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ABSTRACT
The digital revolution has brought about a massive increase in the availability and distribution of music-
related documents of various modalities comprising textual, audio, as well as visual material. Therefore,
the development of techniques and tools for organizing, structuring, retrieving, navigating, and presenting
music-related data has become a major strand of research—the field is often referred to as Music Infor-
mation Retrieval (MIR). Major challenges arise because of the richness and diversity of music in form and
content leading to novel and exciting research problems. In this article, we give an overview of new develop-
ments in the MIR field with a focus on content-based music analysis tasks including audio retrieval, music
synchronization, structure analysis, and performance analysis.

1. INTRODUCTION

As a result of massive digitization efforts, there is an
increasing number of relevant digital documents for a
single musical work comprising audio recordings, MIDI
files, digitized sheet music, music videos, and various
symbolic representations. For example, for classical mu-
sic there often exists a large number of different acoustic
representations (different performances) as well as visual
representations (musical scores). As another example,
users are generating an increasing number of home-made
music videos with live performances of cover songs and
remixes of popular songs. Additionally, for popular mu-
sic, one can often find other representation types such as
lyrics, tablatures, and chord sheets. In the last decade,
great research efforts have been directed towards the de-
velopment of technologies that address the challenges of
organizing, understanding, and searching various types
of music data in a robust, efficient and intelligent man-
ner. Actually, a larger research community1 systemat-
ically dealing with such issues has formed in the year
2000 having a first conference on Music Information Re-
trieval (MIR). Since then, rapid developments in music
distribution and storage brought about by digital technol-
ogy has fueled the importance of this young and vibrant
research field. In this overview article, we report on new
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developments in the MIR field with a focus on various
content-based audio analysis and retrieval tasks.

Because of the heterogeneity and complexity of music
data, there are still many unsolved problems in content-
based music analysis and retrieval. Here, “content-
based” means that in the comparison of music data, one
only makes use of the raw data itself, rather than rely-
ing on manually generated metadata such as keywords
or other symbolic descriptions. While text-based re-
trieval of music documents using the composers name,
the opus number, or lyrics can be handled by means
of traditional database techniques, purely content-based
music retrieval constitutes a difficult research problem.
How should a retrieval system be designed, if the user’s
query consists of a whistled melody fragment or a short
excerpt of some CD recording? How can (symbolic)
score data be compared with the content of (waveform-
based) CD recordings? What are suitable notions of sim-
ilarity that capture certain (user-specified) musical as-
pects while disregarding admissible variations concern-
ing, e. g., the instrumentation or articulation? How can
the musical structure, reflected by repetitive and musi-
cally related patterns, be automatically derived from a
CD recording? These questions only reflect a small frac-
tion of current MIR research topics that are closely re-
lated to automatic music analysis [34].

In the following sections, we highlight some of these is-
sues by means of four central MIR tasks. In Section 2,
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we start by discussing various types of music retrieval
scenarios based on the query-by-example paradigm with
the goal to access audio material in a content-based fash-
ion. Then, in Section 3, we address the task of music
synchronization, where the objective is to coordinate the
multiple information sources related to a given musical
work. While music synchronization generates relations
between different versions of a piece of music, the goal
of music structure analysis is to unfold relations within
a given music representation. This topic is discussed in
Section 4. Finally, in Section 5, we address the task of
automated performances analysis, which can be regarded
as being complementary to the previously discussed re-
trieval, synchronization, and structuring tasks.

2. AUDIO RETRIEVAL

Even though there is a rapidly growing corpus of au-
dio material, there still is a lack of efficient systems for
content-based audio retrieval, which allow users to ex-
plore and browse through large music collections with-
out relying on manually generated annotations. In this
context, the query-by-example paradigm has attracted a
large amount of attention: given a fragment of an audio
recording (used as query), the task is to automatically
retrieve all documents from a given music database con-
taining parts or aspects similar to the query. Here, the
notion of similarity used to compare different audio frag-
ments is of crucial importance and largely depends on the
respective application as well as the user requirements.

