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ABSTRACT

Content-based approaches to music retrieval are of great

relevance as they do not require any kind of manually gen-

erated annotations. In this paper, we introduce the con-

cept of structure fingerprints, which are compact descrip-

tors of the musical structure of an audio recording. Given

a recorded music performance, structure fingerprints facil-

itate the retrieval of other performances sharing the same

underlying structure. Avoiding any explicit determination

of musical structure, our fingerprints can be thought of as a

probability density function derived from a self-similarity

matrix. We show that the proposed fingerprints can be

compared by using simple Euclidean distances without

using any kind of complex warping operations required

in previous approaches. Experiments on a collection of

Chopin Mazurkas reveal that structure fingerprints facili-

tate robust and efficient content-based music retrieval. Fur-

thermore, we give a musically informed discussion that

also deepens the understanding of this popular Mazurka

dataset.

1. INTRODUCTION

The rapidly growing corpus of digitally available audio

material requires novel retrieval strategies for exploring

large collections and discovering music. One outstand-

ing instance of content-based music retrieval is query-by-

example: Given a query in the form of an audio recording

(or just a short fragment of it), the goal is to retrieve all doc-

uments from a music collection that are somehow similar

or related to the query. In this context, the notion of simi-

larity used to compare different audio recordings (or frag-

ments) is of crucial importance and largely depends on the

respective application. Typical similarity measures assess

timbral, melodic, rhythmic, or harmonic properties [2].

A further key aspect of music is its structure. Indeed,

the automatic extraction of structural information from

music recordings constitutes a central research topic within

the area of music information retrieval [10]. One goal of
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structure analysis is to split up a music recording into seg-

ments and to group these segments into musically mean-

ingful categories, such as chorus or verse. The structure

is a highly characteristic property for many musical styles.

Folk songs and children songs, for example, typically ex-

hibit a strophic form, where one tune is repeated over and

over again with changing lyrics. Popular music typically

consists of a number of repeating verses connected by a

refrain. In classical music, the structure (or musical form)

is often more complex and offers more variability.

Besides being characteristic for a certain musical style,

the structure and, in particular, the relative duration of

its elements is also a good descriptor for a specific piece

of music—irrespective of specific realizations or perfor-

mances. Furthermore, the structure is invariant to changes

in instrumentation or key and therefore allows for identi-

fying different performances of the same piece. So far,

only a few approaches exist that exploit structural similar-

ity to facilitate music retrieval [1, 4, 6, 7]. Typically, these

approaches are based on self-similarity matrices (SSMs)

which in general play an important role for analyzing mu-

sical structures [10]. For computing an SSM, an audio

recording is first transformed into a sequence of feature

vectors and then all elements of the sequence are compared

in a pairwise fashion using a local similarity measure. Re-

peating patterns in the feature sequence appear as parallel

paths in the SSM, see Figure 1a. Revealing structural prop-

erties, SSMs can in turn be used for analyzing structural

similarities of performances. To this end, one requires a

similarity measure that compares entire SSMs while be-

ing invariant to temporal variations. In [6, 7], the SSMs

are compared using a similarity measure that is based on

a two dimensional version of dynamic programming. The

approach proposed by Bello [1] is also based on SSMs,

but employs a normalized compression distance (NCD) to

assess their similarity, without requiring any alignment op-

erations. Originally proposed for comparing protein struc-

tures in bioinformatics, the NCD can be regarded as a mea-

sure of the information distance of two objects where the

Kolmogorov complexity is approximated using a standard

compression algorithm, see [1].

