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ABSTRACT
The decomposition of a monaural audio recording into musically
meaningful sound sources constitutes one of the central research
topics in music signal processing. In this context, many recent ap-
proaches employ parametric models that describe a recording in a
highly structured and musically informed way. However, a major
drawback of such approaches is that the parameter learning process
typically relies on computationally expensive data adaption meth-
ods. In this paper, the main idea is to distinguish parameters in
which the model is linear explicitly from the remaining parameters.
Exploiting the linearity we translate the data adaption problem into a
sparse linear least squares problem with box constraints (SLLS-BC),
a class of problems for which highly efficient numerical solvers ex-
ist. First experiments show that our approach based on modified
SLLS-BC methods accelerates the data adaption by a factor of four
or more compared to recently proposed methods.

Index Terms— Source separation, parametric models, numeri-
cal optimization, music processing.

1. INTRODUCTION

In recent years, methods for the separation of musically meaningful
sound sources from monaural music recordings have been applied to
many music processing and analysis tasks. For instance, removing
the percussion from a given recording led to significant improve-
ments in a subsequent harmonic analysis [1]. Similarly, many exist-
ing query-by-humming systems rely on methods for separating the
main melody from a polyphonic music recording [2, 3, 4]. Further-
more, extracting sounds with a similar spectral envelope is a funda-
mental step in the recognition of instruments in polyphonic record-
ings [5]. In this context, non-negative matrix factorization (NMF) [6]
(or its equivalent probabilistic formulation PLCA [7]) is an often em-
ployed technique as it is easy to implement and efficient enough for
many applications. However, using a purely statistical approach such
as standard NMF often leads to unpredictable separation results.
To enforce a musically meaningful structure in the signal model,
many authors proposed parametric models which allow for integrat-
ing available domain knowledge [8, 9, 10, 11, 12, 13, 14, 15, 16].
For example, such models account for the fact that partials in a har-
monic sound are equidistantly spaced (on a linear frequency scale)
[8, 14, 11], that the physical amplitude progresses rather smoothly
in time for many instruments [9, 15], or that the sound produced by
many instruments can be compactly explained using a source-filter
model [2, 5, 16]. Overall, integrating domain knowledge typically
leads to a significant gain in robustness and accuracy when analyz-
ing real-world music recordings.
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After finding a parametric model for a given application, the next
challenge is to specify the model parameters in such a way that a
given recording is explained accurately. To this end, one typically
employs numerical optimization procedures to minimize a distance
between the model and the recording. However, since such data
adaption methods are typically computationally expensive, paramet-
ric models can often not be applied to large datasets. Nevertheless,
computational efficiency is not in the focus of many current methods.
Indeed, most current approaches apply the same basic strategy to
all parameters, although the underlying model often has parameter-
specific properties, which could be exploited to accelerate the data
adaption step.

The main idea of this paper is to distinguish between parame-
ters in which a model is linear from those in which it is non-linear.
This way, we can exploit the linearity and employ parameter-specific
high-efficiency data adaption methods. In particular, using a recent
parametric model as an example, we reformulate the data adaption
problem for linear parameters as a sparse linear least squares prob-
lem with box constraints (SLLS-BC). This new form enables us
to employ two methods based on the interior points and active set
paradigms, which were specifically designed for this class of prob-
lems and offer a high computational efficiency. We increase the per-
formance of these methods even further by adapting them specifi-
cally to the needs of data adaption problems. As shown in our ex-
periments, our proposed methods accelerate the data adaption step
by a factor of four or more compared to other recently proposed ap-
proaches.

The remainder of this paper is organized as follows. In Sec-
tion 2, we start by describing a typical parametric model, which
forms the basis of many current approaches and which serves as an
example throughout the paper. In Section 3, we summarize a tradi-
tional data adaption strategy and show how the linearity in a model
can be exploited using SLLS-BC methods to accelerate the learning
process. Furthermore, we discuss two modifications of a standard
SLLS-BC method which take additional details of the data adaption
problem into account to further increase the overall computational
efficiency. In Section 4, we report on systematic experiments illus-
trating the performance gain over the baseline described in Section 3.
Conclusions and prospects on future work are given in Section 5.
Further related work is discussed in the respective sections.