In content-based retrieval, various levels of specificity
can be considered. At the highest specificity level, the
retrieval task consists in identifying a particular audio
recording within a given music collection using a small
audio fragment as query input [1, 6, 31, 58]. This task,
which also aims at temporally locating the query frag-
ments within the identified recording, is often referred
to as audio identification or audio fingerprinting. Even
though recent identification algorithms show a signifi-
cant degree of robustness towards noise, MP3 compres-
sion artifacts, and uniform temporal distortions, the no-
tion of similarity used in the scenario of audio identifica-
tion is rather close to the identity. Existing algorithms for
audio identification cannot deal with strong non-linear
temporal distortions or with other musically motivated
variations that concern, for example, the articulation or
instrumentation.

While the problem of audio identification can be re-

Fig. 1: Result of fragment-level content-based audio re-
trieval. Top: Query (yellow background) consisting of
an audio fragment. Bottom: Retrieval result consisting
of different performances.

garded as largely solved even for large scale music col-
lections, semantically more advanced retrieval tasks are
still mostly unsolved. The task of audio matching can be
seen as an extension of audio identification. Here, given
a short query audio fragment, the goal is to automatically
retrieve all fragments that musically correspond to the
query from all documents (e. g., audio recordings, video
clips) within a given music collection, see also Fig. 1.
Here, opposed to conventional audio identification, one
allows semantically motivated variations as they typi-
cally occur in different performances and arrangements
of a piece of music. For example, two performances
may exhibit significant non-linear global and local dif-
ferences in tempo, articulation, and phrasing as well as
variations in executing ritardandi, accelerandi, fermatas,
or ornamentations. Furthermore, one has to deal with
considerable dynamical and spectral deviations, which
are due to differences in instrumentation, loudness, tone
color, accentuation, and so on. A first chroma-based au-
dio matching procedure, which can deal with some of
these variations, has been described in [38]. This proce-
dure has been extended by Kurth and Müller [29] to scale
to medium size datasets using indexing methods.

Audio identification and audio matching are instances
of fragment-level retrieval scenarios, where the goal is
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Fig. 2: Interface for simultaneous presentation of vi-
sual data (sheet music) and acoustic data (audio record-
ing). The first measures of the third movement (Rondo)
of Beethoven’s Piano Sonata Op. 13 (Pathétique) are
shown. Using a visual query (measures marked in green;
theme of the Rondo), all audio documents that contain
some matches are retrieved. Here, one audio record-
ing may contain several matches (green rectangles; the
theme occurs four times in the Rondo).

to retrieve all musically related fragments contained in
the documents of a given music collection. To this end,
time-sensitive similarity measures are needed to locally
compare the query with subsections of a document. In
contrast, in document-level retrieval, a single similarity
measure is considered to globally compare entire docu-
ments. One recently studied instance of document-level
retrieval is referred to as cover song identification, where
the goal is to identify different versions of the same piece
of music within a database [7, 18, 53]. A cover song may
differ from the original song with respect to instrumenta-
tion and harmony, it may represent a different genre, or it
may be a remix with a different musical structure. Differ-
ent techniques have been suggested to deal with temporal

variations including correlation and DTW-based meth-
ods [53], beat tracking methods [18], and audio shingles
(small chunks of audio) [7]. Also, most procedures for
general music classification tasks [44, 57] are based on
document-level similarity.
In summary, it can be said that in the above mentioned
problems one has to deal with a trade-off between ef-
ficiency and specificity. The more specific the search
task is the more efficient it can be solved using indexing
techniques. In the presence of significant spectral and
temporal variations, the feature extraction as well as the
matching steps become more delicate and cost-intensive
requiring, e. g., local warping and alignment procedures.
Here, the scalability to very large data collections con-
sisting of millions of documents still poses many un-
solved problems. Besides efficiency issues, future re-
search also has to address the development of content-
based retrieval strategies that allow a user to seamlessly
adjust the specificity level in the search process rang-
ing from high-specificity audio identification, over mid-
specificity audio matching to low-specificity genre clas-
sification, while accounting for fragment-level as well
as document-level retrieval. Another major challenge
refers to cross-modal music retrieval scenarios, where
the query as well as the retrieved documents can be of
different modalities. As an example, Fig. 2 shows an in-
terface for a cross-modal retrieval system that allows for
bridging the visual and acoustic domain [11, 28]. Here,
a user may formulate a query by marking certain musi-
cal measures within some sheet music. These measures
are then used for retrieving semantically corresponding
excerpts in audio recordings. In the future, comprehen-
sive retrieval frameworks are to be developed that of-
fer multi-faceted search functionalities in heterogenous
and distributed music collections containing all sorts of
music-related documents that vary in their formats (e. g.
text, symbolic data, audio, image and video).