Inspired by the work of Bello, we describe in this pa-

per a simple yet effective approach for measuring struc-

tural similarities of music recordings. As first contribu-

tion, we introduce the concept of structure fingerprints

which are compact structural descriptors of music record-



ings. Analogous to [1, 6, 7], our fingerprints are also de-

rived from self-similarity matrices while avoiding any ex-

plicit determination of structure. Specifically, we use a bi-

variate variant of a Parzen-Rosenblatt kernel density esti-

mation method for representing a given SSM by a prob-

ability density function (pdf) [13]. This has the desired

effect of smoothing out temporal variations in the perfor-

mances. As a result, unlike previous approaches, we do not

require any complex distance measure. Instead, recordings

can be compared efficiently using, e. g., the Euclidean dis-

tance between fingerprints. As second contribution, we re-

port on extensive experiments using a large collection of

Chopin Mazurkas. In particular, we show that structure

fingerprints facilitate content-based music retrieval solely

based on structural information and exhibit a high degree

of robustness against performance variations. This makes

the presented approach particularly suited for supporting

traditional retrieval systems that assess harmonic similari-

ties [2,5,8,12]. Finally, as third contribution, we provide a

musically informed discussion of problematic pieces and

recordings which also deepens the understanding of the

Mazurka dataset.

The remainder of this paper is organized as follows. In

Section 2, we introduce our approach to computing struc-

ture fingerprints. Then, in Section 3, we describe our re-

trieval experiment and give a quantitative as well as musi-

cally informed discussion of the results. Conclusions are

given in Section 4.

2. STRUCTURE FINGERPRINTS

In this section, we introduce our strategy for computing

structure fingerprints that capture characteristics of a mu-

sical piece and, at the same time, are invariant to properties

of a specific performance. We first introduce the underly-

ing feature representation (Section 2.1) and the SSM vari-

ant (Section 2.2). In particular, we introduce various en-

hancement strategies that absorb a large degree of tempo-

ral and spectral variations. Then, in Section 2.3 we explain

in detail how the fingerprints are derived from the SSMs.

2.1 Feature Representation

We first convert a given music recording into a sequence

of chroma features, which have turned out to be a pow-

erful mid-level representation for relating harmony-based

music [1, 2, 5, 8, 10, 12]. The term chroma refers to the

elements of the set {C,C♯,D, . . . ,B} that consists of the

twelve pitch classes as used in Western music notation.

Representing the short-time energy content of the signal

relative to the pitch classes, chroma features do not only

account for the close octave relationship in harmony, but

also introduce a high degree of robustness to variations in

timbre and instrumentation [8]. Furthermore, normalizing

the features makes them invariant to dynamic variations.

In our implementation, we use a variant of chroma

features referred to as CENS 1 features [8]. As main

1 Chroma Energy Normalized Statistics features, provided by the
Chroma Toolbox www.mpi-inf.mpg.de/resources/MIR/chromatoolbox
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Figure 1: Computing structure fingerprints for an Ashkenazy
(1981) performance of Chopin’s Mazurka Op. 56 No. 1 with the
musical form A1A2BA3CA4D. (a) SSM computed from CENS
features. (b) Thresholded variant of (a) (κ = 10). (c) Path-
structure enhanced SSM (L = 12). (d) Resampled SSM S

fix

M

(M = 100). (e) Thresholded variant of (d) (κ = 10). (f) Struc-
ture fingerprints (pdf estimated from (e), ℓ = 10).

advantage, CENS features involve an additional tempo-

ral smoothing and downsampling step which leads to

an increased robustness of the features to local tempo

changes [8]. This property is crucial for obtaining struc-

ture fingerprints that are invariant to local variations in the

performances. In our implementation, the resulting feature

representation has a resolution of 1 Hz (one feature per

second), where each vector is obtained by averaging over

4 seconds of the audio.

2.2 Self-Similarity Matrix

Let X := (x1, x2, . . . , xN ) be the feature sequence con-

sisting of N normalized CENS features. Furthermore, let

s be a similarity measure that allows for comparing two

CENS vectors. In the following, we use the inner product

between the normalized CENS vectors (cosine measure,

which yields similarity values between 0 and 1). Then, a

self-similarity matrix (SSM) is obtained by comparing all

elements of X in a pairwise fashion [10]:

S(n,m) := s(xn, xm)

for n,m ∈ [1 : N ] := {1, 2, . . . , N}.

Figure 1a shows the resulting SSM for an Ashkenazy

(1981) performance of Chopin’s Mazurka Op. 56 No. 1



having the musical form A1A2BA3CA4D. The SSM re-

veals the repetitive structure (four repeating A-parts) in the

form of diagonal paths of high similarity (dark colors).

