illustrated in Fig. 1.

Here, the left half of Fig. 1 shows note events from a MIDI file gen-

erated from score data. The note intensities are constant for all note

events. The right half shows the result of our procedure, where note

timings and intensities are estimated from an audio recording.

3. EXPERIMENTS

For our evaluation, we employ a database consisting of Disklavier

recordings of various pieces from the Western classical music reper-

toire2. For each audio recording, the Disklavier automatically gen-

erates a MIDI file, which can be regarded as a kind of ground truth

annotation. For example, the MIDI onset-positions and durations

correspond closely to those in the audio recordings. Particularly in-

teresting for our evaluation are the velocity values, which symboli-

cally encode the dynamics in a MIDI file. Here, a translation of the

symbolic velocity values to physical note intensities would allow for

a simple way to evaluate our method. However, this translation is

not trivial for polyphonic music because of the complex interaction

of multiple sound sources and other acoustical effects. To approx-

imate such a translation, we built up a dictionary that maps a pitch

and a velocity to a physical note intensity. Here, in a first step, we

employed training data consisting of single note events played at sev-

eral velocities. In a second step, we refined the dictionary using five

pieces from our database. We marked these pieces in our evaluation

results with a star. However, initial experiments using monophonic

recordings revealed that the dictionary is only capable of estimating

the note intensity with an accuracy of about five to ten percent.

Given a piece from our database, we used our dictionary in

combination with the prealigned annotation MIDI file to estimate

the intensity for each note event. We denote the resulting values

by (Idic(m))m∈[1:M ], where [1 : M ] denotes the index set for the

note events. Then, ignoring the given velocity values, we used our

proposed method to estimate the individual note intensities using

the MIDI and the audio data. The resulting values are denoted by

(I(m))m∈[1:M ]. To compensate for different overall recording lev-

els, we only consider relative note intensities in our evaluation. To

this end, we normalize the M -dimensional vectors Idic and I with

regard to the Euclidean norm and compare them in terms of a per-

centage error defined by

PE :=

(

100 ·

∣

∣

∣

∣

I(m)− Idic(m)

Idic(m)

∣

∣

∣

∣

)

m∈[1:M ]

The mean and standard deviation of PE are given in the third and

fourth column of Table 1. For example, for Bach’s BWV849-02 one

gets a mean percentage error of 9.3 with a standard deviation of 5.5.

The average over all pieces is 16.9 with a standard deviation of 9.3.

With an intrinsic error of five to ten percent induced by our estimated

dictionary, this indicates a reasonable estimation quality.

2All files are part of the SMD database, which is available on request from
the authors.



Composer Piece Proposed Proposed Baseline Baseline
prealigned distorted prealigned distorted

Mean STD Mean STD Mean STD Mean STD
Bach BWV849-01* 9.3 5.3 9.5 5.5 31.5 25.9 31.9 26.5
Bach BWV849-02 9.3 5.5 9.5 5.7 28.7 23.9 29.3 24.5
Bach BWV871-01 11.0 6.2 11.4 6.3 27.5 21.4 28.2 21.7
Bach BWV871-02 7.7 5.1 7.8 5.2 24.6 20.0 25.0 20.3
Bach BWV875-01 13.9 6.7 14.1 6.9 31.6 26.2 32.0 26.8
Bach BWV875-02 8.3 4.9 8.5 5.0 28.2 25.4 28.8 26.1
Beethoven Op027No1-01 12.5 7.1 13.0 7.2 39.4 28.0 40.5 28.6
Beethoven Op027No1-02* 10.3 6.5 10.6 6.7 35.2 24.4 35.9 24.7
Beethoven Op027No1-03 13.6 7.3 14.0 7.5 45.6 32.0 46.6 33.3
Beethoven Op031No2-01 16.1 8.7 16.5 8.9 36.1 29.9 36.9 30.4
Beethoven Op031No2-02 27.2 14.5 27.8 14.7 38.6 27.5 39.2 27.8
Beethoven Op031No2-03 13.2 8.1 13.5 8.2 34.9 29.4 35.4 30.1
Brahms Op010No1* 13.8 7.3 14.0 7.5 38.9 29.3 39.4 29.8
Brahms Op010No2 13.6 7.9 14.2 8.0 41.3 32.6 42.5 33.8
Chopin Op010-03 25.2 13.0 25.4 13.2 35.1 31.0 35.5 32.2
Chopin Op010-04 25.0 13.2 25.8 13.6 36.0 34.2 36.9 35.1
Chopin Op026No1 22.6 13.2 22.9 13.5 34.1 34.8 34.5 35.2
Chopin Op026No2 23.6 14.2 23.8 14.6 34.7 33.2 35.0 33.8
Chopin Op028-01 22.9 11.4 23.6 11.9 37.7 25.8 38.6 26.7
Chopin Op028-03 19.0 12.2 19.3 12.6 33.4 36.8 33.9 38.0
Chopin Op028-04 19.5 11.6 20.2 12.0 29.6 29.2 30.4 30.3
Chopin Op028-11 18.8 9.1 19.0 9.3 25.6 23.3 25.9 23.5
Chopin Op028-15 18.0 9.2 18.7 9.4 24.7 19.3 25.4 19.5
Chopin Op028-17 22.1 10.7 22.9 11.0 31.1 24.9 32.0 25.4
Chopin Op029* 20.1 11.6 20.8 11.9 32.7 34.9 33.6 35.9
Chopin Op048No1 26.0 11.2 26.2 11.3 39.0 34.0 39.4 35.3
Chopin Op066 22.4 13.5 22.7 13.8 31.0 37.3 31.4 38.6
Haydn Hob017No4* 14.8 8.1 15.4 8.3 44.5 32.7 45.8 33.4
Rachman. Op039No1 15.5 9.0 16.0 9.2 36.6 28.0 37.6 28.6
Skryabin Op008No8 10.1 5.6 10.4 5.8 24.5 21.5 25.1 21.8
Average 16.9 9.3 17.2 9.5 33.8 28.6 34.4 29.3

