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ABSTRACT

In this paper, we investigate to which extent well-known audio fin-

gerprinting techniques, which aim at identifying a specific audio

recording, can be modified to also deal with more musical varia-

tions. To this end, we replace the standard peak fingerprints based

on a spectrogram by peak fingerprints based on other more “musi-

cal” feature representations. Our systematic experiments show that

such modified peak fingerprints allow for a robust identification of

different versions and performances of the same piece of music if

the query length is at least 15 seconds. This indicates that highly

efficient audio fingerprinting techniques can also be applied to ac-

celerate tasks such as audio matching or cover song identification.

Index Terms— Fingerprinting, spectral peaks, music represen-

tations, audio matching, cover song identification

1. INTRODUCTION

The task of audio fingerprinting or audio identification constitutes

an important research topic of commercial relevance [1, 2, 3]. Here,

given a short fragment of an audio signal, the goal is to retrieve the

original audio recording of this fragment from a huge music database

without relying on manually created metadata. Recent identification

algorithms can handle background noise and signal degradations and

are highly efficient. However, such systems are not capable of re-

trieving different performances of the same piece of music. The

reason for this is that existing audio fingerprinting algorithms are

not designed for dealing with musical variations such as strong non-

linear temporal distortions, variations that concern the articulation,

instrumentation, or ornamentation. Opposed to traditional audio fin-

gerprinting, the goal of audio matching [4] and cover song identifi-

cation [5, 6] is to retrieve all audio clips and versions that are musi-

cally (semantically) related to the query fragment. First index-based

approaches to these tasks have been suggested in [4, 7].

In this paper, we investigate to which extent well-established

audio fingerprints as introduced in [3] can be modified to allow for

retrieving musically related recordings. To this end, we replace the

traditional fingerprints based on spectral peaks by fingerprints based

on peaks of more musically oriented feature representations includ-

ing log-frequency and chroma representations. Our motivation for

adopting this approach is that such peak structures, according to [3],

are temporally localized, reproducible, and robust against many,

even significant distortions of the signal. Furthermore, the spectral

peaks allow for applying efficient hash-based indexing techniques.

The main contribution of this paper is to systematically analyze the

resulting peak structures in view of robustness and discriminative

power. Finding a good trade-off between these two principles is a
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non-trivial task. On the one hand, using fine-grained feature repre-

sentations (such as a spectrogram) results in fingerprints that are too

specific, thus not facilitating cross-version retrieval. On the other

hand, using coarse feature representations (such as a chromagram)

results in peak fingerprints that are too unspecific and noisy, thus not

having the required discriminative power. Our experimental results

in the context of a music retrieval scenario indicate that, using suit-

ably modified peak fingerprints, one can transfer traditional audio

fingerprinting techniques to other tasks such as audio matching and

cover song identification.

The remainder of the paper is organized as follows. In Section 2

we introduce various peak fingerprints based on different feature rep-

resentations. In Section 3, as our main contribution, we systemati-

cally investigate the trade-off between robustness and discriminative

power of the various audio fingerprints. Finally, conclusions and an

outlook on future work towards a modified audio fingerprinting sys-

tem can be found in Section 4. Further related work is discussed in

the respective sections.

2. FINGERPRINTS

In this section, we introduce the various peak fingerprints used

in our investigations. Our approach is based on the concept of

spectral peaks originally introduced by Wang [3] and now widely

used in commercial products.1 In this approach, characteristic

time-frequency peaks extracted from a spectrogram are used as fin-

gerprints, thus reducing a complex spectrogram to a sparse peak

representation of high robustness against signal distortions. Such

peak representations allows for applying efficient hash-based in-

dexing techniques. We transfer this approach to a more flexible

retrieval scenario by considering various feature representations that

are obtained by partitioning the frequency axis of the original spec-

trogram, while the temporal axis of all representations is fixed to

yield a feature rate of 20 Hz (20 feature per second), see Figure 1

for an illustration.