2.2.1 Path-Structure Enhancement

Musical variations often lead to fragmented path structures

of S. To alleviate this problem, various matrix enhance-

ment strategies have been proposed [1, 9, 12] with the idea

to apply a smoothing filter along the direction of the main

diagonal. This results in an emphasis of diagonal infor-

mation and a denoising of other structures, see Figure 1c.

In the presence of significant tempo differences, however,

simply smoothing along the main diagonal may smear out

important structural information. To avoid this, we use a

strategy that filters the SSM along multiple gradients as

proposed in [9]. In our experiments, we compute a simple

moving average in windows corresponding to L seconds

of audio and use five gradients covering tempo variations

of −30 to +30 %. In the following, the enhanced SSM is

again denoted as S.

2.2.2 Resampling

A high degree of local tempo differences is already ab-

sorbed by the smoothing of the CENS features and the

path-structure enhancement. Global differences in tempo

of different performances of a piece of music, however,

lead to SSMs that have different sizes. For deriving struc-

ture fingerprints that are invariant to such tempo differ-

ences, we apply the idea of [5] and introduce a simple re-

sampling step that converts the N ×N similarity matrix S

into an M × M similarity matrix S
fix

M , with M fixed to a

suitable value:

S
fix

M (n,m) := S(⌊nN
M
⌉, ⌊mN

M
⌉)

for m,n ∈ [1 : M ], where ⌊·⌉ denotes rounding to the

nearest integer. 2 Figure 1d shows an example for Sfix

M .

2.2.3 Thresholding

We finally process the SSMs by suppressing all values that

fall below a threshold. Analogous to [1,12], we choose the

threshold in a relative fashion by keeping κ% of the cells

having the highest score. The motivation for this thresh-

olding step is that only a certain amount of the cells of

the SSM are expected to encode relevant structural infor-

mation. The thresholding can then be regarded as some

kind of denoising, where only relevant paths are retained,

see Figure 1e. In the following, the resulting thresholded,

resampled, and path-structure enhanced SSM is denoted as

Ŝ
fix

M . Figure 1e also emphasizes the importance of the path-

structure enhancement, as directly applying the threshold-

ing operation on the original SSM does not lead to the de-

sired denoising effect, see Figure 1b.

2.3 Probability Density Estimation

The four repeating A-parts of our Mazurka example are

clearly revealed by Ŝ
fix

M in the form of diagonal paths, see

2 In our experiments, using linear or cubic interpolation did not lead to
any improvements.
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Figure 2: Original SSMs (top) and structure fingerprints (bot-
tom) for two performances of Chopin’s Mazurka Op. 56 No. 1.
(a) Rubinstein (1966) and (b) Kushner (1989).

Figure 1e. However, as the structural information is con-

tained in only a few cells of the thresholded SSM (in other

words, the resulting matrix is sparse), small temporal vari-

ations in performances may lead to large distances when

directly comparing these matrices in a pointwise fashion.

As a result, some kind of tolerance to temporal variations is

required in the similarity measure, as e. g., introduced by

the similarity measures based on dynamic programming

used in [6, 7] and the NCD used by Bello in [1].

Avoiding the additional complexity of such techniques,

we consider Ŝfix

M as a bivariate random sample of coordi-

nates (n,m) for n,m ∈ [1 : M ] and our goal is to esti-

mate the probability density function (pdf) producing this

SSM. 3 The underlying assumption is that the pdf corre-

sponds to the musical structure of the piece and that the

bivariate random samples we observe are affected by vari-

ations in the realization of a specific performance. Analo-

gous to [11], we employ a Parzen-Rosenblatt kernel den-

sity estimation method [13] that consist in convolving Ŝ
fix

M

with a two-dimensional Gaussian kernel of size ℓ. As a re-

sult, temporal variations in the performances are smoothed

out. The choice of the value ℓ constitutes a trade-off be-

tween fingerprint characteristic (small value) and robust-

ness to temporal variations (large value).