Table 1. Estimation quality of our proposed method and a baseline.

Shown are the mean and standard deviation of the percentage errors

PE and PEbase. The results for using prealigned and temporally dis-

torted MIDI files are listed separately. The stars indicate pieces, that

have been used to refine our note intensity dictionary.

To further evaluate the influence of the music synchronization

step, we randomly distorted the prealigned MIDI files by splitting

them into 20 segments of equal length and by stretching or com-

pressing each segment by a random factor within an allowed dis-

tortion range (in our experiments we used a range of ±50%). The

results are shown in the fifth and sixth column of Table 1. Here,

the average error for Bach’s BWV849-02 increases only moderately

from 9.3 (prealigned MIDI) to 9.5 (distorted MIDI). Similarly, the

average error also increases moderately from 16.9 to 17.2, which

indicates that our synchronization works robustly in most cases.

To get a better understanding of these numbers, we conducted a

simple baseline experiment. Our baseline method starts by comput-

ing the magnitude spectrogram for a given audio recording. Then,

exploiting the onset, duration and pitch information given by a syn-

chronized MIDI file, the method locates the spectrogram bins that

are related to the first five partials of a given note event. To locate

the partials correctly, we incorporate simple heuristics to estimate the

fundamental frequency for each pitch. Using only the located bins,

the baseline method then computes the energy in each time frame

and derives a note intensity from the maximum of these energy val-

ues. In some sense, this method roughly represents what is possible

without using a sophisticated overtone model. We denote the result-

ing intensity values by (Ibase(m))m∈[1:M ]. After normalizing Ibase,

we compare Ibase and Idic in terms of a percentage error PEbase as

described above. The results of our baseline experiments using both

prealigned and distorted Disklavier MIDI files are shown in columns

seven and eight as well as nine and ten of Table 1, respectively. Us-

ing prealigned MIDI files, the error for Bach’s BWV849-02 is 28.7,

which is over three times higher compared to an error of 9.3 for

our method. Furthermore, the average error when using the baseline

method is with 33.8 twice as high as the error when using our pro-

posed method. Overall, the baseline experiments indicate that our

method indeed yields note intensities with a reasonable estimation

quality.

4. CONCLUSIONS

In this paper, we have presented a first method for the estimation

of note intensities in music recordings. While such an estimation is

a very challenging task in general, our experiments on polyphonic

piano music revealed measureable advantages of our method over

a given baseline. However, for the future there are still several

challenges to be solved. For example, the definition of a suitable

ground truth for note intensities is an open problem. Here, one has

to consider complex acoustical effects which strongly depend on

the recording conditions. In particular, the room acoustics and the

interaction of multiple sound sources with the resonance body of an

instrument are important factors. However, this cannot be achieved

with a simple dictionary based ground truth. A better ground truth

is also a requirement for a more detailed analysis of the capabilities

and limitations of our procedure, and our model in particular. A

first manual inspection already revealed that our procedure tends to

incorrectly model note events with very low pitches. Here, we need

to consider other spectral representations or multi-resolution spec-

trograms that offer a higher frequency resolution for lower pitches.

Furthermore, our procedure could be improved by incorporating

perceptually oriented methods to assess the intensity or loudness of

a note event [10].
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