The first feature representation is a magnitude spectrogram as

employed in the original approach. Following [3], the audio signal is

sampled at fs = 8000 Hz and Discrete Fourier Transforms are cal-

culated over windows of 1024 samples. In the following, the result-

ing feature representation is referred to as SPEC, see Figure 1b. The

second feature representation is a log-frequency spectrogram [2].

Using a suitable binning strategy, we group the Fourier coefficients

of the original spectrogram into 33 non-overlapping frequency bands

covering the frequency range from 300 Hz to 2000 Hz. Exhibiting a

logarithmic spacing, the bands roughly represent the Bark scale. In

the following, this feature representation is referred to as LOGF, see

Figure 1c. As third feature representation, we consider a constant-

Q transform where the frequency bins are logarithmically spaced

1www.shazam.com
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Fig. 1: Score and various feature representations for the first 7.35 seconds of
a Hatto (2006) performance of the first 5 bars of Chopin’s Mazurka Op. 30
No. 2. One peak and the corresponding neighborhood is shown for each of
the feature representations.

and the ratios of the center frequencies to bandwidths of all bins

are equal (Q factor). In our investigation, we employ the efficient

implementation provided by the Constant-Q Transform Toolbox for

Music Processing2, see [8]. Here, we set the number of frequency

bins per octave to 12 (each bin corresponds to one semitone of the

equal-tempered scale) and consider the frequency range from 80 Hz
to 4000 Hz. In the following, this feature is referred to as CONSTQ,

see Figure 1d. To obtain the fourth feature representation, we de-

compose the audio signal into 88 frequency bands with center fre-

quencies corresponding to the pitches of the equal-tempered scale

and compute the short-time energy in windows of length 100 ms.

For deriving this decomposition, we use a multirate filter bank as

described in [9] and denote the resulting feature as PITCH, see Fig-

ure 1e. The fifth feature representation is a chroma representation

which is obtained from PITCH by adding up the corresponding val-

ues that belong to the same chroma. In the following, this feature

is referred to as CHROMA, see Figure 1e. Implementations for PITCH

and CHROMA are provided by the Chroma Toolbox3, see [10].

In the second step, we employ a similar strategy as proposed

in [3] to extract characteristic peaks from the various feature rep-

2http://www.elec.qmul.ac.uk/people/anssik/cqt/
3http://www.mpi-inf.mpg.de/resources/MIR/chromatoolbox/

resentations. Given a feature representation F ∈ R
T×K where

F(t, k) denotes the feature value at frame t ∈ [1 : T ] :=
{1, 2, . . . , T} for some T ∈ N and frequency bin k ∈ [1 :
K] for some K ∈ N, we select a point (t0, k0) as a peak if

F(t0, k0) ≥ F(t, k) for all (t, k) ∈
[

t− ∆time : t+ ∆time
]

×
[

k − ∆freq : k + ∆freq
]

in a local neighborhood defined by ∆time

and ∆freq. The size of this neighborhood allows for adjusting the

peak density. In our implementation, we use an additional ab-

solute threshold on the values F(t0, k0) to prevent the selection

of more or less random peaks in regions of very low dynamics.

The selected peaks are represented in the form of a binary matrix

P ∈ {0, 1}T×K by setting P(t0, k0) = 1 for (t0, k0) being a peak

and zero elsewhere. This peak selection strategy reduces a complex

time-frequency representation F to a sparse set P of time-frequency

points. Note that the values of F(t, k) are no longer considered in

the fingerprints.

In our experiments, we fix ∆time = 20 corresponding to

one second for all five feature representations. The range of the

frequency neighborhood ∆freq, however, was experimentally deter-

mined for each feature representation. For SPEC we set ∆freq = 25
(corresponding to 200 Hz), for LOGF we set ∆freq = 2, for CONSTQ

we set ∆freq = 3, for PITCH we set ∆freq = 3, and for CHROMA we

set ∆freq = 1, see Figure 1 for an illustration of the neighborhood

for each of the feature representations.

