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ABSTRACT audio segments that refer to the same musical part reveal

pronounced musical variations. One way to circumvent
The development of automated methods for revealing thesuch problems is to only visualize structural elements and
repetitive structure of a given music recording is of cen- their relations without explicitly extracting them. For-ex
tral importance in music information retrieval. In this pa- ample, in [4] self similarity matrices are used to visualize
per, we present a novel scape plot representation that aloverall structural patterns or, in [15], repeating andtesla
lows for visualizing repetitive structures of the entiresitu ~ elements are indicated by arc diagrams.
recording in a hierarchical, compact, and intuitivz_e way. In|n this paper, we contribute to this line of research by
a scape plot, each point corresponds to an audio segmentqycing a novel representation that reveals the hierar
identified by its center and length. As our main contri- cpica| repetitive structure of a given music recording. In-
bution, we assign to each point a color vglue so that two spired by the work by Sapp [14], we use the concept of a
segment properties become apparent. Firstly, we use e gcane plot, where each point represents an audio seg-
lightness component of the color to indicate the repetitive o by means of its center and length. As our main contri-
ness of the encoded segment, where we revert to a recently, ion "we describe an automated procedure for assigning
introduced fitness measure. Secondly, we use the hue come, oach point a color value such that the repetitive struc-
ponent of the color to reveal the relations between differen .o ot the music recording becomes apparent. On the one
segments. To this end, we introduce a novel grouping pro-p 2 \ve use the lightness component of the color to in-
cedure that automatically maps related segments to similalyjcate the repetitiveness of the respective segment. This
hue values. By discussing a number of popular and classi-epetitiveness is expressed in terms of a fitness measure
cal music examples, we illustrate the potential and visual ;4 recently introduced by Miller et al. [10]. On the other
appeal of our representation and also indicate limitations o4 we use the hue component of the color to reveal the
relations across different segments, where we introduce a
1. INTRODUCTION function that maps related segments to similar hue values.
) ] ) o As a result, one obtains a hierarchical structure visualiza
The musical form describes a piece of music in terms of o, of the underlying music recording referredstaucture
musical part_s such as intro, chorus, and verse of a popularscape plot, see Figure 4g for an example. We hope that this
song or the first and second theme of a classical work. SUChrepresentation not only visually appeals to the reader, but

musical parts are typically repeated several times through 554 prings valuable and even surprising insights into the
out the piece and evoke in the listener the feeling of famil- g ctural properties of a recording.

iarity. One major goal of audio structure analysis is to au-
tomatically derive the musical form directly from a given

music recording. To this end, most procedures divide the : , ) X
music recording into repeating temporal segments andthendescrlbe the corresponding fitness scape plot.  Then, in

group these segments according to musically meaningfulSection 3, we introduce our structure scape plot represen-
categories [13] tation which is based on a novel distance measure to com-

Finding the repetitive structure of a music recording has pare d|ffe_rent segments as well as on an efficient grouping

and coloring procedure. Based on a number of explicit ex-
amples, we discuss benefits and limitations of our structure
visualization in Section 4 and conclude with Section 5 by
indicating future work.

The remainder of this paper is organized as follows. In
Section 2, we review the underlying fithess measure and

been a central and well-studied task within the wide area of
audio structure analysis, see, e.g.,[2,5,7,8,11,12]t@ad t

overview articles [3, 13]. Even though most of these ap-
proaches work well when repetitions largely agree, struc-
ture analysis becomes a hard and even ill-posed task when

