
CONVERTING PATH STRUCTURES INTO BLOCK STRUCTURES USING
EIGENVALUE DECOMPOSITIONS OF SELF-SIMILARITY MATRICES

Harald Grohganz, Michael Clausen

Bonn University

{grohganz,clausen}@cs.uni-bonn.de

Nanzhu Jiang, Meinard Müller

International Audio Laboratories Erlangen

{nanzhu.jiang,meinard.mueller}@audiolabs-erlangen.de

ABSTRACT

In music structure analysis the two principles of repetition

and homogeneity are fundamental for partitioning a given

audio recording into musically meaningful structural ele-

ments. When converting the audio recording into a suitable

self-similarity matrix (SSM), repetitions typically lead to

path structures, whereas homogeneous regions yield block

structures. In previous research, handling both structural

elements at the same time has turned out to be a challeng-

ing task. In this paper, we introduce a novel procedure for

converting path structures into block structures by apply-

ing an eigenvalue decomposition of the SSM in combina-

tion with suitable clustering techniques. We demonstrate

the effectiveness of our conversion approach by show-

ing that algorithms previously designed for homogeneity-

based structure analysis can now be applied for repetition-

based structure analysis. Thus, our conversion may open

up novel ways for handling both principles within a unified

structure analysis framework.

1. INTRODUCTION

The task of music structure analysis with the objective

of partitioning a given audio recording into temporal seg-

ments and of grouping these segments into musically

meaningful categories constitutes a central task in the field

of music information retrieval [14]. Because of differ-

ent structure principles including temporal order, repeti-

tion, contrast, variation, and homogeneity, finding the mu-

sical structure is a challenging and often ill-defined prob-

lem [18]. In particular, the two principles of repetition

and homogeneity have been in the focus of previous re-

search efforts [14, 15]. On the one hand, repetition-based

methods target at identifying recurring patterns and, on the

other hand, homogeneity-based methods try to determine

passages that remain unchanged with respect to some mu-

sical property. When converting the given audio recording

into a suitable feature sequence and then deriving a self-

similarity matrix (SSM), repetitions typically lead to path-

like structures, whereas homogeneous regions yield block-
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like structures. In previous research, numerous extraction

and clustering techniques have been proposed that either

allow for handling path structures or block structures, see,

e g., [1, 5, 8, 12, 13, 14, 15]. However, dealing with both

structural elements at the same time has turned out to be a

challenging or even irreconcilable task.

Only few approaches that try to apply several seg-

mentation principles at the same time exist. In [13],

a unifying optimization scheme that jointly accounts for

path and block structures is proposed. In [17], structural

changes with regard to path and block elements are cap-

tured to derive segment boundaries. In [4, 8], approaches

for homogeneity-based structure analysis are introduced,

where smoothing and clustering techniques are applied

for enhancing the block structure in a pre-processing step.

A very interesting research direction is sketched in [16],

where an audio recording is locally classified according to

the properties of being repetitive or homogeneous with the

goal to locally adapt the segmentation strategy.

Along these lines of research, we deal in this pa-

per with the task of converting a repetition-based into a

homogeneity-based structure analysis problem. Opposed

to [4, 8], who try to enhance already latent block struc-

ture by applying smoothing and image processing tech-

niques, we generate the block structures from path struc-

tures. As our main technical contribution, we propose a

novel procedure that is based on an eigenvalue decompo-

sition of the SSM. We show that certain path structures

induce some disjoint properties of the supports (non-zero

entries) of the eigenvectors. This in turn allows us to gener-

ate block-like structures when converting back the suitably

clustered eigenvectors into some SSM. A typical result of

our procedure is shown in Figure 1, which shows the origi-

nal path structure in (b) and the resulting block structure in

(e). The underlying piece of music has the musical form 1

A1B1A2B2C1C2D1D2A3B3A4B4. Note that in our pro-

cedure an explicit extraction of the path structure, often a

fragile step used in repetition-based structure analysis, is

not necessary.