3. EXPERIMENTS

We now investigate the musical expressiveness of the various peak

fingerprints. In Section 3.1, we start with introducing the datasets

used in our experiments. Then, in Section 3.2, we sketch how the

peaks of different performances are warped to a common time line.

In Section 3.3, we discuss an experiment that indicates the degree of

peak consistency across different performances depending on the un-

derlying feature representation. Finally, in Section 3.4, we describe

a document-based retrieval experiment.

3.1. Dataset

For our subsequent experiments, we use three different groups of

audio recordings corresponding to pieces of classical music by three

different composers, see Table 1. The first group Chop consists of

298 piano recordings of five Mazurkas by Frédéric Chopin collected

in the Mazurka Project.4 The second group Beet consists of ten

recorded performances of Beethoven’s Symphony No. 5. This col-

lection contains orchestral as well as piano performances. The third

group Viva contains seven orchestral performances of the Summer

from Vivaldi’s Four Seasons. Table 1 lists the number of perfor-

mances as well as the total duration of each movement/piece. The

union of all groups is referred to as All and contains 359 record-

ings with an overall length of 19 hours. In view of extracting peak

fingerprints, these three groups are of increasing complexity. While

for the piano recordings of Chop, one expects relatively clear peak

structures, peak picking becomes much more problematic for gen-

eral orchestral music (group Beet) and music dominated by strings

(group Viva).

3.2. Synchronization

In our retrieval scenario, there typically are tempo differences be-

tween the different interpretations of a piece. In our initial experi-

4http://mazurka.org.uk/



Groups Composer Piece Description #(Perf.) Dur. (min)

C
h

o
p

Chopin Op. 17, No. 4 Mazurka 62 269

Chopin Op. 24, No. 2 Mazurka 64 147

Chopin Op. 30, No. 2 Mazurka 34 48

Chopin Op. 63, No. 3 Mazurka 88 189

Chopin Op. 68, No. 3 Mazurka 50 84

B
ee

t
Beethoven Op. 67, 1. Mov. Fifth 10 75

Beethoven Op. 67, 2. Mov. Fifth 10 98

Beethoven Op. 67, 3. Mov. Fifth 10 52

Beethoven Op. 67, 4. Mov. Fifth 10 105

V
iv

a Vivaldi RV 315, 1. Mov. Summer 7 38

Vivaldi RV 315, 2. Mov. Summer 7 17

Vivaldi RV 315, 3. Mov. Summer 7 20

All 359 1145

Table 1: The groups of audio recordings used in our experiments. The last
two columns denote the number of different performances and the overall
duration in minutes.

ments, we do not want to deal with this issue and compensate for

tempo differences in the performances by temporally warping the

peak representations onto a common time line. To this end, we, in

a preprocessing step, use a music synchronization technique [11] to

temporally align the different performances of a given piece of mu-

sic. More precisely, suppose we are given N different performances

of the same piece yielding the peak representations Pn, n ∈ [1 : N ].
Then, we take the first performance as reference and compute align-

ments between the reference and the remainingN−1 performances.

The alignments are then used to temporally warp the peak represen-

tations Pn for n ∈ [2 : N ] onto the time axis of the peak representa-

tion P1. The resulting warped peak fingerprints are denoted by P̃n

and we set P̃1 = P1.

3.3. Experiment: Peak Consistency

In a first experiment, we investigate to which extent the various peak

fingerprints coincide across different performances of a piece. Here,

the degree of peak consistency serves as an indicator for the robust-

ness of the respective feature representation towards musical varia-

tions. We express the consistency of the fingerprints of two perfor-

mances in terms of pairwise precision P, recall R, and F-measure F.