2. PARAMETRIC MODELS FOR MUSICAL SOURCE
SEPARATION

In the context of source separation, parametric models are used to
learn and explain how individual sound sources contribute to the
spectrogram (or another spectral representation) of a given audio
recording. Among the various parametric models proposed in re-
cent years, the Harmonic Temporal Structured Clustering (HTC) ap-
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Fig. 1. Variant of the HTC model as presented in [9]. (a) Spectral envelope function Wn
λ (·, p) for a fixed time frame n, pitch p=57

(A3, fundamental frequency 220Hz), fundamental frequency parameter τp,n=0 and some example values for parameter γ. (b) Amplitude
progression function Hλ(p, ·) for pitch p=57, T =0.5 seconds, and some example values for parameter α. (c) Illustration of the full
spectrogram model Yλ combining the submodels shown in (a) and (b).

proach [8, 9] was very successful and forms the basis of many cur-
rent methods, see for example [11, 12, 14, 15, 17]. The general idea
is to use Gaussian functions to represent all parts of the spectrogram
model. This way, a harmonic structure can be enforced in frequency
direction and a smooth amplitude progression in time direction, see
[9, 18] and Fig. 1. In this paper, we employ a slightly simplified
version of the HTC model as an illustrative example for paramet-
ric models. The following results, however, are general enough to
be applicable to the original version of HTC and other parametric
models.

To describe our model, let X ∈ CM×N denote the spectrogram
and Y = |X| the magnitude spectrogram of a given music recording.
Our strategy is to approximate Y by means of a model spectrogram
Yλ, where λ denotes a set of free parameters encoding spectral and
temporal properties of the recording. To this end, we define Yλ at
frequency bin m ∈ [1 :M ] and time frame n ∈ [1 : N ] as

Yλ(m,n) :=
∑
p∈P

Wn
λ (m, p) ·Hλ(p, n), (1)

where P ⊆ {1, . . . , 127} is a set of MIDI pitches to be consid-
ered. The parameter set λ controls the shape of the Gaussian mix-
ture models Wλ and Hλ which capture the spectral envelope and
the amplitude progression associated with each MIDI pitch p ∈ P ,
respectively. More precisely, to describe the frequency and energy
distribution of the first L partials of a harmonic sound associated
with MIDI pitch p, the parameter set λ contains a time-dependent
parameter τ ∈ [−0.5, 0.5]P×N responsible for fine-tuning the fun-
damental frequency and a parameter γ ∈ [0, 1]P×L related to the
energy distribution over the L partials, where P := |P|. Using these
parameters, we define Wλ as

Wn
λ (m, p) :=

∑
`∈[1:L]

γp,` · g(fm − ` · f(p+ τp,n)), (2)

where fm denotes the center frequency in Hertz associated with the
m-th frequency bin of the spectrogram and the function g : R →
R≥0 is a suitably chosen Gaussian centered at zero, which is used to
describe the shape of a partial in frequency direction. Furthermore,
f : R → R≥0 defined by f(p) := 2(p−69)/12 · 440 maps the MIDI
pitch to the frequency scale. See Fig. 1(a) for an illustration.

Similarly, the set λ contains parameters α ∈ RP×R≥0 controlling
the amplitude progression over time. More precisely, we define

Hλ(p, n) :=

R∑
r=1

αp,rh(tn − r · T ), (3)

where tn denotes the center time in seconds associated with time
frame n. To allow only smooth amplitude progressions, the zero-
centered Gaussian function h : R → R≥0 has a suitably chosen,
wide slope. In contrast to Wλ, the position of the individual Gaus-
sians is fixed inHλ with one ofRGaussians every T seconds, where
R := dtN/T e. See Fig. 1(b) for an illustration.

Overall, combining the submodels given in Eq. 2 and 3 as in
Eq. 1 yields a spectrogram model Yλ suppressing non-harmonic el-
ements in frequency direction and spurious peaks in time direction,
see Fig. 1(c) for an illustration.

3. EFFICIENT DATA ADAPTION

To explain a given recording using the HTC model, the goal is to find
parameters λ = (γ, τ, α) minimizing a distance function between
the given spectrogram and the model subject to the non-negativity
and domain constraints specified above (e.g. γ ∈ [0, 1]P×L). In
the following, we use the distance d(γ, τ, α) := ‖Y − Y(γ,τ,α)‖F ,
where ‖·‖F denotes the Frobenius norm. To minimize d, most ap-
proaches develop update rules using the same algorithmic frame-
work for all parameters based on some form of gradient descent. For
example, approaches based on the HTC model typically compute
the partial derivative of d with respect to a single parameter (for our
model this means one out of P · (L+N + R) parameters in total).
This single dimension gradient descent is often referred to as coordi-
nate descent. To account for non-negativity constraints of the param-
eters, the step-size for the coordinate descent can be chosen such that
the update rules are multiplicative (similar to NMF, see also [6]). For
instance, adapting the formulas in [14], the component-wise multi-
plicative update rule for the parameter γ is:

γp,` ← γp,` ·
∑
m,n Y (m,n)g(fm − ` · f(p+ τp,n))Hλ(p, n)∑
m,n Yλ(m,n)g(fm − ` · f(p+ τp,n))Hλ(p, n)

.