The general idea of using eigenvalue decompositions

of SSMs with applications to audio segmentation is not

new, see e. g. [2]. However, in [2] this techniques is used

for the purpose of dimensionality reduction and clustering,

whereas we exploit specific properties of the eigenvectors

1 As in [14], musical parts are denoted by the letters A,B, C, . . . in
the order of their first occurrence, where indices are used to indicate rep-
etitions.
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Figure 1: Illustration of the algorithmic pipeline for converting path into block structures. (a) Original SSM. (b) Path-enhanced SSM
as typically used for repetition-based structure analysis. (c) Eigenvectors (rows) of the SSM weighted and sorted by the corresponding
eigenvalues. (d) Eigenvectors (rows) after clustering and post-processing. (e) SSM obtained from (d). (f) Structure analysis result
obtained from (e) applying some homogeneity-based clustering procedure. (g) Manually labeled structure (ground truth).

for converting path into block structures.

We demonstrate the effectiveness of our conversion ap-

proach by discussing a number of explicit examples and

by presenting some quantitative evaluation based on two

known datasets. In particular, we show that upon our con-

version standard clustering procedures that are designed

for homogeneity-based structure analysis can then be ap-

plied for repetition-based structure analysis. As a results,

our conversion may open up novel ways for combining dif-

ferent music segmentation principles at an early stage of an

audio structure processing pipeline.

In the remainder of this paper, we first describe the al-

gorithmic details for our conversion procedure (Section 2),

then report on our experiments (Section 3), and conclude

with an outlook on future research directions (Section 4).

2. ALGORITHMIC PIPELINE

In this section, we describe our procedure for converting

SSMs with path-like structures into SSMs with block-like

structures, see also Figure 1 for an illustration of the overall

pipeline. We first summarize a procedure for computing an

SSM with path structures as typically used for repetition-

based structure analysis (Section 2.1). Such matrices con-

stitute the input of our conversion procedure. We then de-

scribe some properties of the eigenvectors obtained from

such matrices (Section 2.2) and show how the eigenvec-

tors can be used to derive SSMs with block-like structures

(Section 2.3).

2.1 Computing SSMs with Path Structures

Repeating segments in music often share the same melodic

and harmonic progression while showing differences in in-

strumentation and timbre. Therefore, in most approaches

for repetition-based structure analysis, the audio signal

is converted into twelve-dimensional chroma-based audio

features, which closely correlate to the aspect of harmony

and have become a widely used tool in processing and

analyzing music data [3]. In the following, we use a

chroma variant referred to CRP (Chroma DCT-Reduced

Log Pitch) features 2 , which show a high degree of invari-

ance to changes in timbre [10]. In our experiments, we

adapt the feature rate according to the length of the consid-

ered audio recording, which results in feature rates (fea-

tures per second) between 2 Hz and 6 Hz. Normalizing the

features, we use the inner product as a similarity measure

to compute a self-similarity matrix S by comparing the el-

ements of the feature sequence in a pairwise fashion, see

Figure 1a.

To further enhance the path structure of S, one typical

procedure is to apply some kind of smoothing filter along

the direction of the main diagonal, resulting in an emphasis

of diagonal information in S and a denoising of other struc-

tures. In our implementation, we use a smoothing variant

similar to [12], which can deal with local tempo variations.

Furthermore, we apply image processing and thresholding

techniques to eliminate short and weak path fragments, see

also [17] for similar strategies.

The resulting path-enhanced SSM, as illustrated by Fig-

ure 1b, constitutes the input of our conversion algorithm.

Note that the implementation details to obtain the path-

enhanced SSM are not important at this stage. Our con-

version procedure is generic and works well as long as

the SSM has a relatively sparse structure only showing the

most relevant paths.

2 An implementation of these features is available at www.mpi-inf.
mpg.de/resources/MIR/chromatoolbox/, see also [11].
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Figure 2: Various SSMs with path structures (left) and corre-
sponding eigenvectors (right). The figures shows the eigenvec-
tors in some transposed (row-wise) and weighted (multiplied by
the corresponding eigenvalue) form. Furthermore, the eigenvec-
tors are sorted according to decreasing eigenvalues. (a)/(b) SSM
I
ǫ

K . (c)/(d) SSM reflecting the musical form A1A2. (e)/(f) SSM
reflecting the musical form A1B1B2B3A2.