3. MUSIC SYNCHRONIZATION

As was already mentioned in the introduction, a musical
work is far from simple or singular. In particular, there
may exist various audio recordings, MIDI files, video
clips, digitized sheet music, and other symbolic represen-
tations. In order to coordinate the multiple information
sources related to a given musical work, various align-
ment and synchronization procedures have been pro-
posed with the common goal to automatically link sev-
eral types of music representations, see, e. g., [2, 14, 15,
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17, 22, 26, 27, 30, 34, 39, 40, 41, 50, 52, 53, 54, 55, 56].
In general terms, music synchronization denotes a proce-
dure which, for a given position in one representation of
a piece of music, determines the corresponding position
within another representation, see Fig. 3.

Depending upon the respective data formats, one distin-
guishes between various synchronization tasks [2, 34].
For example, audio-audio synchronization [17, 41, 56]
refers to the task of time aligning two different audio
recordings of a piece of music. These alignments can
be used to jump freely between different performances,
thus affording efficient and convenient audio browsing.
The goal of score-audio and MIDI-audio synchroniza-
tion [2, 14, 40, 50, 54] is to coordinate note and MIDI
events with audio data. The result can be regarded as an
automated annotation of the audio recording with avail-
able score and MIDI data. A recently studied problem
is referred to as scan-audio synchronization [30], where
the objective is to link regions (given as pixel coordi-
nates) within the scanned images of given sheet music
to semantically corresponding physical time positions
within an audio recording. Such linking structures can
be used to highlight the current position in the scanned
score during playback of the recording. Similarly, the
goal of lyrics-audio synchronization [22, 39, 27] is to
align given lyrics to an audio recording of the underlying
song. Finally, different music videos of the same under-
lying musical work can be linked by applying synchro-
nization techniques to the videos’ audio tracks [55].

In order to synchronize two different music representa-
tions, one typically proceeds in two steps. In the first
step, the two music representations are transformed into
sequences of suitable features. Here, on the one hand,
the feature representations should show a large degree
of robustness to variations that are to be left unconsid-
ered in the comparison. On the other hand, the feature
representations should capture characteristic information
that suffice to accomplish the synchronization tasks. In
this context, chroma-based music features have turned
out to be a powerful tool for synchronizing harmony-
based music, see [4, 24, 34]. Here, the chroma dimen-
sions refer to the 12 traditional pitch classes of the equal-
tempered scale encoded by the attributes C, C], D, . . .,B.
Representing the short-time content of a music represen-
tation in each of the 12 pitch classes, chroma features
show a large degree of robustness to variations in timbre
and dynamics, while keeping sufficient information to
characterize harmony-based music. In the second step,

Fig. 3: Linking structure (red arrows) of various rep-
resentations of different modalities (sheet music, audio,
MIDI) corresponding to the same piece of music. These
linking structures can be computed automatically using
synchronization techniques. Here, the first measures of
Beethoven’s Piano Sonata Op. 13 (Pathétique) are shown
(from [35]).

the derived feature sequences have to be brought into
temporal correspondence to account for temporal vari-
ations in the two music representations to be synchro-
nized. Here alignment techniques such as Dynamic Time
Warping (DTW) or Hidden Markov Models (HMM)—
both techniques originally developed in speech process-
ing [48]— are used to find optimal correspondences be-
tween two given (time-dependent) sequences under cer-
tain restrictions. Intuitively, the alignment can be thought
of a linking structure as indicated by the red bidirectional
arrows shown in Fig. 3. These arrows encode how the
sequences are to be warped (in a non-linear fashion) to
match each other.