The resulting fingerprints (see Figure 1f) are an M×M

representation 4 of the musical structure that features a

high degree of robustness against properties of a specific

performance. Figure 2 shows two further examples of fin-

gerprints for the Mazurka Op. 56 No. 1.

3. STRUCTURE-BASED RETRIEVAL

In this section, we show how the structure fingerprints (SF)

can be used to facilitate structure-based music retrieval.

3 In the following, we use the term pdf, although for discrete random
variables, the term probability mass function would be more appropriate.

4 Note that this matrix is symmetric and only M(M + 1)/2 entries
are needed for representing the fingerprints.



Method Dist. Dataset P Sync. MAP T [sec]
Bello [1] NCD Bello 2919 No 0.767 >1000

SF KL ORG 2793 No 0.819 66.45
SF ED ORG 2793 No 0.816 0.58
SF ED MOD 2792 No 0.828 0.58
SF ED MOD 2792 Yes 0.958 0.58

Table 1: Overview of the results obtained for different methods
and datasets. Dist. denotes the distance measure used, P the num-
ber of performances in the dataset, and T the run-time in seconds
for computing P × P distances. 6 See Section 3.4 for a descrip-
tion of the dataset MOD and the column Sync. (indicating whether
synchronized fingerprints are used).

We first describe the collection of Chopin Mazurkas (Sec-

tion 3.1) and the retrieval scenario (Section 3.2). Then, we

continue with a quantitative evaluation (Section 3.3) and

give a musically informed discussion (Section 3.4).

3.1 Mazurka Collection

In our experiments, we use an audio collection comprising

many recorded performances for each of the 49 Mazurka

by Frédéric Chopin. Since different performances of a

Mazurka typically share the same structure, this collection

is a good choice for evaluating structural similarities. The

dataset was assembled by the Mazurka Project 5 and has

also been used by Bello in [1]. Note, however, that there

are differences between our dataset (denoted as ORG in the

following) and the one used in [1] (denoted as Bello). Ac-

tually, the datasets constitute a snapshot at different stages

in the assembly process of the Mazurka Project which also

results in a different number of performances (2793 for

ORG and 2919 for Bello, see Table 1).

3.2 Retrieval Scenario

Using this dataset, we evaluate our structure fingerprints

(SF) in a document-level retrieval scenario as in [1]. Given

one performance of a Mazurka as query, the goal is to re-

trieve all other performances of the same Mazurka from the

given dataset. To this end, we first compute the fingerprints

for all P performances of the dataset. Using a suitable dis-

tance measure, we then derive the P×P matrix of pairwise

distances between all performances, see Figure 6a. As the

structure fingerprints are represented as densities, a natu-

ral choice of distance measure is the Kullback-Leibler di-

vergence (KL). Additionally, in our experiments, we also

use a simple Euclidean distance (ED). Finally, we rank the

result with respect to ascending distances and express the

retrieval accuracy by means of the mean average precision

(MAP) measure as in [1, 12].

3.3 Quantitative Evaluation

First, we give a quantitative discussion of the results. Ta-

ble 1 shows overall MAP values for the different meth-

ods and datasets. In [1], Bello reported MAP = 0.767
using his approach based on the NCD. Using the param-

eters L = 10, κ = 20,M = 50, ℓ = 5 and the KL di-

vergence, our approach leads to comparable, if not even

slightly better results (MAP = 0.819). Note, however,

5 mazurka.org.uk
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Figure 3: Parameter evaluation using MOD and Euclidean dis-
tances (ED). MAP values for different values of (a) the smoothing
parameter L and threshold κ (M = 100, ℓ = 10) and (b) of the
fingerprint size M and kernel size ℓ (L = 12 sec, κ = 20).

that the results are not directly comparable due to the dif-

ferences in the datasets. The results are insofar surpris-

ing, as our approach is not only conceptually much sim-

pler, but also more explicit and, as it turns out, much more

efficient. The last column of Table 1 indicates the run-time

in seconds for computing the matrix of P×P pairwise dis-

tances. 6 Without knowing exact numbers for the NCD, our

approach using KL seems to be at least one order of mag-

nitude faster than [1]. Actually, when using the Euclidean

distance (ED) instead of KL, the run-time of our approach

can be improved significantly by two orders of magnitude

(resulting in a run-time of just 0.58 seconds for computing

all P × P distances), without any degradation of retrieval

accuracy (MAP = 0.816).