More precisely, given two performances n,m ∈ [1 : N ] of a piece,

we obtain the aligned peak fingerprints P̃n and P̃m as explained in

Section 3.2. Then, a peak (t0, k0) of P̃m is called consistent relative

to P̃n if there is a peak (t, k0) of P̃n with t ∈ [t0 − τ : t0 + τ ].
Here, the parameter τ ≥ 0 specifies a small temporal tolerance win-

dow. Otherwise, the peak is called non-consistent. The number of

consistent fingerprints is denoted by #(P̃n ∩ P̃m), the overall num-

ber of peaks in P̃n and P̃m is denoted #(P̃n) and #(P̃m), respec-

tively. Then, pairwise precision Pn,m, recall Rn,m, and F-measure

Fn,m are defined as

Pn,m = #(P̃n∩P̃m)

#(P̃m)
, Rn,m = #(P̃n∩P̃m)

#(P̃n)
, (1)

Fn,m =
2·Pn,m·Rn,m

Pn,m+Rn,m
. (2)

Note, that Pn,m = Rm,n, Rn,m = Pm,n, and therefore Fn,m =
Fm,n. F-measure values are computed for all N performances of

a group yielding an (N × N)-matrix of pairwise F values. Mean

values for the groups are obtained by averaging over the respective F-

measures. Here, as Fn,n = 1 and Fn,m = Fm,n, we only consider

the values of the upper triangular part of the matrix excluding the

main diagonal.

Table 2 shows the mean of pairwise F-measure values for the

Groups SPEC LOGF CONSTQ PITCH CHROMA

Chop 0.081 0.205 0.157 0.185 0.375

Beet 0.051 0.139 0.126 0.137 0.288

Viva 0.059 0.143 0.124 0.132 0.262

All 0.080 0.203 0.156 0.184 0.373

Table 2: Mean of pairwise F-measure values expressing peak consistencies
for the different groups.

different groups of our dataset. In this experiment, we use the tol-

erance parameter τ = 1 (corresponding to ±50 ms), which turned

out to be a suitable threshold for compensating inaccuracies intro-

duced by the synchronization procedure, see [11]. First note that the

originally used spectrogram peaks do not work well across differ-

ent performances. For example, in the case of Chop, one obtains

F = 0.081 for SPEC indicating that only few of the peak finger-

prints consistently occur across different performances. The peaks

extracted from the other four feature representations show a higher

degree of consistency across performances e.g., in the case of Chop,

F = 0.205 for LOGF, F = 0.157 for CONSTQ, F = 0.185 for PITCH,

and F = 0.375 for CHROMA. This improvement is achieved by the

coarser and musically more meaningful partition of the frequency

axis. Furthermore, our results show a dependency on the characteris-

tics of the audio material. In particular, the peaks are more consistent

for Chop (e.g. F = 0.375 for CHROMA) than for Beet (F = 0.288)

and Viva (F = 0.262). The reason for this effect is twofold. Firstly,

the piano pieces as contained in Chop exhibit pronounced note on-

sets leading to consistent peaks. For complex orchestral and string

music as in Beet and Viva, however, the peaks are less dominant

leading to a lower consistency. Secondly, the consistency results are

also influenced by the accuracy of the peak synchronization as intro-

duced in Section 3.2. Typically, the synchronization technique [11]

yields very precise alignments for piano music as contained in Chop.

For orchestral and string pieces as in Beet and Viva, however, there

are more synchronization inaccuracies leading to lower F-measure

values.

3.4. Experiment: Document-based Retrieval

In the second experiment, we investigate the identification rate of the

modified peak fingerprints in a document-based retrieval scenario.

Given a short query extracted from one performance, the goal is to

correctly retrieve all performances of the same piece from a larger

dataset. Exploiting the warped peak fingerprints P̃ (see Section 3.2),

we define a query Q and a database collection D. The database con-

sists of ND performances (documents) of different groups. For a

query Q and a document D ∈ D, we compute the peak consis-

tency F-measure as in (2) between Q and all subsegments of D hav-

ing the same length as Q. High F-values indicate high degrees of

peak consistency between Q and subsegments of D. Considering

document-level retrieval, the similarity between Q and D is defined

as the maximum F-measure over all subsegments of D.