Permission to make digital or hard copies of all or part of thork for 2. FITNESS SCAPE PLOT

personal or classroom use is granted without fee providetctipies are

not made or distributed for profit or commercial advantagéthat copies In this section, we summarize the construction of the fit-
bear this notice and the full citation on the first page. ness measure (Section 2.1) and then introduce the concept
(© 2012 International Society for Music Information Retrieva of a fithess scape plot (Section 2.2).
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= . . = - - covered by the induced segmentation. After a suitable nor-
. / p 4 1. / Y 4 malization, the fitness is defined as the harmonic mean of
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Figure 1: Various representations for an Ormandy record-

ing of Brahms’ Hungarian Dance No. 5(a) Musical form

A1A2B1B2CA3B;By. (b) Fitness scape plot. The remaining 2.2 Scape Plot Representation

subfigures show the SSM with optimal path families for vasiou

segmentsy (horizontal axis) and induced segment families (ver- ) ] )

tical axis). (c) a = [68: 89] (thumbnail, maximal fitness, corre-  We now describe how a compact fitness representation for

sponding taB2). (d) a = [131:150] (corresponding tols). (e) the entire music recording can be obtained showing the fit-

o = [131:196] (corresponding tols Bs Ba). nessy(a) for all possible segments. Note that each seg-
menta = [s : t] is specified by its centef«) := (s+t)/2

2.1 Fitness Measure and its lengtha|. Using the center as horizontal coordi-

Let[1: N] = {1,2,... N} denote the (sampled) time axis nate and the length as vertical coordinate, each segment

of a given music recording. Then a segment is a subsetc@n be represented as a point in some triangular represen-

o —[s: 1] C[1: N] specified by its starting pointand tat_io_n al_so referred to agape plot. Such scape plots were
its end point. Let|a| := t—s+1 denote the length of seg- ongmal mtroduc'ed by.Sapp [.14] to represent harmony in
menta. In [10], a fitness measure has been introduced thatmufSICaI scoreésin a h|erarch.|cal way. In our context, we
assigns to each audio segmers fitness valueo(a) € R define a scape p_Iozb by settlng@(c(a?, ‘O‘D " ()
which simultaneously captures two aspects. Firstly, it in- fpr segmenta. Figure 1b shows a visualization of the.
dicates how well the given segment explains other relatedfltness scape plot for our Brahms example, where the fit-

segments. Secondly, it indicates how much of the overall ness is represented by a lightness grayscale ranging from

music recording is covered by all these related segments.White (fitness is zero) to black (fitness is high). The points

In the computation of the fithess measure, an enhanceo‘:orresmn_dir_1g o the three segments di_scussed above are
self-similarity matrix (SSM) is computed from the music marked within the scape plot by small C|r_cles. For exam-
recording based on chroma-based audio features. Itis wellple’ the segment = [68 : 89] (correspondmg 1d3;) h"?‘s
known that each path of the SSM (a stripe of high score the scape plot coo_rdlnatc_asa) = 785 (hquzontal axis)
running parallel to the main diagonal) reveals the sintyari and ‘(_1‘ N 22. (vertical axis). AC“‘S”‘”V' this segment has
of two segments (given by the two projections of the path the highest fithess among all possible segments and is also
onto the vertical axis and horizontal axis), see [13]. The referred to ashurmbnail [10].
main idea of [10] is to compute for each audio segment  The fithess scape plot represents the repetitiveness of
o a so-calledoptimal path family over o that simultane-  each segment in a compact and hierarchical form. For ex-
ously reveals the relations betweerand all other similar ~ ample, in our Brahms example, the repeating segments cor-
segments. By projecting such optimal path family to the responding to the-parts andB-parts are reflected by lo-
vertical axis, we get the corresponding induced segmentcal maxima in the scape plot. Also the repetitions of the
family, where each element of this family defines a seg- superordinate segments correspondingité B are cap-
ment similar too. tured by the plot. However, so far, the visualization of the
As an example, we consider a recording of the Hun- fitness scape plot does not reveal the relatangss differ-
garian Dance No. 5 by Johannes Brahms, which has theent segments. In other words, nothing is said about groups
musical formA, A; By BoC A3 B3 By, see Figure la. Fig- of pairwise similar segment corresponding to the various
ure 1c shows an optimal path family (cyan stripes) for the musical parts.
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Actually, the grouping information is implicitly encoded 3
by the optimal path families underlying the fitness mea- (v) | - ‘
sure. To make these relations more explicit, we nowextend ° > ®© ® = @ @ a0 a0 w0 oo
the grayscale of the fithess scape plot by a color component(c) | B ‘ I
that reflects the cross-segment relations. Based onthein- " o2 w0 & o 1w @ |fuo | w || 2o
duced segmentations, we first introduce a distance measure ‘ 1 ‘ ‘ ‘ B2 ‘ ‘
that allows for comparing two arbitrary segments (Sec- () l | |
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tion 3.1). Then the objective is to map similar segments Time (sec)

to similar colors and dissimilar segments to distinct celor _ ) _ . .