In the above mentioned synchronization scenarios, the
two data streams to be aligned are often entirely known
prior to the actual synchronization. This assumption is
exploited by alignment procedures such as DTW, which
yield an optimal global match between the two complete
data streams. Opposed to such an offline scenario, one
often has to deal with scenarios where the data streams
are to be processed online. One such prominent online
scenario is known as score following, which can be re-
garded as a score-audio synchronization problem. While
a musician is performing a piece according to a given
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musical score, the goal of score following is to identify
the musical events depicted in the score with high accu-
racy and low latency [9, 15]. Note that such an online
synchronization procedure inherently has a linear run-
ning time. As a main disadvantage, however, an online
strategy is very sensitive to local tempo variations and
deviations from the score—once the procedure is out of
sync, it is very hard to recover and return to the right
track. Similar to score following, Dixon et al. [17] de-
scribe a linear-time DTW approach to audio synchro-
nization based on forward path estimation. Even though
the proposed algorithm is very efficient, the risk of miss-
ing the optimal alignment path is still relatively high. A
further synchronization problem, which involves score
following, is known as automatic accompaniment. Here,
one typically has a solo part played by a musician which
is to be accompanied in real time by a computer system.
The problem of real-time music accompaniment has first
been studied by Dannenberg et al. [12]. Raphael [49]
describes an accompaniment system based on Hidden
Markov Models.

As can be seen from this overview, automated music
synchronization and the related tasks constitute a chal-
lenging field of research, where one has to account for a
multitude of aspects such as the data format, the genre,
the instrumentation, or differences in parameters such as
tempo, articulation and dynamics that result from expres-
siveness in performances. In the design of synchroniza-
tion algorithms, one has to deal with a delicate trade-
off between robustness, temporal resolution, alignment
quality, and computational complexity. The availabil-
ity of linking information between different music rep-
resentations is essential for many retrieval and analy-
sis applications. For example, linking structures allow
for navigating between different music documents (inter-
document browsing), see also Fig. 4. Furthermore, syn-
chronization techniques can help to bridge the gap be-
tween the demand of descriptive high-level features and
the capability of existing feature extractors to automati-
cally generate them. Here, note that the automated ex-
traction of high-level metadata from audio such as score
parameters, timbre, melodies, instrumentation, or lyrics
constitutes an extremely difficult task with many un-
solved problems. As a possible strategy to overcome
some of the difficulties, one can exploit the fact that one
and the same piece of music often exists in several ver-
sions on different semantic levels, e. g., one version on a
semantically high level (score, lyrics, tablature, MIDI)

and another version on a semantically low level (au-
dio, CD recording, video clip). Then a possible strategy
is to use the information given by a high-level version
in order to support localization and extraction of corre-
sponding events in the low-level version. In this context,
synchronization strategies can be regarded as a kind of
knowledge-based approach to generate various kinds of
metadata annotations.

4. STRUCTURE ANALYSIS

While music synchronization can be used to establish
relations across different versions of a piece of mu-
sic, we now discuss the task of the structure analysis
which reveals relations within a given music document.
Fig. 4 shows how these relations can be used for inter-
document as well as intra-document browsing. Gener-
ally speaking, the goal of audio structure analysis is to
divide an audio recording into temporal segments and
to group these segments into musically meaningful cat-
egories. Actually, there are different temporal levels as
well as many different principles for segmenting and
structuring music audio, see [46] for a recent overview
article. As for the temporal dimension, structure starts
from the level of individual notes, over musical motives,
up to musical sections or musical parts that may last
for several minutes. These hierarchically ordered struc-
tures express relationships between the individual sound
events giving a piece some kind of musical meaning.
To create these relationships, there are different princi-
ples that crucially influence the musical structure. In
particular, the principles of repetition, novelty, and ho-
mogeneity are of fundamental structural importance and
form the basis for many automated analysis methods,
see, e. g., [4, 13, 25, 33, 37, 43, 45, 46, 47, 61]. Further-
more, the temporal order of events, as also emphasized
in [8], is of crucial importance for building up musically
and perceptually meaningful entities such as melodies or
harmonic progressions. Following [46], we now give a
brief overview of some of these methods.