(4)

While using an iterative single-parameter update strategy based
on the same optimization framework typically leads to easy-to-
implement and uniform update rules, it is often computationally
expensive. In particular, such methods do not exploit specific prop-
erties for the parameters (for example linearity of the spectrogram
model), which limits the overall computational efficiency. As a con-
sequence, such methods often require a high number of iterations to
converge. This is particularly problematic for update rules as the one
given in Eq. 4, as here several computationally expensive Gaussian
functions have to be evaluated in each iteration. For a more detailed
discussion of the limitations of coordinate descent methods, see also
[19, Ch.9].



3.1. Reformulation as an SLLS-BC Problem

In order to accelerate the data adaption process, we exploit the lin-
earity of the model for some parameters explicitly using parameter-
specific methods instead of using the same algorithmic framework
for all parameter. In addition, we update whole parameter groups at
the same time instead of optimizing the individual parameters one
after another. Using again the parameter γ as an example, we write
Yλ as:

Yλ(m,n) =

P∑
p=1

∑
`∈[1:L]

γp,` ·
(
g(fm − ` · f(p+ τp,n))Hλ(p, n)

)
.

(5)

In this form, it is straightforward to see that Yλ is linear in γ, i.e.
Y(a·γ+b·γ̃,τ,α) = a·Y(γ,τ,α)+b·Y(γ̃,τ,α) for a, b ∈ R. Similarly, Yλ
is also linear in the amplitude parameters α. To exploit this linearity,
we reformulate our parameter estimation problem as follows. First,
we define a vector Ỹ ∈ RM·N by Ỹ ((n− 1)M +m) := Y (m,n),
i.e. we simply regard the spectrogram matrix Y as a vector Ỹ by
stacking all columns of Y on top of each other. Similarly, fixing τ
and α, we define a matrix Aτ,α ∈ R(M·N)×(P ·L) by

Aτ,α((n− 1)M +m, (p− 1)L+ `) := (6)

g(fm − ` · f(p+ τp,n))Hλ(p, n)

and a vector γ̃ ∈ RP ·L by γ̃((p − 1)L + `) := γp,`. As a result it
can easily be shown that:

d(γ, τ, α) = ‖Y − Y(γ,τ,α)‖F = ‖Ỹ −Aτ,αγ̃‖2. (7)

With this minor reformulation of our distance function, we have the
original problem reduced to a standard linear least squares (LLS)
problem, for which many well-studied approaches exist. However,
we have to take some additional considerations into account. On the
one hand, we require methods respecting the domain constraints for
our parameters (e.g. γ ∈ [0, 1]P×L). In numerical optimization such
constraints are more commonly referred to as bound constraints. On
the other hand, the system of linear equations described by Aτ,α is
very large. More precisely, Aτ,α as defined in Eq. 6 has a memory
requirement of P · L the size of the given spectrogram Y . On the
positive side, Aτ,α has additional structure that can be exploited. In
particular, comparing Eq. 5 and Eq. 6 we see that column (p−1)L+`
of Aτ,α contains only the part of our model spectrogram Yλ that can
be scaled using the parameter γp,`. This part only corresponds to
a single partial in the entire spectrogram model (the `-th partial in
the spectral envelope for pitch p). Therefore, the spectrogram model
is only affected in a small area around the center frequency of that
partial and hence most entries in each column of Aτ,α are close to
zero (in our experiments, typically more than 98% of all entries in
Aτ,α were smaller than 10−9). By simply thresholding Aτ,α we
can store it using sparse matrix data structures and thus significantly
reduce the memory requirements. As long as the thresholding is ap-
plied carefully the resulting model will not be significantly effected
(in our experiments we set every entry in Aτ,α below 10−9 to zero).
Overall, our parameter estimation problem can now be considered as
a sparse linear least squares problem with bound constraints (SLLS-
BC) [20].