We now continue with an evaluation of different param-

eter settings using ED (using KL lead to very similar find-

ings). Figure 3a shows MAP values obtained on ORG as a

function of the temporal smoothing parameter L (in sec-

onds) and the relative threshold κ, see Section 2.2. Appro-

priate values for L constitute a trade-off between enhance-

ment capability and level of detail. For the Mazurkas, a

smoothing of 6-12 seconds seems to be reasonable, the ac-

tual choice of the parameter, however, is not crucial. For

example, fixing κ = 15, one obtains MAP = 0.815 for

L = 6 and MAP = 0.816 for L = 10. The threshold

value κ constitutes a trade-off between retaining relevant

structural information and denoising the SSMs. For the

Mazurkas, 10%-25% seems to be a good compromise for

capturing the repetitive structure. Again, the exact value

is not crucial. For example, fixing L = 6, one obtains

MAP = 0.809 for κ = 25 and MAP = 0.814 for κ = 10.

Figure 3b shows MAP values as a function of the fin-

gerprint size M for different settings of the kernel density

parameter ℓ. Interestingly, the size of the structure finger-

6 Using a vectorized MATLAB implementation of ED, a C/C++ im-
plementation of KL, and an Intel Xeon E3-1225 CPU. Run-times for the
NCD are estimated from the indicators given in [1] and own experiments.
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Figure 4: Structure fingerprints (top) and synchronized struc-
ture fingerprints (bottom) for performances of Chopin’s Mazurka
Op. 24 No. 2. (a) Merzhanov (2004) with applause at start and
end of recording. (b) Smith (1975) with silence at the end.

prints can be reduced to M = 50 or even M = 35, while

still retaining a high retrieval accuracy. The ratio of M

and ℓ, however, is of crucial importance as it constitutes

a trade-off between fingerprint characteristic and robust-

ness against temporal variations in the performances. The

settings M = 50, ℓ = 5, and M = 100, ℓ = 10, and

M = 200, ℓ = 20 yield almost identical retrieval results

(MAP = 0.816, MAP = 0.818, and MAP = 0.819,

respectively). Decreasing the size of the fingerprints, how-

ever, has the advantage of reducing the computational load.

Aside from the robustness to actual parameter settings,

our approach turned out to be rather robust to implemen-

tation details. For example, very similar results were ob-

tained by using, e. g., Cosine, Hellinger, and Battacharyya

distances between SFs. Even an alternative implementa-

tion using different chroma features as well as delay co-

ordinates and recurrence plots (instead of the enhanced

SSMs) similar to [1, 11, 12], lead to almost identical re-

sults. This also indicates that our concept is generalizable.

3.4 Musically Informed Discussion

Our fingerprint-based approach allows for detecting mu-

sically interesting phenomena and inconsistencies in the

Mazurka collection. A careful investigation of the re-

trieval results revealed three phenomena. Firstly, we dis-

covered that there are 67 recordings in the dataset that are

incorrectly assigned to one of the Mazurkas, although they

actually are performances of another Mazurka. 7 Another

recording of the collection did not correspond to any of the

Mazurkas. 8 We corrected these errors and denote the mod-

ified dataset MOD. Repeating the retrieval experiment using

the 2792 performances of MOD, the MAP value increases to

0.828, see Table 1 (fourth row).

7 A majority (51 of the 67 recordings) affects Op. 41 consisting of four
Mazurkas (No. 1 to No.4̇), where a permutation of the assigned numbers
occurs.

8 Labeled as a Rosenthal (1935) performance of Op. 50 No. 2.
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Figure 5: Structure fingerprints for four performances with dif-
fering structure of Chopin’s Mazurka Op. 68 No. 4 (L = 12,
κ = 20, ℓ = 10, M = 100). (a) Niedzielski (1931). (b) Katin
(1996). (c) Rubinstein (1952). (d) Rubinstein (1966).