Most frequently, repetition-based methods are employed
where the goal is to identify recurring patterns. Actu-
ally, the repetitive structure of a piece often corresponds
to a description that is close to the musical form of the
underlying piece of music. Here, the description con-
sists of a segmentation of the audio recording as well as
of a grouping of the segments that are occurrences of
the same musical part. The groups are often specified
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Fig. 4: User interface that facilitates navigation within
an audio recording (intra-document browsing using
the structure blocks) and across different performances
(inter-document browsing switching between sliders).
The four sliders correspond to four different perfor-
mances of the second Waltz from the “Suite for Variety
Orchestra No. 1” by Shostakovich. Above each slider,
the musical form A1A2B1B2C1C2A3A4 is indicated by the
color-coded blocks.

by letters A,B,C, . . . in the order of their first occurrence
and correspond to musically meaningful sections such
as intro, chorus, and verse a popular song is composed
of. As more concrete example, we consider the second
Waltz from the “Suite for Variety Orchestra No. 1” by
Shostakovich, see Fig. 4. This piece has the musical form
A1A2B1B2C1C2A3A4 consisting of four repeating A-parts
(blue blocks), two recurring B-parts (red blocks) and two
C-parts (green blocks). Based on such structures, vari-
ous user interfaces as indicated by Fig. 4 have been sug-
gested offering new navigation functionalities [21, 25].
Most repetition-based approaches proceed in the follow-
ing fashion. First, the audio recording is converted into a
sequence of suitable audio features, where often chroma-
based features are used, see Section 3. Then, a self-
similarity matrix is derived by comparing all elements
of the feature sequence in a pairwise fashion based on a
similarity measure. In this matrix, repetitive patterns are
revealed by diagonal stripes parallel to the main diago-
nal, see Fig. 5 for an illustration. Even though it is often
easy for humans to recognize these stripes, the automated
extraction of such stripes constitutes a difficult problem

Fig. 5: Self-similarity matrices for the Shostakovich
example (from [34]). Time is given in seconds and
black/white encode high/low similarity. (a),(b): Similar-
ity matrix and enlargement. (c),(d): Enhanced versions.

due to significant distortions that are caused by varia-
tions in parameters such as dynamics, timbre, execution
of note groups (e.g., grace notes, trills, arpeggios), mod-
ulation, articulation, or tempo progression [34]. To en-
hance the stripe structure, many approaches apply some
sort of low-pass filtering or consider temporal context to
smooth the self-similarity matrix along the diagonals, see
Fig. 5c. For further details and pointers to the literature,
we refer to [46].

A second important principle in music, referred to as
novelty, is that of change and contrast introducing diver-
sity and attracting the attention of a listener. The goal of
novelty-based procedures is to automatically locate the
points where these changes occur. A standard approach
for novelty detection introduced by Foote [20] tries to
identify segment boundaries by detecting 2D corner
points in a self-similarity matrix. Here, a checkerboard-
like kernel is locally correlated by shifting it along the
main diagonal of the self-similarity matrix. This yields
a novelty function, the peaks of which indicate corners
of blocks of low distance. Using MFCCs, these peaks
are good indicators for changes in timbre or instrumen-
tation. Similarly, using other feature representations such
as chroma features or rhythmograms, one obtains indica-
tors for changes in harmony, rhythm, or tempo. Again
we refer to [46] for details.
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Finally, the principle of homogeneity is motivated by the
observation that musically meaningful sections are often
consistent with respect to some musical property such
as instrumentation or the coarse harmonic context. Note
that novelty-based and homogeneity-based approaches
are two sides of a coin: novelty detection is based on
observing some surprising event or change after a more
homogenous segment. Therefore, homogeneity-based
methods are often coupled with novelty-based proce-
dures, where the created segments defined by novelty
peaks are represented by statistical models (e. g. Gaus-
sian distributions) and then suitably clustered [10]. Many
of the recently introduced homogeneity-based methods
employ some kind of state-based approach, where each
musical part is represented by a state [3, 23, 33]. Then,
Hidden Markov Models are employed to convert the
feature sequence into some state sequence. Further
constraints and post-processing methods are finally em-
ployed to alleviate the problem of temporal fragmenta-
tion, see [33, 46].
Most methods for music structure analysis described so
far rely on a single strategy. The idea of Paulus and
Klapuri [45] is to combine different segmentation prin-
ciples by using a cost function for structural descriptions
of a piece that considers all the desired properties. This
cost function is then minimized over all possible struc-
tural descriptions for a given acoustic input. Methods
that combine several musically motivated information
sources and jointly account for various musical dimen-
sions have shown first promising results and will set the
trend for future research. Furthermore, to date, the re-
search has mostly been focusing on Western popular mu-
sic, in which the sectional form is relatively prominent.
It would be both challenging and interesting to broaden
the target data set to include classical and non Western
music. Some of the principles employed by the current
methods have been applied for these types of music too,
but there is still a large need for research to cope with the
complexity and diversity of general music data.