3.2. Solving the SLLS-BC Problem

In optimization theory, SLLS-BC problems are often considered as a
subclass of more generals problems, in particular quadratic and non-
linear programming problems. The majority of these more general

methods are not applicable in our case as they often do not preserve
the sparse structure of Aτ,α. However, there are a few methods spe-
cific to our problem, see [20] for a detailed discussion. Most of
these are based either on the active set (AS) or the interior points
(IP) paradigm. The ideas behind both are quite straightforward. Ac-
tive set methods exploit that solving a linear least squares problem
is very efficient as long as there are no constraints to consider, such
as our bound constraints. Therefore, AS methods start by solving
the unconstrained LLS problem. Given that no constraints are vio-
lated we already have our final solution, for example if all entries
of the solution vector γ̃ are already between 0 and 1. Otherwise,
an algorithm is employed to estimate the so called active set, which
encodes the current believe which entries in the final solution vector
will be affected by the constraints. Note that in general the active
set is not identical to the set of entries violating constraints in the
unconstrained solution, see [19] for details. Then the unconstrained
LLS problem is solved again with all entries in the active set consid-
ered as constant setting them either to the lower or the higher bound.
Based on this new solution the active set is reestimated by adding
or removing some entries. This process is repeated until the correct
active set and the final solution are found, see also [19].

Approaches based on interior point techniques are essentially
Newton-type gradient descent methods, i.e. they try to identify a
local minimum of our distance function by finding positions where
its gradient vanishes. In contrast to active set methods, bound con-
straints are considered by interior point methods from the start in the
form of so called barriers. Barriers constitute additional terms added
to the function to be minimized, which penalize violations of con-
straints in a soft way. After each gradient descent step the influence
of the penalty terms is varied in such a way that the method actu-
ally converges to the original minimum of d we are looking for. For
more details, see for example [19]. In the following, we consider
the active set (AS) and the interior points (IP) methods presented in
[20]1. Both were specifically designed for SLLS-BC problems and,
as actual solvers, both identify the global minimum of the convex
SLLS-BC problem, see [20] for more details.

3.3. Fine-Tuning the Active Set Method

Next, we show how the active set method can be adjusted to our
specific needs to further raise its computational efficiency. To this
end, we exploit that the parameters γ, τ , and α are updated itera-
tively, i.e. after updating γ, τ , and α, parameter γ is updated again,
and so on. The active set method presented in [20] , however, does
not exploit this situation as every information about the last iteration
is discarded. This is relevant for two steps in the algorithm as we
explain next using again parameter γ as an example. First, [20] pro-
poses the use of so called direct methods (Cholesky factorization) to
solve the intermediate unconstrained LLS problems as described in
the last section. Here, the idea is to factorize the matrixAτ,α in such
a way that the LLS problem can easily be solved, see [19] for more
details. This strategy, however, does not exploit the fact that the solu-
tion for γ found in the last iteration is actually a good starting point
for the current iteration and probably only needs little correction.
Therefore, we replace the Cholesky factorization by a method based
on Preconditioned Conjugate Gradients (PCG), which can be con-
sidered as one of the fastest non-direct solvers, see [19]. As a main
advantage PCG allows us to employ the parameter values computed
in the last iteration as a starting point, which PCG only needs to re-
fine in the current iteration. Such a strategy is often computationally

1A Matlab implementation of these approaches is available at http://
www.math.liu.se/˜milun/sls/.

http://www.math.liu.se/~milun/sls/
http://www.math.liu.se/~milun/sls/


Bach (102s) Chop (311s) Beet (541s)
10−2 10−6 10−2 10−6 10−2 10−6

Base 80s 2099s 253s 6952s 431s 38278s
(54) (1426) (46) (1264) (66) (5902)

AS 25s 177s 117s 911s 163s 1283s
(3) (21) (4) (29) (4) (31)

IP 21s 153s 86s 641s 106s 997s
(3) (21) (4) (29) (4) (31)

AS++ 19s 137s 84s 611s 121s 939s
(3) (21) (4) (29) (4) (31)

Table 1. Experimental results for three recordings (Bach, Chop,
and Beet) and two convergence levels (ε = 10−2 and ε = 10−6).

less expensive than computing a full matrix factorization using direct
solvers, even if the matrix is very sparse.

A second type of information discarded in [20] between itera-
tions is the choice of the active set. In particular, the active set is
always initialized as an empty set, although the active set often does
not change across iterations. Therefore, it is a natural idea to reuse
the active set we found in the last iteration to initialize the active set
in the current iteration. This way, we can often reduce the computa-
tional costs of our constrained problem to those of an unconstrained
problem.