2.2 Eigenvalue Decomposition

When comparing the elements of a feature sequence in a

pairwise fashion using a symmetric similarity measure re-

sults in a symmetric SSM S. This property may be lost by

applying enhancement and image processing techniques as

used in Section 2.1. However, one can restore the sym-

metry by considering 1

2
(S + S⊤) instead of S, where S⊤

denotes the transposed matrix of S. Doing so, we may

assume in the following that S is a symmetric matrix of

dimension N ×N for some N ∈ N.

Next, we apply an eigenvalue decomposition of the

symmetric matrix S and investigate the properties of the

resulting eigenvectors. Principle component analysis tells

us that there exists a real-valued diagonal matrix D =
diag(λ1, . . . , λN ) and an orthogonal matrix E such that

S = EDE⊤, where the nth column en of E is an eigen-

vector of S with eigenvalue λn, i. e., Sen = λnen.

In our scenario, we assume that the matrix S consists of

path-like structures, where a prototype of a path of length

K may be modeled by the matrix 3

IǫK :=















ǫ 1
ǫ 1 ǫ

. .
.

. .
.

. .
.

ǫ 1 ǫ

1 ǫ















∈ {0, ǫ, 1}K×K .

3 Opposed to existing conventions, we enumerate in this papers the
rows of the matrix from bottom to top with the aim to better match the
visualizations of the SSMs in the figures.
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Figure 3: (a) SSM S with a path structure corresponding to
the musical form A1A2B1C1A3A4B2A5. (b) SSM with high-
lighted block structure. (c) SSM in some normalized form after
applying some permutation. (d) Illustration of the support of the
suitable sorted and transposed eigenvectors.

In this matrix the non-specified entries have the value 0, see

also Figure 2a. Intuitively, each path consists of a diagonal

matrix with large entries on the main diagonal (represented

by the value 1 in Iǫ
K

) and with decreasing entries on the

diagonals above and below the main diagonal (represented

by the value ǫ in Iǫ
K

). Such paths typically arise when

applying path enhancement strategies based on smoothing

techniques.

In [6], an explicit eigenvalue decomposition of the ma-

trix Iǫ
K

is described. The eigenvalues are

λk = 1 + ǫ · 2 cos kπ

K+1
, 1 ≤ k ≤ K, (1)

with corresponding eigenvectors

ek =
(

sin kπ

K+1
, sin 2kπ

K+1
. . . , sin Kkπ

K+1

)⊤

. (2)

In particular, note that the entries of the eigenvectors are

non-zero, see also Figure 2b for an illustration. This prop-

erty, as we will see, becomes crucial for converting paths

into blocks.

The matrix Iǫ
K

constitutes the basic building block for

SSMs with more general path structures. Instead of a

mathematically rigorous treatment, which is beyond the

scope of this paper, we explain the general case by means

of an illustrative example. Let S be the SSM shown in Fig-

ure 3a, which has the path structure corresponding to the

musical form A1A2B1C1A3A4B2A5. The desired block

structure is indicated in Figure 3b. By applying a suitable

permutation matrix P , it can be shown that S can be con-

verted into a matrix S ′ := PSP−1 = A⊕B⊕C, which is

the direct sum of three matrices A, B, and C corresponding

to the musical parts A, B, and C (inclusive repetitions),

respectively. This is illustrated by Figure 3c. As for the

eigenvalue decomposition, it can be shown that the eigen-

values of S ′ are given by the eigenvalues of the matrices A,

B, and C. Furthermore, the eigenvectors of S ′ are obtained

by suitably extending the eigenvectors of the matrices A,



B, and C by zero entries. As a result, the supports (non-

zero entries) of eigenvectors coming from different sum-

mands A, B, and C in S ′ are disjoint. This fact is illustrated

by Figure 3d. Furthermore, the repetitions induce substruc-

tures in the summandsA, B, and C. Each such substructure

can be expressed by a suitable Kronecker product with an

all-one matrix and a matrix of the form Iǫ
K

. For example,

the matrix B corresponds to two repeating parts and can be

expressed by

1
R×R ⊗ IǫK =

(

Iǫ
K

Iǫ
K

Iǫ
K

Iǫ
K

)

with R = 2 being the number of repetitions, 1R×R be-

ing the all-one R × R matrix, and ⊗ being the Kronecker

product. Note that the rank of B is K , so that in the case

of R = 2 half of the eigenvalues are zero (therefore, the

corresponding eigenvectors are not uniquely determined).