5. PERFORMANCE ANALYSIS

In the previously discussed retrieval, synchronization,
and structuring tasks the goal was to detect musically
meaningful relations even in the presence of significant
variations in the underlying music material. The au-
tomated analysis of different versions or, more specifi-
cally, of different performances of a given piece of mu-
sic can be regarded as a kind of complementary task.

Here, given a number of performances, the goal is to
capture the differences and commonalities between the
different versions. In recent years, the task referred to
as performance analysis has become an active subdis-
cipline within the field of Music Information Retrieval,
see, e. g., [32, 51, 59, 60]. To better understand the start-
ing point and goals of this task, note that musicians give
a piece of music their personal touch by continuously
varying tempo, dynamics, and articulation. Instead of
playing mechanically they speed up at some places and
slow down at others in order to shape a piece of music.
Similarly, they continuously change the sound intensity
and stress certain notes. Such performance issues are of
fundamental importance for the understanding and per-
ception of music. In principle, performance analysis ad-
dresses two different goals. One goal is to find common-
alities between different interpretations, which allow for
the derivation of general performance rules. A kind of
orthogonal goal is to capture what is characteristic for
the style of a particular interpreter [60].

Before one can analyze a specific performance, one re-
quires the information about when and how the notes of
the underlying piece of music are actually played. There-
fore, as the first step of performance analysis, one has to
annotate the performance by means of suitable attributes
that make explicit the exact timing and intensity of the
various note events. The extraction of such performance
attributes constitutes a challenging problem, in partic-
ular in the case of audio recordings. Closely follow-
ing [35], we now describe aspects that concern the ex-
traction step. Many researchers manually annotate the
audio material by marking salient data points in the au-
dio stream. However, being very labor-intensive, such
a manual process is prohibitive in view of large audio
collections. Another way to generate accurate annota-
tions is to use a computer-monitored player piano. The
advantage of this approach is that it produces precise an-
notations, where the symbolic note onsets perfectly align
with the physical onset times. The obvious disadvan-
tage is that special-purpose hardware is needed during
the recording of the piece. In particular, conventional au-
dio material taken from CD recordings cannot be anno-
tated in this way. Therefore, the most preferable method
is to automatically extract the necessary performance as-
pects directly from a given audio recording. Here, au-
tomated approaches such as beat tracking [16] and on-
set detection [5] are used to estimate the precise timings
of note events within the recording. Even though great
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Fig. 6: Tempo curves for three different performances of
Schumann’s “Träumerei.”

research efforts have been directed towards such tasks,
the results are still unsatisfactory, in particular for music
with weak onsets and strongly varying beat patterns.

Now, instead of trying to derive the tempo information
only on the basis of a given music recording, one can
exploit the fact that for many pieces there exists a kind
of “neutral” representation, which can be used as a ref-
erence. Such a reference representation may be given in
the form of a musical score or MIDI file, where the notes
are played with a known constant tempo (measured in
beats per minute or BPM) in a purely mechanical way.
Using music synchronization techniques as described in
Section 3, one can temporally align the MIDI note events
with their corresponding physical occurrences in the mu-
sic recording. From the synchronization result, it is pos-
sible to derive a tempo curve that reveals the relative
tempo differences between the actual performance and
the neutral MIDI reference representation. Assuming
that the time signature of the piece is known, one can
recover measure and beat positions from MIDI time po-
sitions. This information suffices to convert the relative
values given by the tempo curve into musically mean-
ingful absolute values. As a result, one obtains a tempo
curve that describes for each musical position (given in
beats and measures) the absolute tempo of the perfor-
mance (given in BPM), see [36] for details.