Secondly, it turned out that many incorrectly retrieved

performances exhibit a long passages of applause, silence,

or spoken moderation at the beginning and/or end. Ac-

tually, such passages can be regarded as additional struc-

tural elements. As a result, the structure of these perfor-

mances does not match to the structure of the other per-

formances of the same Mazurka, see Figure 4. To quan-

tify this phenomenon, we use music synchronization tech-

niques [3, 8] for identifying musically corresponding time

positions in all versions of a Mazurka and use this infor-

mation to warp the fingerprints to a common time line. For

additional segments appearing in one performance, there

are no corresponding time positions in the other perfor-

mances. As a result, such segments are basically not re-

flected in the resulting synchronized fingerprints, see Fig-

ure 4. 9 Using synchronized fingerprints to exclude the ad-

ditional segments, we repeat our experiment using MOD and

obtain MAP = 0.958, see Table 1 (last row).

The third phenomenon detected during our experiments

are structural differences in the recordings. For instance,

some pianists do not strictly stick to the score when per-

forming a piece but omit (or sometimes even introduce)

repetitions. Obviously, these structural differences lead

to high distances as shown in Figure 6b for the Mazurka

Op. 56 No. 1, where eight of the 42 performances exhibit

a different structure. 10 The prime example for this effect

is Mazurka Op. 68 No. 4, where the last bar in the score

contains the marking D. C. dal segno senza fine. However,

there is no fine marked in the score that would tell the pi-

anist where to end. As a result, a performer may repeat

the piece as often as he or she wants. This leads to many

versions of the piece that differ significantly in structure as

also revealed by the respective pairwise distances shown

in Figure 6e. Figure 5 shows the fingerprints of four such

9 This strategy has a similar effect as using a distance measure based
on dynamic programming, as proposed in [6, 7].

10 Actually, all eight musicians omit a repetition of the A-part, leading
to the form A1BA2CA3D instead of A1A2BA3CA4D.
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Figure 6: (a) Matrix of pairwise Euclidean distances for the 2792 performances of MOD. (b) Detail of the 42 performances of Op. 56
No. 1, see also Figure 2. (c) Detail of the 66 performances of Op. 24 No. 2, see also Figure 4. (d) Detail of the 51 performances of Op. 68
No. 3. (e) Detail of the 63 performances of Op. 68 No. 4, see also Figure 5.

versions, which, obviously, cannot be retrieved by a purely

structure-based retrieval approach.

On the other hand, during our experiments we discov-

ered performances that exhibit a surprisingly low distance,

see, e. g., the squares of low distance on the main diagonal

in Figure 6d. The low distance between the performances

2697-2699 is actually known as the “Hatto effect”: record-

ings released under the name of the pianist Joyce Hatto in

1993 (2697) and 2006 (2698) that are actually time-scaled

copies of a 1988 recordings of Eugen Indjic (2699). Sim-

ilarly, some performances appear repeatedly in the dataset

as they were released multiple times. Examples for this ef-

fect are performances 2719 and 2720 (Rubinstein) as well

as 2722 and 2723 (Smidowicz).

4. CONCLUSION

The concept of structure fingerprints presented in this pa-

per allows for retrieving music recordings solely based on

structural information. Using a combination of suitable en-

hancement strategies, our approach is robust as well as ef-

ficient. Furthermore, as our experiments reveal, the results

obtained by our approach are at least comparable to state-

of-the-art approaches without relying on complex distance

measures. As further advantage of our approach, just using

Euclidean distances between fingerprints opens the pos-

sibility of exploiting efficient index-based methods such

as locality-sensitive hashing to scale the approach to even

larger datasets. We showed that our methods are suited

for systematically analyzing structural properties of entire

music collections, thus deepening the musical understand-

ing of the data. Obviously, the limits of structure-based

retrieval are reached when the assumption of global struc-

tural correspondence between performances is violated.
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