In the followina. we proceed in several steps including a Figure 2: lllustration of the computation of the dlstar_]ce mea-
A g, P ) ! p ) g_ suresd(«, 3) used to compare two segments(shown in(a))

color mapping step (Section 3.2), a point sampling and in- and 8 (shown in(b)). The respective induced segment families

terpolation step (Section 3.3), and a color combinatiop ste are shown in(c) and (d), respectively. The black box indicates

(Section 3.4). The overall pipeline of our procedure is also the union and the red box the overlap of the two segments which
illustrated by Figure 4 are used to compute distance vafife;, 3).

1
3.1 Segment Distance Measure

Recall from Section 2.1 that for a given segmenthere L
is an optimal path family along with an induced segment
family, where each segment of this family is similardo 0
Let A = {a1,a9,...,ax} denote the induced segment
family of «, then the segmentsy, k € [1 : K], can be Figure 3: Cylindric HSL (hue, saturation, lightness) color repre-
thought of as the (approximate) repetitionswofNote that, sentation. The figure shows only the outside surface of tlie-cy
by definition, overlaps between repetitions are not allqwed €' corresponding to the saturatigin= 1.

see [10].

Now, leta and3 be two arbitrary segments. Intuitively, L € [0,1] (with 0 being black and being white) to the
we consider these two Segments to be close if they are aplightness of the color. To obtain “full” saturated CO|0rSE w
proximately repetitions of each other (or at least if some fix the parametes = 1. Figure 3 shows the color space
repetitions ofe and 3 have a substantial overlap), other- for S = 1 spanned by the coordinatésandL. Note that
wise o and 3 are considered to be far apart. More pre- the hue angle coordinatéé = 0 andH/ = 360 encode
cisely, letA = {a1,...,ax} andB = {B1,...,f.} be  the same color (by definition this is the color “red”). In

the respective induced segment families. Then, we definethe following, we reserve the lightness coordinate to rep-

0° 120° H 240° 360°

the distancé(«, 3) betweem and; to be resent the fitness value and only use the hue coordinate to
represent the cross-segment relationships.
5, B) =1 — max log M B 1) The problem of mapping the scape plot points to the hue
’ ke[1:K],e[1:L] |ag U Bel color coordinates (which topologically corresponds to the

) ) _ _unit circle) in a distance preserving way can be seen as an
see also Figure 2 for anillustration. In other words, the dis ;\stance ofmultidimensional scaling (MDS), see [1]. Gen-
tance is obtained by subtracting the maximal overlap (rel- g 5y MDS refers to a family of related techniques which
ative to the union) over all repetitions afand s from the allow for mapping a set of points with pairwise distance
valuel. For example, theB;-segment and3y-segment 5,65 onto a low-dimensional Euclidean space (often di-
for the Brahms recording have a small distance (Close 10 angjon2 or 3 for visualization purposes) such that the
zero) since the induced segment families more or |ess Co-yjgiances between the original points are approximated by
incide (consisting of the fouB-part segments). Incontrast o £y clidean distances of the mapped points.
the 5, -segment and thdl,-segment have a large distance In the following, we use basic MDS techniques to map