As illustration, Fig. 6 shows the tempo curves for
three performances of the first eight measures of the
“Träumerei” by Robert Schumann. Despite of signifi-
cant differences in the overall tempo, there are also no-

ticeable similarities in the relative shaping of the curves.
For example, at the beginning of the second measure (re-
gion marked by the box), all three pianists slow down,
which can be explained by the ascending melodic line
culminating in a local climax on the subdominant (B-flat
major). After this climax, one can then notice a consid-
erable speed up in all three performances.

In practice, it is difficult problem to determine whether a
given change in the tempo curve is due to a synchroniza-
tion error or whether it is the result of an actual tempo
change in the performance. Therefore, to obtain reliable
tempo information, one requires robust synchronization
procedures of high temporal resolution [19, 42]. This is
a particularly difficult research problem in itself for mu-
sic with less pronounced onset information, smooth note
transitions, and rhythmic fluctuation. The computer-
based performance analysis, i. e., the automated inter-
pretation of the extracted tempo parameters, is still in
its infancy requiring interdisciplinary research efforts be-
tween computer science and musicology.

6. CONCLUSIONS

The interdisciplinary field of Music Information Re-
trieval has emerged over the last ten years into an inde-
pendent and vibrant area of research that deals with a va-
riety of music analysis and retrieval tasks. In this paper,
we have only scratched the surface by discussing four
central tasks with a focus on content-based audio anal-
ysis. Because of the complexity and diversity of music,
one needs intelligent methods and tools that can detect
the manifold relationships between the various modali-
ties, versions, and interpretations of a given piece despite
significant acoustic and musical variabilities. Therefore,
a promising line of research is the development of multi-
layered analysis methods that simultaneously account for
different temporal resolution levels and various musical
dimensions (e. g. rhythm, dynamics, harmony, timbre),
while exploiting the availability of multiple versions and
representations of a given musical work.
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[53] J. Serrà, E. Gómez, P. Herrera, and X. Serra. Chroma binary sim-
ilarity and local alignment applied to cover song identification.
IEEE Transactions on Audio, Speech and Language Processing,
16:1138–1151, Oct. 2008.

[54] F. Soulez, X. Rodet, and D. Schwarz. Improving polyphonic and
poly-instrumental music to score alignment. In Proceedings of
the International Conference on Music Information Retrieval (IS-
MIR), pages 143–148, Baltimore, USA, 2003.

[55] V. Thomas, C. Fremerey, D. Damm, and M. Clausen. SLAVE: a
Score-Lyrics-Audio-Video-Explorer. In Proceedings of the 10th
International Conference on Music Information Retrieval (ISMIR
2009), pages 717–722, October 2009.

[56] R. J. Turetsky and D. P. Ellis. Ground-truth transcriptions of
real music from force-aligned MIDI syntheses. In Proceedings
of the International Conference on Music Information Retrieval
(ISMIR), pages 135–141, Baltimore, USA, 2003.

[57] G. Tzanetakis and P. Cook. Musical genre classification of au-
dio signals. IEEE Transactions on Speech and Audio Processing,
10(5):293–302, 2002.

[58] A. Wang. An industrial strength audio search algorithm. In Pro-
ceedings of the International Conference on Music Information
Retrieval (ISMIR), pages 7–13, Baltimore, USA, 2003.

[59] G. Widmer. Machine discoveries: A few simple, robust local
expression principles. Journal of New Music Research, 31(1):37–
50, 2003.

[60] G. Widmer, S. Dixon, W. Goebl, E. Pampalk, and A. Tobudic.
In search of the Horowitz factor. AI Magazine, 24(3):111–130,
2003.

[61] C. Xu, N. C. Maddage, and X. Shao. Automatic music classifica-
tion and summarization. IEEE Transactions on Speech and Audio
Processing, 13(3):441–450, 2005.

AES 42ND INTERNATIONAL CONFERENCE, Ilmenau, Germany, 2011 July 22–24
Page 10 of 10