In the evaluation, the NQ interpretations of the piece underly-

ing the query are considered relevant, all other irrelevant. Follow-

ing [6], we express the retrieval accuracy using the mean of average

precision measure (MAP) denoted as 〈ψ〉.5 To this end, we sort the

documents D ∈ D in descending order with respect to the similarity

between D and Q and obtain the precision ψQ at rank r ∈ [1 : ND]
as

ψQ(r) = 1
r

∑r

i=1 ΓQ(i) , (3)

5 The same measure is used in the MIREX Cover Song Identification, see
www.music-ir.org/mirex/wiki/2010:Audio Cover Song Identification
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Fig. 2: Results for the retrieval experiment showing the dependency of MAP

values 〈ψ〉 on the query length |Q| using queries from (a) Chop (〈ψ〉null =

0.190), (b) Beet (〈ψ〉null = 0.040), (c) Viva (〈ψ〉null = 0.032), and (d)

average over all queries.

where ΓQ(r) ∈ {0, 1} indicates whether the document at rank r is

relevant for Q. Then, the average precision ψQ is defined as

ψQ = 1
NQ

∑ND

r=1 ψQ(r)ΓQ(r) . (4)

Finally, given C different queries we compute ψQ for each Q and

average over all C values to obtain the mean of average precision

measure 〈ψ〉. In our experiments, for a fixed query length |Q|, we

randomly select C = 100 queries from each group. Additionally,

we estimate the accuracy level 〈ψ〉null expected under the null hy-

pothesis of a randomly created sorted list, see [6] for details.

Figure 2 shows the resulting MAP 〈ψ〉 values as a function of

the query length |Q| for the five features. The queries are taken from

the different groups, the database D contains all performances of All.

As the results show, the retrieval accuracy using modified peak fin-

gerprints is much higher than using the original spectrogram peaks.

In particular, using the musically motivated features PITCH, CONSTQ,

and CHROMA results in the highest MAP 〈ψ〉 for All, see Figure 2d.

For Viva (Figure 2c), the retrieval accuracy for PITCH and CONSTQ

is significantly higher than for CHROMA. Here, a manual inspection

revealed that the peaks of CHROMA, although more consistent across

performances than peaks of PITCH and CONSTQ (see Section 3.3),

exhibit less discriminative power. In the case of the less pronounced

peaks of Viva, this frequently results in undesired high consistency

for unrelated fingerprints when using CHROMA. Contrary, the higher

discriminative power of peaks from PITCH and CONSTQ (although of

lower overall consistency) results in higher retrieval accuracies.

Furthermore, the results show a great dependency of the retrieval

accuracy on the query length |Q|. Surprisingly, in the case of Chop

(Figure 2a), even |Q| = 2 sec leads to already relatively high MAP

values. Increasing the query length, the MAP values increase for

all feature representations and groups of audio recordings. For all

groups, using a query length of 20 sec in combination with peak

fingerprints extracted from PITCH or CONSTQ results in MAP values

〈ψ〉 > 0.9. In particular for the more complex data contained in

Beet (Figure 2b) and Viva (Figure 2c) using longer queries further

improves the identification rate across performances.

4. CONCLUSIONS

In this paper, we studied the robustness and discriminative power of

modified audio fingerprints by considering peak consistencies across

different versions of the same piece of music. As our experiments

reveal, modified peak fingerprints based on musically motivated

time-pitch or time-chroma representations allow for an identifica-

tion across different performances of the same piece of music. We

also showed that, in contrast to 3-5 sec long queries considered for

traditional audio fingerprinting, 15-25 sec long queries are necessary

for obtaining a robust and accurate cross-performance identification

procedure.

Our results indicate that, using more musical feature representa-

tions, it is possible to employ similar techniques as used by Shazam

for other music retrieval tasks such as audio matching or cover song

retrieval. In our investigation, temporal differences between perfor-

mances were compensated in a preprocessing step using an offline

music synchronization technique. Future work concerns the issue

on how the temporal differences between performances can be con-

sidered in the actual retrieval step. In particular, for designing an

efficient and scalable system, indexing techniques based on robust

and discriminative hashes that can cope with temporal differences

between performances need to be investigated.
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