gfni?af%\,oenrgpsmce none of their repeitions have a SUb'the scape plot points onto the unit circle (representing the
' hue color space). Le¥/ denote the number of scape plot
points to be considered in the mapping, see Figure 4b.
First, we compute atM x M -distance matri by com-
Based on the distance measty@ve now introduce a pro-  paring theM points in a pairwise fashion using Next,
cedure for mapping the scape plot points (segments) towe perform a principal component analysis (PCA)/of
color values in such a way that distance relations are pre-and consider the two eigenvectors corresponding to the
served. To this end, we first need to specify a suitable two largest eigenvalues. The columns A&f(which are
color space. Because of its perceptual relevance, we reindexed by theM scape plot points) are then projected
vert to the HSL model, which is a cylindric parametriza- onto the two-dimensional Euclidean space defined by these
tion of the RGB color space [6]. Here the angle coordinate two eigenvectors, see Figure 4c. Using PCA, the variance
H € ]0,360] (given in degrees) refers to the hue, the co- across the mapped column vectors is maximized. There-
ordinateS € [0, 1] to the saturation, and the coordinate fore, scape plot points that have a distinct distance distri

3.2 Color Mapping
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Figure 4: lllustration of the pipeline for computing the structure@pe plot for Brahms(a) Fitness scape plotb) Fitness scape plot
with sampled anchor point¢c) Anchor points projected onto the first two principal compaise(d) Anchor points projected to the unit
circle colored with the resulting hue valu@) Hue-colored anchor point$f) Hue-colored scape plot using interpolation techniqg.
Structure scape plot combining fitness (lightness) andsesegment relation (hue) information.

bution to the other points (encoded by its respective col- point, we specify a neighborhood of size> 0 and set
umn vectors) are likely to be mapped to different regions the fithess values of all points in this neighborhood to zero
in the 2D space, see [1] for details. Furthermore, as shownexcluding them for the subsequent procedure. The role of
in Figure 4c, the projected points are usually distributed i the neighborhood is to avoid a sampling that is locally too
a circular fashion (even though this is not guaranteed anddense. This procedure is repeated until either all of the re-
crucially depends on the distance distributions of theiorig maining scape plot points have a fitness of zero, or until
nal points). Finally, we normalize the projected pointdwit a specified maximal number of pointg, is reached, see
respect to the Euclidean norm to obtain points on the unit also Figure 4b.

circle, which yields angle parameters that are associatedt = Sometimes the fitness values of short segments are
hue values, see Figure 4d. Figure 4e shows the originalrather “noisy.” This may also have musical reasons since

scape plot points colored with the derived hue values. such segments often correspond to highly repetitive frag-
ments like a short riff or a single chord of dominant har-
3.3 Sampling and Interpolation mony. Therefore, it is often beneficial to exclude such

short segments in the anchor point selection by only con-
sidering scape plot points whose length coordinate lies
above a certain lower bound > 0. The influence of the

Using all scape plot points in the described color map-
ping procedure may be problematic because of two rea-
2?5;%;1?%;;”&Fful,;?oenr:;rpg xOJf\/[pglig:Zr:AcI;Zurlr?aTﬁ; parameterd/y, p, andA on the resulting number of anchor

: points M is discussed in Section 4.
A but also of the subsequent PCA rather expensive. There- The color mapping as described in Section 3.2 is now

fore, the numbed/ of used points should be kept small. . :

Secondlv. using all scape blot DoINts May over-re resentapplled only to the anchor points. In the next step, the color
se menzs: of sh?)rt len tf?s tEat aF:e Iocatedyin the Iov?/er artinformation 's transferred to arbitrary scape plot points b
9 . 9 . P simply interpolating color values of the nearest neighbor-

of the triangular scape plot. As a result, the distance re- . . .
lations of the short segments may dominate the selectionhOOd anchor points. However, since the hue values live on

: gm _may a unit circle (rather than in the two-dimensional Euclidean
of the eigenvectors obtained in the PCA step. Therefore, o L

X . space), one needs to use spherical interpolation instead of
we only choose a suitable subset of scape plot points, alsq. ' ; . : .
referred to agnchor points, and then transfer the obtained inear interpolation. Figure 4f shows the interpolation re
: P ' . S sult obtained from the anchor points of Figure 4e.

hue color information to the other points using interpola-
tion techniques.