4. EXPERIMENTS

In this section, we report on systematically conducted experiments
to illustrate the potential performance gain resulting from our pro-
posed methods. Instead of testing our approach only on short sound
snippets in the range of 5 to 20 seconds as done in many other source
separation approaches, we use full-length music recordings. Exem-
plarily, we employ recordings of the first movement of three piano
pieces taken from the Saarland Music Database (SMD) [21]: Bach’s
Prelude No. 6 BWV 875 (length: 102 seconds), Chopin’s Impromptu
No. 4 Op. 66 (length: 311 seconds), and Beethoven’s “The Tempest”
Op. 31 No. 2 (length: 541 seconds), which we denote by Bach,
Chop, and Beet, respectively. We use single channel versions of
these recordings with a sampling rate of 22050 Hz. For our experi-
ments, we employ the HTC model as described in Section 2 to ap-
proximate the magnitude spectrogram for each recording. The spec-
trogram is computed using half-overlapped 93ms Hann windows.
Furthermore, we set P = {21, . . . , 108}, i.e. we use the full range
of MIDI pitches available on a grand piano. To adapt the model to a
given recording, we use the various procedures as discussed in Sec-
tion 3. As a baseline, we employ the method proposed in [14], which
employs a coordinate descent method for all parameters γ, α, and τ .
Exploiting the linearity of our HTC model for some parameters, our
proposed methods keep the update for τ but replace the ones for γ
and α with the interior points (IP) and active set (AS) methods pre-
sented in Section 3, respectively. In this context, the modified active
set method is referred to as AS++ in the following. For all methods,
τ is initialized with 0 while γ and α are initialized using random
values between zero and one. To allow for a fair comparison, all
methods use the same initial values. All methods were implemented
in Matlab 2012b and the experiments were conducted on an Intel
Core i5-3570K processor with Windows 7.

To indicate the computational performance of a method, we
measure the time and number of iterations necessary to reach con-
vergence. To this end, we consider a method as converged after k

iterations if

conv(k) :=
d(γk, τk, αk)− d(γk−1, τk−1, αk−1)

d(γk, τk, αk)
≤ ε

for a convergence level ε > 0, where γk, τk, and αk denote the HTC
parameters after k update iterations. The time in seconds and num-
ber of iterations necessary to reach the convergence levels ε= 10−2

and ε = 10−6 are given in Table 1 for all three recordings.
Overall, we can observe that the baseline method requires sig-

nificantly longer to converge compared to the three proposed meth-
ods. For example, using ε = 10−2, the method AS++ converges
after 19 seconds for the Bach example, while the baseline method
requires 80 seconds (more than four times slower). This difference
in performance is even more obvious for very small values of ε. For
example, using ε = 10−6, the baseline runs roughly 15 times longer
than AS++ for the Bach example and roughly 40 times longer for
the Beet example. Furthermore, the proposed methods require sig-
nificantly less iterations to reach a given convergence level. For ex-
ample, using ε = 10−2, all three proposed methods converge after
3 iterations while the baseline requires 54 iterations for the Bach
example (recall that the three proposed methods compute the same
result and hence require the same number of iterations). Addition-
ally, we see that while a single iteration using the baseline method
takes significantly less time (80s / 54 = 1.48s per iteration) compared
to the proposed methods (19s / 3 = 6.33s per iteration for AS++), the
reduction of the distance d is much more effective using the proposed
methods and hence they converge significantly faster. Moreover, it
should be mentioned that after reaching a given convergence level ε,
the absolute distance d(γ, τ, α) was for all three examples lower us-
ing the proposed methods compared to the baseline approach.

The two extensions presented in Section 3.3 and used in the
method AS++ further reduce the time to converge for AS by 23%
to 33%. Here, both extensions help to exploit that the last iteration
gives valueable information for the current iteration. Comparing IP
and AS++, we see no significant differences. However, the simpler
implementation of the active set method might be an additional ben-
efit.

5. CONCLUSION

In this paper, we presented novel methods to accelerate the data
adaption step in parametric models for musical source separation.
The idea was to exploit that many parametric models are linear in
some parameters and non-linear in others. Treating both groups
of parameters individually allowed us to employ highly optimized,
problem-specific numerical optimization methods for the linear pa-
rameters to solve the data adaption problem efficiently. As indicated
by our experiments, the time required for the data adaption step in a
source separation application can be reduced by a factor of four or
more using our proposed methods compared to a recently presented
baseline method.

While we focused in this paper on parameters in which our ex-
ample model is linear, we will explore in the future how the data
adaption can be accelerated for parameters where linearity is not
given. As discussed in [14], the distance function d is often highly
non-convex for non-linear parameters, which makes it difficult to
solve the minimization problem efficiently without ending up in a
random local minimum of d. For parameters such as our τ it seems
promising to discretize the parameter domain such that we only need
to pick from a finite set of possible parameter values. Such problems
can be solved for example using sparse coding techniques [22].
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