Also, the permutation P is not known in practice. In our

pipeline, we multiply the normed eigenvectors with their

corresponding eigenvalue and arrange the modified eigen-

vectors according to their length in decreasing order. (The

eigenvectors to eigenvalue 0 are irrelevant here.)

To build up some more intuition, let us consider the ex-

amples shown in Figure 2. The case of Iǫ
K

and its eigen-

value decomposition is illustrated by (a)/(b) of Figure 2,

whereas the case of two repeating segments (12×2 ⊗ Iǫ
K

)

is shown in (c)/(d). A third example corresponding to the

musical form A1B1B2B3A2 is shown in (e)/(f) of Fig-

ure 2. Here, the disjointness property of the supports for

the eigenvalues that belong to different parts is visible.

Note that the permutation matrix P is not known and that

the eigenvectors are not ordered according to the musical

parts they belong to. Furthermore, in practical applications

the path structures may be noisy and distorted so that the

discussed properties of the eigenvectors are not strictly ful-

filled.

2.3 Deriving SSMs with Block Structures

Let N ∈ N denote the dimension of the eigenvectors,

which also coincides with the number of frames. As indi-

cated by Figure 1c, we form a matrix by defining its rows to

be the transposed eigenvectors weighted and sorted by the

corresponding eigenvalues. We denote this N ×N matrix

by E . As discussed above, the path structure of the SSM

is reflected by the support properties of the rows. In the-

ory (assuming an ideal path structure as discussed before),

two rows either have the same support (when correspond-

ing to the same repeating musical part) or have disjoint

supports (when corresponding to repeating, but different

musical parts). Furthermore, the support of an eigenvec-

tor reveals all frames that belong to repeating segments of

the same musical part (e. g., the frames of all A-part seg-

ments).

Motivated by this observation, we consider the columns

E(n) of E as features, n ∈ [1 : N ]. This yields a feature

sequence E(1), . . . , E(N), which, in turn, can be used to

define a self-similarity matrix S(E). The properties of the

eigenvalues imply that two features E(i) and E(j) are sim-

ilar if the frames i and j belong to repeating segments of

the same musical part (or to frames of non-repeating seg-

ments), and dissimilar otherwise. As a consequence, the

matrix S(E) has the desired block structure.

To make this procedure applicable for real data, we

post-process the matrix E prior to forming the self-

similarity matrix. To this end, we first replace each entry

e of E by log(10|e| + 1) to prevent overrating the most-

repeated segment. Then we apply a standard k-means clus-

tering procedure 4 to rearrange the eigenvectors (rows of

E) so that vectors corresponding to similar structures are

adjacent. Then we smooth the rearranged matrix in both

directions, horizontally as well as vertically, see Figure 1d.

Here, the horizontal smoothing balances out the values of

the non-zero entries in the eigenvectors, whereas the verti-

cal smoothing introduces robustness to local distortions. 5

Denoting the smoothed matrix by E ′, we compute the self-

similarity matrix as above to obtain SBlock = S(E ′). This

matrix constitutes our final result, see Figure 1e.

3. EXPERIMENTS

To show how our conversion approach behaves on real

data, we now discuss a number of explicit examples (Sec-

tion 3.2) and report on some quantitative experiments (Sec-

tion 3.3). Note that optimizing and investigating the spe-

cific role of the various parameters is not in the scope

of this paper. Rather than numerically improving a spe-

cific structure analysis result, our main goal is to high-

light the conceptual novelty of our approach. In partic-

ular, we demonstrate that procedures that are designed

for homogeneity-based structure analysis (as the one de-

scribed in Section 3.1) can now be applied for repetition-

based structure analysis thanks to our conversion proce-

dure.