Note that scape plot points of higher fitness are struc-
turally more relevant than scape plot points of lower fit- So far, we have derived two scape plot visualizations:
ness. Therefore, in the anchor point selection step, weone indicating the repetitive properties (fitness value rep
sample the scape plot by taking the fitness into account.resented by lightness, see Figure 4a) and the other indicat-
To this end, we use a greedy procedure that consists of twang the cross-segment relations (represented by hue colors
steps. Firstly, we select the scape plot point of maximal see Figure 4f). We now combine this information within a
fithess as an anchor point. Secondly, around this anchorsingle scape plot representation, which we also refer to as

3.4 Color Combination
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Chopin, where we manually generated some structure an-

notations for each piece. Note that these annotations are
not needed to generate the structure scape plots, but are
only used to compare our visualizations with some sort of
ground truth. As mentioned in the introduction, the pur-
pose of the scape plot visualizations is to yield a compact
and intuitive representation without the necessity of iexpl

itly extracting the structure.

As for the parameter settings, we chodsg, p, and

(©: (d) o A in a relative fashion depending on the duration of the
respective music recording. In particular, we determined
- the upper bound/, and the neighborhood parametetio

® result in a numbe/ of anchor points ranging between
200 and 250 for each recording. Furthermore, the lower

200!

150

100

kA

. Vi ot B s fakwn o o o s s
0 50 100 150 200 250 0 50 100 150 200 250

A1B1A3ByA3 C Dy Dy A4B3As I'Vi BiVaVg By Vy O
[ T [

°

100 150 200 250 0 50 100 150 200 250

% ' ' bound) was set to correspond &7 % of the recording’s
2 ) , total duration. Figure 5 shows structure scape plots for
0 ’ A some representative music recordings. For example, Fig-
Ca BB A LV Ve By Vs Vi By 150 ure 5a shows the scape plot for a Rubinstein performance
T — : o of Chopin’s Mazurka Op. 17 No. 3. The fivé-part seg-

Time (sec) Time (sec)

ments, which also comprise the thumbnail, are represented
Figure 5: Structure scape plots and structure annotations for py red. Furthermore, the threB-part segments are in-

recordings of various piecega) Chopin Mazurka Op. 17 No. 3. : ; :
(b) Beaties song “While My Guitar Gently Weeps&) Chopin dicated by a lighter orange color, and the superordinate

Mazurka Op. 33 No. 3(d) Beatles song “You Can't Do That." ABA-part segments are represented by green. Also sub-
structures of thed-part segments are visible: indeed each

A-part consists of two similar subparts. Interestingly, the
segments corresponding to the and the twaD-parts are

all represented by pink. Actually this is musically mean-
ingful, since each of the two repeatidg-parts is only a
slight extension of th€’-part.

structure scape plot. To this end, we first linearly map the
fitness values onto the lightness parameter sfiadé of
the HSL model such thdt = 1 (white) corresponds to the
fitness valueé) and L = 0 (black) to the maximal fitness
value occurring in the fitness scape plot. Furthermore, by
rotating the hue parameter space (unit circle) we normal-  Figure 5b visualizes the structure scape plot for the Bea-
ize the color assignment such that the thumbnail (fitness-tles song “While My Guitar Gently Weeps.” Also in this
maximizing scape plot point) is mapped to the color “red” example, the structure scape plot nicely reflects the over-
(angleH = 0). Finally, for each scape plot point we use all musical form. Each of the four verse segmerits (
the saturatiorS = 1, the computed lightnesk, and the ~ part) consists of two (approximately) repeating subparts,
normalized hue angl& to obtain a single color value. sayV = WW. Actually, the intro also corresponds to such
Figure 4g shows the final result of the structure scape & subpart{ = W) and the outro corresponds to three of
plot for our Brahms example. Note that the fabirpart ~ these subpartsX = WWW), which also explains the red
segments (repetitions of tH&-thumbnail) are represented coloring of these segments. Furthermore, the color blue
by red, the threel-part segments by blue, and the super- corresponds tdV W WW-segments and the color green to
ordinate twoA B B-part segments by green. Furthermore, V BV -segments.
the visualization reveals some substructures ofdharts, The structure scape plot of a recording of the Mazurka
each actually consisting of two (approximate) repetitions Op. 33 No. 3 is shown in Figure 5c, which indicates a
Finally, note that smaller segments within thepart are number of substructures not reflected in the structure an-
assigned to the color violet. Since tdépart contains  notation (see bothl parts). Finally, Figure 5d correctly
many fragments sharing the same harmony, our proceduraeproduces the overall structure of the Beatles song “You
has captured some repetitiveness also in this middle part. Can't Do That.” Only theV,-segment has not been cap-
tured well. Actually,V, corresponds to an instrumental
section with some vocal interjections, which make the
segment spectrally quite different to the other fdlypart

In this section, we indicate the potential and some limi- Segments.

tations of our visualization procedure by discussing rep-  Next, we discuss some limitations and problems that
resentative examples. In our experiments, we used audianay occur in our visualization approach. As an illustrating
recordings considering popular music as well as classicalexample, we consider the Beatles song “Hello Goodbye.”
music. On the one hand, we employed the dataset consistFigure 6b shows the structure scape plot using our standard
ing of recordings of th&2 studio albums by “The Beatles” parameter setting as described above. The red color corre-
using the structure annotations as described by [9]. Onsponds to the fouv’ R-part segments, which also comprise
the other hand, we used the complete Rubinstein (1966)the thumbail. However, the individud-part andR-part
recordings of the49 Mazurkas composed by Frédéric segments are all represented by green and are not distin-

4. EXAMPLES AND DISCUSSION



@ better represent more complex structures. So far, we have

only given a qualitative evaluation to demonstrate the po-
tential of our techniques. In this context, user studies may
be necessary to better understand the actual user needs and
the applicability of our concepts. Besides introducing a
novel segment distance function as well as a grouping and
2 , coloring procedure, the main contribution of this paper was
%0 to introduce the concept of a structure scape plot for visu-

alizing repetitive structures of music recordings. We hope
that our visualization is not only aesthetically appealing
but also may allow a user to explore and browse musical
} structures in novel ways.
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Beatles song “Hello Goodbye (a)/(b) Using A\ = 14 seconds.

(c)/(d) Using A\ = 10 seconds. [3

—

guishable. The reason for this is that the lower bound for
the anchor points was set o= 14 seconds, which is too 4]
high to capture the finer structures. By decreasing this pa-
rameter toA = 10 seconds)/ -part andR-part segments

are separated, see Figure 6d. As this example shows, thes!
choice of the parameter may have a significant impact

on the final visualization. The Beatles example also indi- [6]
cates a second problem that may arise in our color map-
ping procedure. Usually, the anchor points projected to thel’]
two principal components are homogeneously distributed
along the unit circle as in our Brahms example, see Fig-
ure 4c. Therefore, projecting these points to the uniteircl
(toyield the desired hue values) does not destroy too mucHe!
of the neighborhood relations. However, in the Beatles ex-
ample, the projected anchor points are rather scattered in
the two-dimensional Euclidean space with some outliers
as indicated by the boxed and circled points shown in Fig-
ure 6a. Therefore, projecting these points onto the uni
circle may result in the same hue value for anchor points
that are actually far apart. This explains, why the substruc
tures within theS-part are mapped to the same color as
substructures of th& R-part, see Figure 6b.

[12]
5. FUTURE WORK

These problems indicate some future research directions.
Possible improvements of the color mapping step may bé3]
achieved by applying more involved generalized multidi-
mensional scaling techniques which directly map the an-
chor points to a smooth manifold (in our case the unit cir-{14]
cle). Also, the one-dimensional hue color space may not
suffice to suitable capture more intricate cross-segment re

: . 15]
lations. Here, a more flexible usage of the color space o[r
an extension to 3D scape plot representations may help to