3.1 Structure Analysis Procedure

As a typical example approach, we consider the

homogeneity-based structure analysis procedure as de-

scribed in [5], where a given self-similarity matrix is de-

composed into a prototype matrix and an activation matrix

using non-negative matrix factorization (NMF). Looking at

maximizing entries in the activation matrix yields a frame-

wise classification of the columns of the SSM, which in

turn can be used to assign a class label to each frame. A

segment is then defined as a maximal run of consecutive

frames having the same class label, see [5] for more details

and Figure 1f for an example.

In our experiments, we used an NMF-variant with addi-

tional sparseness constraints [7] setting the sparseness pa-

rameter to 4 · mean(SBlock) and the rank parameter to 6
(assuming at most six different musical parts). The proce-

dure was then applied to the matrix SBlock.

4 In our implementation, we used 6 clusters. Our experiments showed
that any number between 5 and 20 led to similar results.

5 In our experiments, we used Gaussian smoothing using an adaptive
window size vertically and 7 frames horizontally. Again these values are
not crucial here.
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Figure 4: Results for three different audio recordings. The figure shows the computed block matrix overlaid with the path structure of
the input matrix (top), the computed structure analysis results (middle) and the manually generated structure annotations (bottom). (a)
Hungarian Dance No. 5 by Johannes Brahms. (b) March No. 1 from Op. 39 (Pomp and Circumstance) by Edward Elgar. (c) The song
“The winner takes it all” by ABBA.

3.2 Qualitative Evaluation

We now discuss some specific examples to show the po-

tential and the limitations of our conversion procedure. We

start with our running example shown in Figure 1, which

is a recording of the Waltz No. 2 from the Suite for Va-

riety Orchestra by Dmitri Shostakovich. Using the path

matrix S as shown in Figure 1b as input, our conversion

procedure outputs the block matrix SBlock shown in Fig-

ure 1e. As the figure illustrates, path structures of repeat-

ing segments have been correctly converted into blocks.

For example, the four repetitions of the combined AB-

part are clearly visible as path structure in Figure 1b and as

block structure in Figure 1e. Furthermore, Figure 1f shows

the computed structure annotation obtained from SBlock,

whereas Figure 1g shows a manually generated structure

annotation. Indeed, the homogeneity-based clustering ap-

proach applied to SBlock produced a reasonable repetition-

based structure analysis result. Only subsequent repeating

parts such as the two D-parts D1D2 (which are clearly re-

flected by paths in Figure 1b) have not been resolved by our

frame-based labeling approach. Also, note that, because of

significant musical variations in harmony and melody, the

two repeating C-parts are neither reflected by paths nor by

blocks.

Next, we consider the three examples of Figure 4. For

each example, the computed block matrix SBlock over-

laid with the original path structure inputted to our con-

version procedure is shown. Also the structure annotations

obtained from SBlock as well as the manually generated

“ground truth” annotations (for comparison) are shown.

The first example shown in Figure 4a is a recording of the

Hungarian Dance No. 5 by Johannes Brahms. The A-part

as well as the B-part segments are well reflected in the

block structure despite of some distortions and inconsisten-

cies in the path structure. Also, tempo differences between

B-part segments (B2 and B4 are played faster than B1 and

B3) still led to meaningful block structures. As in the pre-

vious Shostakovich example, the subsequent repeating A-

part andD-part segments were not subdivided as a result of

the purely frame-based labeling procedure. Also note that

even in the path representation only the repetitions D1D2

and D3D4 were captured, but not the finer grained subdivi-

sion (because of the chosen temporal resolution induced by

the parameter setting). Finally, the B-part segments were

further subdivided by our structure analysis procedure, il-

lustrating an over-segmentation as typical for automated

structure analysis methods [9].

The example shown in Figure 4b is based on a record-

ing of the March No. 1 from Op. 39 by Edward Elgar. As

before, one can say that overall the computed block struc-

ture correspond well to the inputted path structure. The

erroneously extracted small path fragment indicated by the

red circle has no major influence on the computed block

structure as well as on the final structure. This indicates

that our conversion procedure is, at least to some degree,

robust to local distortions and noise. In general, our pro-

cedure tends to yield better results when the inputted path

structure is sparse, thus requiring a denoising/smoothing

and thresholding step to enhance the path structure as is

also done in most repetition-based structure analysis ap-

proaches [1, 14].

The final example is a recording of the song “The win-

ner takes it all” by ABBA, see Figure 4c. With this ex-

ample, we want to indicate that missing path relations as

marked by the red circle may be “recovered” in the block

structure. Since the eigenvalue decomposition is a global

analysis of the entire matrix S, local deviations and miss-

ing relations are balanced out, thus enforcing some kind of

transitivity on the block level.

3.3 Quantitative Evaluation

Finally, we quantitatively evaluated and compared our

overall structure analysis procedure based on two well-

known datasets. First, we used the Beatles dataset with



Dataset Method pairwise boundary (3s)

F [%] P [%] R [%] F [%] P [%] R [%]

BeatlesTUT proposed 68.0 71.4 68.8 61.4 58.0 69.5

[5] 60.8 61.5 64.6 N/A N/A N/A

[13] 59.9 72.9 54.6 N/A N/A N/A

SMGA (worst) 65.8 70.9 65.9 69.6 68.1 72.9

SMGA (best) 71.8 65.1 80.0 75.3 73.4 79.1

Mazurka49-Rub proposed 72.3 70.1 78.7 60.6 66.3 60.5

Mazurka49-Coh proposed 70.0 69.3 74.2 62.7 65.3 65.9

Mazurka49-Eza proposed 71.4 69.0 77.4 64.4 70.7 64.1

Mazurka2792 SMGA (worst) 68.1 75.2 65.2 65.9 70.3 65.3

SMGA (best) 71.9 75.8 71.6 69.2 72.4 69.5

Table 1: Evaluation results for various procedures, evaluation
measures, and datasets, see text for a detailed explanation.

the TUT annotations 6 described in [13]. Second, we

used three complete recordings (Rubinstein 1966, Cohen,

Ezaki) taken from the 2792 recordings of the Mazurka

dataset 7 with manually generated structure annotations.

Using standard precision (P), recall (R) and F-measure

(F) for labeled pairs of frames as well as for segment

boundaries (with 3 seconds tolerance), we compared our

approach to [5, 13] as well as to the best performing

MIREX2012 method 8 denoted by SMGA which is based

on an extension of [17]. For SMGA, the results are re-

ported for two different parameter settings corresponding

to best and the worst performing setting, respectively.

Table 1 shows the results. Note that we have applied a

similar NMF-based structuring algorithm as in [5], how-

ever applied to our converted matrix SBlock. This leads

to substantial improvements compared to [5] on the Beat-

les dataset considering pairwise P/R/F-values. Also com-

pared to the SMGA results, we are at least in the same

range. As for the segment boundaries, however, we are

worse. This is by no surprise since our approach is a purely

frame-based procedure, whereas SMGA is based on a seg-

ment boundary detection step. Similar results hold for the

Mazurka dataset, where SMGA has been evaluated on all

2792 recordings, which include the three versions used in

our experiments. Our procedure yields for all three pi-

anists pairwise P/R/F-values that are in the same range as

the ones reported for SMGA. Again we want to empha-

size that the quantitative results are not in the focus of this

paper, but should only indicate the overall behavior of our

conversion procedure.

4. CONCLUSIONS

In this paper, we introduced a novel method for convert-

ing SSMs with path structures into SSMs with block struc-

ture based on eigenvalue decompositions. As main tech-

nical contribution, we discussed how certain path struc-

tures translate into characteristic properties of the eigen-

vectors. Furthermore, as an application of our conver-

sion, we showed how a homogeneity-based structure anal-

ysis procedure can be applied to the converted path matrix

to facilitate repetition-based structure analysis. We hope

that our contribution is interesting not only from a concep-

6 http://www.cs.tut.fi/sgn/arg/paulus/structure.html
7 http://www.mazurka.org.uk
8 http://nema.lis.illinois.edu/nema_out/mirex2012/

results/struct/mrx09/

tual point of view, but may also open up novel ways for

fusing different segmentation principles at an early stage

of a structure processing pipeline. In particular, it seems

promising to directly combine block-like SSMs (reflecting

homogeneous musical properties) with converted path-like

SSMs (reflecting repetitive musical properties), which can

then be handled using the same algorithmic pipeline.
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